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Brugia malayi is a causative agent of lymphatic filariasis, a major tropical disease. The infective L3 parasite
stage releases immunomodulatory proteins including the venom allergen-like proteins (VALs), which are
members of the SCP/TAPS (Sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfam-
ily. BmVAL-1 is a major target of host immunity with >90% of infected B. malayi microfilaraemic cases
being seropositive for antibodies to BmVAL-1. This study is part of ongoing efforts to characterize the
structures and functions of important B. malayi proteins. Recombinant BmVAL-1 was produced using a
plant expression system, crystallized and the structure was solved by molecular replacement and refined
to 2.1 Å, revealing the characteristic alpha/beta/alpha sandwich topology of eukaryotic SCP/TAPS pro-
teins. The protein has more than 45% loop regions and these flexible loops connect the helices and
strands, which are longer than predicted based on other parasite SCP/TAPS protein structures. The large
central cavity of BmVAL-1 is a prototypical CRISP cavity with two histidines required to bind divalent
cations. The caveolin-binding motif (CBM) that mediates sterol binding in SCP/TAPS proteins is large
and open in BmVAL-1 and is N-glycosylated. N-glycosylation of the CBM does not affect the ability of
BmVAL-1 to bind sterol in vitro. BmVAL-1 complements the in vivo sterol export phenotype of yeast
mutants lacking their endogenous SCP/TAPS proteins. The in vitro sterol-binding affinity of BmVAL-1 is
comparable with Pry1, a yeast sterol transporting SCP/TAPS protein. Sterol binding of BmVAL-1 is depen-
dent on divalent cations. BmVAL-1 also has a large open palmitate-binding cavity, which binds palmitate
comparably to tablysin-15, a lipid-binding SCP/TAPS protein. The central cavity, CBM and palmitate-
binding cavity of BmVAL-1 are interconnected within the monomer with channels that can serve as path-
ways for water molecules, cations and small molecules.
� 2018 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The roundworm Brugia malayi is one of the causative agents of
lymphatic filariasis that affects over 120 million people in 83 coun-
tries in the tropics and subtropics. Brugia malayi venom allergen-
like protein 1 (BmVAL-1) protein was discovered as a highly
expressed transcript representing �2% of cDNAs from the
mosquito-borne infective larval (L3) stage, and at lower levels in
subsequent post-infective mammalian stages (Murray et al.,
2001). Expression of BmVAL-1 falls 10-fold once larvae are exposed
to mammalian-like conditions in vitro (Li et al., 2009). Immunolog-
ically, BmVAL-1 is a major target of host immunity with >90% of
infected B. malayi microfilaraemic cases being seropositive for
the recombinant protein, and evidence from mouse models that
the antigen induces a strong T cell response (Murray et al., 2001).
Supporting this, T cells from humans infected with the closely
related species Wuchereria bancrofti respond to the Wb-VAL
(>90% identical at amino acid level) with proliferation and cytokine
release (Anand et al., 2007). Hence, BmVAL-1 has been considered
a potential vaccine antigen, with confirmed serological reactivity in
infected humans and a reported 40–50% reduction in adult worm
load in jirds (Meriones unguiculatus) that had been vaccinated with
BmVAL-1 prior to L3 challenge (Kalyanasundaram and Balumuri,
2011).
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BmVAL-1 belongs to the eukaryotic CAP (cysteine-rich secretory
protein/antigen 5/pathogenesis related-1) or SCP/TAPS (Sperm-
coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) super-
family of proteins, which has been implicated in biological pro-
cesses such as reproduction, fungal virulence, cellular defense,
and immune evasion (Hawdon et al., 1999; Ding et al., 2000; Gao
et al., 2001; Zhan et al., 2003; Schneiter and Di Pietro, 2013).
SCP/TAPS proteins have been implicated in pathogen defense and
in plants the sterol-binding ability is important for protection
against a class of plant fungal pathogens known as oomycetes
(Gamir et al., 2017). Previous in vitro studies revealed that the inhi-
bition of oomycete growth by recombinant plant CAP protein (PR-
1) was likely due to sterol sequestration (Darwiche et al., 2017;
Gamir et al., 2017; Kazan and Gardiner, 2017). Specifically, plants
overexpressing PR-1 have been shown to be particularly resistant
to sterol auxotroph pathogens such as oomycetes. Mutant pheno-
types of sterol transport-deficient yeast mutants can be reverted
by plant PR-1 isoforms, PR-1 sterol-binding activities correlate
with antimicrobial activities and sterol non-auxotrophic fungi
can be made susceptible to PR-1 by inhibiting their own sterol
biosynthesis. This explains the mode of action of PR-1 in plant
immunity and its higher activity against oomycetes, which are
unable to synthesize their own sterols. Furthermore, plant PR-
1 can sequester leaky sterols from the apoplast, and actively
retrieve sterols from oomycete membranes (Gamir et al., 2017).

