Skip to main content
. 2018 Mar 14;52:36. doi: 10.11606/S1518-8787.2018052000222

Table 4. Analysis of the zero-inflated negative binomial model for the relationship between cancer rate and migratory status, adjusted for sociodemographic variables, including additive and interaction effects. Chile, 2012.

Variable   Coefficient PR 95%CI p
Negative binomial model (counting)

Migratory status Immigrant 0.969 2,6 1.77–3.93 0.000
  Chilean   1    
Age Age 0.033 1.0 1.02–1.05 0.000
  Age 0.0001 1.0 0.99–1.00 0.343
Sex Woman 0.095 1.1 0.92–1.32 0.308
  Man   1    
Health insurance FONASA 0.388 1.5 1.08–2.01 0.014
  ISAPRE 1.071 2.9 2.15–3.96 0.000
  Other 1.568 4.8 3.51–6.56 0.000
  No insurance        
Intersection Immigrant-FONASA -2.547 0.8 0.05–0.14 0.000
  Immigrant-ISAPRE -1.073 0.3 0.20–0.59 0.000
  Immigrant-other -1.055 0.3 0.17–0.72 0.005
Constant   -7.633 0.001 0.0003–0.0007 0.000

Logistic model (excess zeros)

Migratory status Immigrant 20.92 1.22x109 0 0.995
  Chilean   1    
Age Age -0.05 0.9 0.91–0.98 0.004
Sex Woman 0.2 1.2 0.39–3.80 0.73
  Man   1    
Health insurance Public -0.13 0.9 0.14–5.47 0.889
  Private 0.4 1.5 0.31–7.24 0.619
  Other 2.24 9.4 1.58–55.92 0.014
  No insurance   1    
Constant   -20.82 0.0 0 0.995

PRR: Prevalence Rate Ratio

In(α) = -0.882 (IC95% -1.120 – -0.644), p = 0.000

Log pseudolikelihood: p = 0.000

Test Vuong: z = 1.70; p = 0.0442