Table 4. Analysis of the zero-inflated negative binomial model for the relationship between cancer rate and migratory status, adjusted for sociodemographic variables, including additive and interaction effects. Chile, 2012.
Variable | Coefficient | PR | 95%CI | p | |
---|---|---|---|---|---|
Negative binomial model (counting) | |||||
| |||||
Migratory status | Immigrant | 0.969 | 2,6 | 1.77–3.93 | 0.000 |
Chilean | 1 | ||||
Age | Age | 0.033 | 1.0 | 1.02–1.05 | 0.000 |
Age | 0.0001 | 1.0 | 0.99–1.00 | 0.343 | |
Sex | Woman | 0.095 | 1.1 | 0.92–1.32 | 0.308 |
Man | 1 | ||||
Health insurance | FONASA | 0.388 | 1.5 | 1.08–2.01 | 0.014 |
ISAPRE | 1.071 | 2.9 | 2.15–3.96 | 0.000 | |
Other | 1.568 | 4.8 | 3.51–6.56 | 0.000 | |
No insurance | |||||
Intersection | Immigrant-FONASA | -2.547 | 0.8 | 0.05–0.14 | 0.000 |
Immigrant-ISAPRE | -1.073 | 0.3 | 0.20–0.59 | 0.000 | |
Immigrant-other | -1.055 | 0.3 | 0.17–0.72 | 0.005 | |
Constant | -7.633 | 0.001 | 0.0003–0.0007 | 0.000 | |
| |||||
Logistic model (excess zeros) | |||||
| |||||
Migratory status | Immigrant | 20.92 | 1.22x109 | 0 | 0.995 |
Chilean | 1 | ||||
Age | Age | -0.05 | 0.9 | 0.91–0.98 | 0.004 |
Sex | Woman | 0.2 | 1.2 | 0.39–3.80 | 0.73 |
Man | 1 | ||||
Health insurance | Public | -0.13 | 0.9 | 0.14–5.47 | 0.889 |
Private | 0.4 | 1.5 | 0.31–7.24 | 0.619 | |
Other | 2.24 | 9.4 | 1.58–55.92 | 0.014 | |
No insurance | 1 | ||||
Constant | -20.82 | 0.0 | 0 | 0.995 |
PRR: Prevalence Rate Ratio
In(α) = -0.882 (IC95% -1.120 – -0.644), p = 0.000
Log pseudolikelihood: p = 0.000
Test Vuong: z = 1.70; p = 0.0442