Similar to VAL proteins from other filarial parasites, BmVAL-1
has a single �15 kDa CAP domain. Two ProSITE motifs have been
defined for SCP/TAPS proteins CAP1/CRISP1 [GDER][HR][FYWH]
[TVS][QA][LIVM][LIVMA]Wxx[STN], and CAP2/CRISP2 [LIVMFYH]
[LIVMFY]xC[NQRHS]Yx[PARH]x[GL]N[LIVMFYWDN (de Castro et al.,
2006; Yoon et al., 2007). Two additional motifs, CAP3/CRISP3
(HNxxR) and CAP4/CRISP4 (G[EQ]N[ILV], were defined subse-
quently (Gibbs et al., 2008). Each motif contributes residues that
align the central cavity including two histidines residues from
CAP1 and CAP3 that bind divalent cations including Zn2+ and
Mg2+ (Serrano et al., 2004; Asojo et al., 2005, 2011; Gibbs et al.,
2008; Suzuki et al., 2008; Wang et al., 2010; van Galen et al.,
2012; Xu et al., 2012; Mason et al., 2014). Although BmVAL-1 does
not fully conform to the ProSITE motifs, it contains both character-
istic central cavity histidine residues. The amino acid sequence of
BmVAL-1 differs from other SCP/TAPS proteins with known struc-
tures. The highest sequence identity and coverage is with the
human hookworm proteins Necator americanus Ancylostoma
secreted protein-2, (Na-ASP-2, 37% sequence identity and 97% cov-
erage) and N. americanus Ancylostoma secreted protein-1, (Na-ASP-
1, 35% sequence identity and 99% coverage), and other structures
have less than 85% query coverage (Asojo et al., 2005; Asojo,
2011). Furthermore, previous structural analyses reveal that
despite sharing an alpha/beta/alpha sandwich topology, SCP/TAPS
proteins are >40% loop regions, making it difficult to accurately
model their structures. As part of efforts to characterize the func-
tions of filarial parasite vaccine candidates, recombinant BmVAL-
1 was produced and its structure was determined.
2. Materials and methods

2.1. Plant-based expression of BmVAL-1

The codon optimized sequence encoding mature BmVAL-1,
omitting its endogenous 16AA signal peptide, was cloned into a
pHYG expression vector downstream from the Arabidopsis thaliana
chitinase signal peptide (cSP). The BmVAL-1 expression vector was
transformed into Agrobacterium tumefaciens (strain MOG101) for
agro-infiltration and co-infiltrated with the pBIN61 vector contain-
ing the silencing inhibitor p19 from tomato bushy stunt virus.
BmVAL-1 and p19 Agrobacterium tumefaciens clones were grown
in Lennox broth (10 g/L of peptone140, 5 g/L of yeast extract, 10
g/L of NaCl pH 7.0) containing 50 lg/ml of kanamycin and 20 lM
acetosyringone for 16 h at 28 �C/250 rpm. Bacterial cultures were
suspended to a final O.D. of 0.5 per culture using MMA infiltration
medium (20 g/L of sucrose, 5 g/L of Murashige and Skoog basal salt
mixture, 1.95 g/L of 2-(N-morpholino)ethanesulfonic acid pH5.6)
containing 200 lM acetosyringone. The Agrobacterium suspension
was infiltrated into the youngest fully expanded leaves of 5–6
weeks old Nicotiana benthamiana plants at the abaxial side, which
were then maintained in a controlled greenhouse compartment for
5–6 days (UNIFARM, Wageningen, Netherlands) prior to harvest.

2.2. Purification of BmVAL-1

BmVAL-1 was purified from the leaf extracellular space (apo-
plast) as described previously (Wilbers et al., 2017). Briefly, the
infiltrated leaves were submerged in ice-cold extraction buffer
(20 mM sodium phosphate buffer pH 6, 100 mM NaCl and 0.1%
(v/v) Tween-20). After vacuum infiltration of the submerged
leaves, apoplast fluid was retrieved by centrifugation (10 min at
2000g) and clarified by centrifugation (5 min at 16,000 g).
BmVAL-1 was purified from the apoplast fluid using HS POROS
50 strong cation exchange (CEX) resin (Applied Biosystems, USA).
Prior to purification, the apoplast fluid was passed over a G25
sephadex column with CEX binding buffer (20 mM sodium phos-
phate buffer pH 6, 100 mM NaCl). BmVAL-1 bound to CEX resin
was eluted with 20 mM Tris-HCl buffer pH 9.0 containing 2 M
NaCl. The purification was performed on a ÄKTA Prime Chromatog-
raphy System (GE Healthcare, USA) using a constant flow rate of
10 mL/min for binding and washing and 2 mL/min for elution.
Eluted BmVAL-1 was dialyzed overnight into PBS. Recombinant
BmVAL-1 was separated under reduced conditions by SDS-PAGE
on a 12% Bis-Tris gel (Invitrogen, USA) and subsequently stained
with Coomassie brilliant blue staining.

2.3. Analysis of N-glycan composition

For N-glycan analysis, 1–2 lg of purified BmVAL-1 was reduced
and denatured for 10 min at 95 �C in PBS containing 1.3% (w/v) SDS
and 0.1% (v/v) b-mercaptoethanol. SDS was neutralized by adding
2% (v/v) NP-40 prior to overnight digestion at 37 �C with trypsin
(Sigma-Aldrich, USA), immobilized to N-hydroxysuccinimide-
activated sepharose (GE Healthcare). Trypsin beads were removed
from the digestion mix by centrifugation and the pH of the mix was
adjusted to 5 using 1 M sodium acetate. PNGase A (0.5 mU; Roche,
Switzerland) was used to release N-glycans from BmVAL-1 while
incubating overnight at 37 �C. The incubation mixture was applied
to C18 BakerbondTM SPE cartridges (JT Baker, USA) and the N-
glycans were extracted from the flow-through on Extract CleanTM

Carbo SPE columns. Eluted N-glycans were labeled with anthranilic
acid (Sigma-Aldrich) and desalted by hydrophilic interaction chro-
matography on Biogel P10 (BioRad, USA). Samples in 75% acetoni-
trile were mixed with 1 ll of matrix solution (20 mg/ml 2,5-
dihydroxybenzoic acid in 50% (v/v) acetonitrile, 0.1% (v/v) trifluo-
roacetic acid) and were dried under a stream of warm air.
Matrix-assisted laser desorption/ionization (MALDI) time-of-
flight mass spectra (MS) were obtained using an Ultraflex II mass
spectrometer (Bruker Daltonics, USA).

2.4. Crystallization and structure determination

BmVAL-1 (10 mg/ml) in PBS was screened for crystallization
conditions with commercial screens from Qiagen (Germany) and
Microlytics (USA). Similar to human and parasite CAP proteins,
BmVAL-1 crystals grew in high concentrations of polyethylene



R. Darwiche et al. / International Journal for Parasitology 48 (2018) 371–378 373
glycol. The best diffracting crystals were optimized by vapor
diffusion in sitting drops by mixing 2.5 lL of protein solution with
1.5 lL of the precipitant (25% (w/v) PEG 4000, 0.2 M lithium
sulfate, 0.1 M sodium acetate, and 0.1 M HEPES pH 7.5) at 298 K.

A single crystal was flash-cooled directly in a stream of N2 gas at
113 K to facilitate collecting diffraction data at the Baylor College
of Medicine, USA, core facility using a Rigaku HTC detector. The
X-ray source was a Rigaku FR-E+ SuperBright microfocus rotating
anode generator with VariMax HF optics. Data was collected at a
crystal-to-detector distance of 115 mm, with exposure times of
60 s for 0.5� oscillations, using the Crystal Clear (d⁄trek) package
(Pflugrath, 1999) and processed using MosFLM (Leslie, 2006). The
molecular replacement phases were calculated with PHASER
(McCoy et al., 2007) using Na-ASP-2 stripped of water and its car-
boxyl terminus extension as the search model. The resulting struc-
tural model was improved through automatic model building with
ARP/wARP (Morris et al., 2003, 2004) followed by iterative manual
model building cycles using the program Coot (Emsley et al., 2010),
followed by structure refinement with both REFMAC5 (Murshudov
et al., 2011) within the CCP4 package (Winn et al., 2011) and Phe-
nix (Terwilliger et al., 2008; Adams et al., 2010). Ribbon diagram
and model figures were generated using PyMOL. Data collection
and structure refinement details are reported in Table 1. The
atomic coordinates and structure factors for BmVAL-1 have been
deposited in the protein data bank under accession number
6ANY. CAVER 3.0 analysis was performed within PyMOL (www.py-
mol.org) using default settings and centering in different positions
Table 1
Data collection, and refinement statistics for Brugia malayi venom allergen-like 1
protein (BmVAL-1).

Data collection BmVAL-1

Wavelength (nm) 0.15418
Resolution range (Å) 44.87–2.25 (2.33–2.25)
Space group P 43 21 2
Unit cell a = 85.79 Å, b = 85.79 Å, c = 66.67 Å

a = b = c = 90o

Total reflections 22,409 (1735)
Unique reflections 11,799 (997)
Multiplicity 1.9 (1.7)
Completeness (%) 95.81 (83.07)
Mean I/sigma (I) 10.20 (3.50)
Wilson B-factor 20.07
R-merge 0.03196 (0.1561)
R-meas 0.0452 (0.2207)
R-pim 0.03196 (0.1561)
CC1/2 0.998 (0.927)
CC* 0.999 (0.981)
Reflections used in refinement 11,789 (996)
Reflections used for R-free 976 (72)
R-work 0.1823 (0.2052)
R-free 0.2134 (0.2755)
CC (work) 0.945 (0.853)
CC (free) 0.917 (0.740)
Number of non-hydrogen atoms 1882
Macromolecules 1630
Ligands 47
Solvent 205

Protein residues 206
RMSD bond lengths (Å) 0.008
RMSD angles (o) 0.93
Ramachandran favored (%) 99
Ramachandran allowed (%) 1.5
Ramachandran outliers (%) 0
Rotamer outliers (%) 0
Clashscore 6.01
Average B-factor 22.15
Macromolecules 20.86
Ligands 39.48
Solvent 28.45

Statistics for the highest resolution shell are shown in parentheses.
RMSD, root-mean-square deviation; CC, correlation coefficient.
in proximity to known cavities (Petrek et al., 2006; Chovancova
et al., 2012; Kozlikova et al., 2014; Pavelka et al., 2016)

2.5. In vivo sterol export from mutant yeast cells

Acetylation and export of sterols into the culture supernatant
was examined as described (Tiwari et al., 2007). Heme (hem1D) -
deficient yeast cells were cultivated in presence of Cholesterol/
Tween 80 containing media and labeled with 0.025 mCi/ml [14C]
cholesterol (American Radiolabeled Chemicals Inc, St. Louis, MO,
USA). Cells were harvested by centrifugation, washed twice with
synthetic complete (SC) media, diluted to an O.D.600 of 1 into fresh
media containing non-radiolabeled cholesterol and grown over-
night. Cells were centrifuged and lipids were extracted from the
cell pellet and the culture supernatant using chloroform/methanol
(v/v 1:1). Samples were dried and separated by thin-layer chro-
matography (TLC) using silica gel 60 plates (Merck, Darmstadt,
Germany) using the solvent system, petroleum ether/diethyl ether
/acetic acid (70:30:2; per vol.). Radiolabeled lipids on the TLC were
visualized and quantified by phosphorimaging.

2.6. In vitro lipid binding

Lipid binding was assessed in vitro using a radioligand-binding
assay as described previously (Choudhary and Schneiter, 2012; Im
et al., 2005). To measure sterol binding, 100 pmol of purified pro-
tein in binding buffer (20 mM Tris, pH 7.5, 30 mM NaCl, 0.05% Tri-
ton X-100) were incubated with 0–500 pmol of [3H]-cholesterol
(American Radiolabeled Chemicals Inc., St Louis, Missouri, USA)
for 1 h at 30 �C. The protein was then separated from the unbound
ligand by adsorption to Q-sepharose beads (GE healthcare, USA),
beads were washed, and the radioligand was quantified by scintil-
lation counting. The effect of divalent cations on cholesterol bind-
ing was measured by performing the in vitro binding reaction in
the presence of different concentrations of EDTA and magnesium
chloride. At least two independent experiments were performed
under each experimental condition and data is reported as the m
ean ± S.D. Calculation of the Kd value and curve fitting were per-
formed using the statistical software Prism, (GraphPad, La Jolla,
CA, USA).

Similarly, to measure palmitate binding, purified proteins (100
pmol) in binding buffer (20 mM Tris pH 7.5, 30 mM NaCl, 0.05%
Triton X-100) were incubated with [3H]-palmitic acid (0–400
pmol) for 1 h at 30 �C. The protein was then separated from the
unbound ligand by adsorption to Q-sepharose beads (GE Health-
care); beads were washed with washing buffer (20 mM Tris pH
7.5), proteins were eluted (20 mM Tris pH 7.5, 1 M NaCl), and the
radioligand was quantified by scintillation counting. To determine
non-specific binding, the binding reaction was performed without
the addition of protein into the binding assay.
3. Results

3.1. Production and structure of BmVAL-1

Recombinant BmVAL-1 was produced as a glycosylated protein
using a plant expression system. A typical yield of 0.5–1.0 mg of
pure recombinant protein was obtained per plant (3–4 g of leaf).
Recombinant BmVAL-1 was shown to be �95% pure as assessed
by Coomassie stained SDS-PAGE gel (Supplementary Fig. S1A).
The two predicted N-linked glycosylation sites of BmVAL-1 (N52
and N138) are glycosylated and the branches have highly ordered
2Fo-Fc electron density contoured at 1.5 sigma. The glycosylation
in the electron density maps is consistent with the result from
matrix-assisted laser desorption/ionization time-of-flight mass

http://www.pymol.org
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spectrometry (MALDI-TOF MS) analysis of released N-glycans.
MALDI-TOF MS analysis shows that all N-glycan on BmVAL-1 have
typical plant beta(1,2)-xylose and core alpha(1,3)-fucose residues.
The majority of the N-glycans are paucimannosidic N-glycans
(Supplementary Fig. S1B). Some N-glycans with one terminal
GlcNAc residue (MGnXF3 or GnMXF3) were also detected. The gly-
cosylation site at N138 is within the caveolin-binding motif (CBM)
loop that is required for sterol export (Fig. 1A).

Secreted BmVAL-1 has 206 amino acid residues, two of which
are vector-derived residues at the C-terminus. All 206 amino acid
residues have ordered main and side chain electron density maps,
of which 36 (17.5%) fold as beta strands, 59 (28.6%) fold as alpha
helices, 11 (5.3%) fold as 3–10 helices, while 100 (48.5%) form
loops. The overall topology of BmVAL-1 is an alpha-beta-alpha
sandwich, in which a mixed strand beta sheet is sandwiched
between two helical/loop regions. There are five disulfide bridges
in the BmVAL-1 structure (19–69, 82–170, 164–180, 200–211
and 206–218). The last two disulfides stabilize a unique carboxyl
terminus extension that is made mostly of loops. BmVAL-1 also
has a loop on the amino terminus that forms a disulfide bridge
with alpha helix-2. A single sulfate ion from the crystallization
solution is present in the structure in proximity to the carboxyl
terminus. The overall structure of BmVAL-1 is a prototypical
CRISP-type SCP/TAPS protein that has two histidine residues
which coordinate divalent cations located in the large central
cavity (Fig. 1A).

The central cavity of BmVAL-1 has a volume of 2567 Å3 which is
larger than other single CAP-domain SCP/TAPS protein structures
including Na-ASP-2 (1824 Å3), Pry1CAP (1591 Å3), GLIPR-1 (2000
Å3), GAPR-1 (1303 Å3), ves v5 (2048 Å3) and tablysin-15 (2263
Å3) as assessed by PDBsum (Henriksen et al., 2001; Serrano et al.,
2004; Asojo et al., 2005, 2011; Ma et al., 2011; de Beer et al.,
2014; Darwiche et al., 2016; Laskowski et al., 2018). CAVER 3.0
analyses reveal that the central cavity extends around the mono-
mer from the carboxyl terminus and is connected to the
palmitate-binding cavity, CBM and carboxyl terminus loop with
channels (Fig. 1B). These channels are large enough to allow small
molecules such as water, ions and small ligands to pass between
cavities, but too small to fit molecules the size of palmitate or
cholesterol. We believe this is the first report of the connection
of these cavities to form transport channels within a single CAP
domain, however, channels had been previously reported in the
Pry1CAP dimer (Darwiche et al., 2016) and the two-CAP domain
Na-ASP-1 (Asojo, 2011). The CBM and central cavities are separate
and distinct cavities and the channels allow divalent cations bound
Fig. 1. Structure of Brugia malayi venom allergen-like protein 1 (BmVAL-1). (A) Cartoon of
longest helices, a 1 and a3, that form the palmitate cavity and the caveolin binding mo
histidines that coordinate divalent cations in the central cavity. (B) Channels generated w
of BmVAL-1. (C) Superposition of Necator americanus Ancylostoma secreted protein-2 (
aquamarine cartoons) and the channels and cavities generated from BmVAL-1 with CAV
in the central cavity to access the CBM. Superposing the structures
of CRISP-type SCP/TAPS that have confirmed in vitro sterol binding
reveals that similar channels can be formed in these proteins
(Fig. 1C).
3.2. BmVAL-1 binds and exports cholesterol

Since BmVAL-1 has a cholesterol-binding CBM cavity, its ability
to bind sterol in vitro and export sterol in vivo were assessed.
BmVAL-1 is functional for cholesteryl acetate export in vivo and
a plasmid encoding BmVAL-1 was able to restore the cholesteryl
acetate export defect of mutant yeast cells that lacked endogenous
Pry1 and Pry2 (Fig. 2A). BmVAL-1 has a comparable sterol export
index to Pry1 (Fig. 2B). Addition of an increasing amount of [3H]-
cholesterol resulted in a concentration-dependent and saturable
binding of cholesterol to recombinant BmVAL-1. BmVAL-1 dis-
played saturation binding kinetics with an apparent Kd of 0.99
mM, which is comparable with cholesterol binding by Pry1, Na-
ASP-2, and Schistosoma mansoni venom allergen-like protein 4
(SmVAL-4), which have Kd of 1.9 mM, 2.1 mM and 2.4 mM, respec-
tively (Fig. 2C). Since BmVAL-1 is a CRISP type SCP/TAPS, having
two histidines (H86 and H150) that are capable of coordinating
divalent cations, the effect of divalent cations on sterol binding
was determined. As observed for Pry1, EDTA inhibits cholesterol
binding by BmVAL-1, and adding magnesium ions restores sterol
binding, indicating that magnesium is important for sterol binding
by BmVAL-1 (Fig. 2D).
3.3. Lipid binding by BmVAL-1

The ability to bind palmitate is based upon the presence of the
large cavity between two helices, as observed in tablysin-15, that
was also shown to bind leukotriene (Xu et al., 2012). These central
long alpha helices are present in SCP/TAPS proteins including
BmVAL-1 (Figs. 3 and 4A). As previously indicated in other CAP
proteins, the amino acid residues in the palmitate-binding cavity
are poorly conserved, however there is sufficient space between
the equivalent helices to facilitate binding palmitate or similar
lipids. The binding was confirmed using the in vitro palmitate-
binding assay and the Kd of BmVAL-1 (83 mM) is comparable with
tablysin-15 (Kd of 94 mM), which is a known palmitate binder
(Fig. 4B). These analyses reveal that BmVAL-1 is structurally able
to bind palmitate, as was observed for tablysin-15.
a monomer of BmVAL-1 in rainbow colours from N-ter (blue) to C-ter (red). The two
tif loop (CBM) are indicated, while glycans are shown as sticks. Also shown are the
ith CAVER 3.0 (in gray) link all major cavities (shown as gray bubbles) on a monomer
Na-ASP-2), and pathogen-related yeast protein 1 (Pry1) with BmVAL-1 (shown as
ER 3.0. B and C are shown in same view as A.



Fig. 2. In vivo and in vitro sterol binding by Brugia malayi venom allergen-like protein 1 (BmVAL-1). (A) Expression of BmVAL-1, Necator americanus Ancylostoma secreted
protein-2 (Na-ASP-2) and pathogen-related yeast protein 1 (Pry1) complement the sterol export defect of yeast cells lacking their endogenous Pry1,2. Heme-deficient cells of
the indicated genotype containing either an empty plasmid or a plasmid with BmVAL-1, Na-ASP-2 or Pry1 were radiolabeled with [14C]cholesterol overnight, washed and
diluted in fresh media to allow for export of cholesterol and cholesteryl acetate. Lipids were extracted from the cell pellet (P) and the culture supernatant (S), and separated by
thin layer chromatography. The positions of free cholesterol (FC), cholesteryl acetate (CA) and steryl esters (STE) are indicated. The star marks the position of an unidentified
cholesterol derivative. (B) Quantification of the export of cholesteryl acetate. The export index indicates the relative percentages of cholesteryl acetate that are exported by
the cells (ratio between the extracellular cholesteryl acetate and the sum of intra- and extra-cellular cholesteryl acetate). Data represent mean ± S.D. of two independent
experiments. (C) In vitro sterol binding by BmVAL-1 is comparable with Pry1, Schistosoma mansoni venom allergen-like protein 4 (SmVAL-4) and Na-ASP-2. (D) Addition of
MgCl2 rescues the loss in sterol transport caused by the addition of EDTA.
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4. Discussion

BmVAL-1 is the first structure of a SCP/TAPS protein with a gly-
cosylated CBM loop that exports sterols, which indicates that gly-
cosylation of the CBM does not inhibit sterol binding. The most
similar structure to BmVAL-1 was identified with PDBeFold
(http://www.ebi.ac.uk/msd-srv/ssm/) as the molecular replace-
ment search model Na-ASP-2 which only shares 35% sequence
identity. Similar to Na-ASP-2, BmVAL-1 has an overall topology
of a three-layered alpha-beta-alpha sandwich flanked by an amino
terminal loop and a cysteine rich carboxyl terminal loop (Figs. 3
and 4). However the loops in BmVAL-1 are oriented differently
than in other SCP/TAP structures and the helices and strands are
of different lengths than previously reported. The two disulfide
bridges that stabilize the carboxyl terminal extension are located
in similar positions as in other nematode SCP/TAPS structures
despite conformational differences in these extensions (Asojo
et al., 2005; Asojo, 2011; Borloo et al., 2013; Mason et al., 2014).
A similar carboxyl terminal extension was shown serving as a lin-
ker domain in snake venom CRISPs (Asojo et al., 2005). The possible
roles of these carboxyl terminal extensions are unknown, however
this extension is not necessary for sterol binding or transport, as
proteins lacking this extension (Pry1CAP, SmVAL-4) are capable
of in vivo and in vitro sterol binding.
BmVAL-1 has a much larger central cavity than previously
observed in other SCP/TAPS proteins and for the first time the
interconnectivity of the central cavity to other cavities via channels
was observed in a monomer. The observation that similar channels
may connect the different binding sites and the central cavity
explains the ability of seemingly independent cavities to affect
each other, specifically that blocking divalent ions in the central
cavity affects sterol binding in the distinct CBM cavity. The chan-
nels are quite small and while they may allow passage of ions,
water, and possibly small ligands within the monomer, the chan-
nels are not large enough for cholesterol or palmitate.

While our current work offers insights into cholesterol and
palmitate binding by BmVAL-1, questions remain about how this
affects the roles of the protein in the parasite as well as its use
as a potential vaccine. It is known that SCP/TAPS proteins are pre-
dominant proteins secreted during the first molt of both infective
and free-living nematodes. Furthermore, cholesterol and its deriva-
tives have been shown to be important in molting in Caenorhabditis
elegans (Entchev and Kurzchalia, 2005). The CAP domain, and more
specifically the sterol-binding CBM loops, of C. elegans VALs are
similar to BmVAL-1, suggesting similar binding properties to
BmVAL-1 (Supplementary Fig. S2). More studies are required to
determine if sterol binding by SCP/TAPS proteins affects the transi-
tion to parasitism in parasitic nematodes and to identify possible

http://www.ebi.ac.uk/msd-srv/ssm/


Fig. 3. Structural alignment of Brugia malayi venom allergen-like protein 1 (BmVAL-1) with selected SCP/TAPS (Sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/
Sc7) proteins. (A) ENDscript (Gouet et al., 2003; Robert and Gouet, 2014) alignment identifies conserved residues in CRISP-type SCP/TAPS proteins. Amino acid numbering
corresponds to full-length BmVAL-1. Also shown are vector-derived C-ter amino acid residues. Identical and conserved residues are highlighted in red and yellow,
respectively. The different secondary structure elements shown are alpha helices (a), 310-helices (g), beta strands (b), and beta turns (TT). The representative structural
models with their respective protein data bank codes are Na-ASP-2 (1U53); Na-ASP-1 (3NT8); GAPR-1 (1SMB) (van Galen et al., 2012); a major allergen from Vespula vulgaris
venom, Ves v 5, (1QNX), (Henriksen et al., 2001); the snake venom protein natrin, 1XX5, (Wang et al., 2006); and Pry1 CAP domain 5ETE (Darwiche et al., 2016). Solvent
accessibility (acc) and hydropathy scales per residue (hyd) are also indicated. (B) Ribbon and (C) surface plots of BmVAL-1 reveal that identical residues cluster mostly around
the central cavity. Identical residues are shown in red while conserved are shown in pink, and disulfide bridges are shown in yellow.

Fig. 4. Palmitate binding by Brugia malayi venom allergen-like protein 1 (BmVAL-1). (A) Alignment of the palmitate binding cavities of BmVAL-1 (gray) and tablysin-15
(aquamarine); palmitate is shown in magenta. (B) In vitro palmitate binding activity of BmVAL-1 is comparable with tablysin-15.
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roles of VALs in nematode molting. The binding and sequestration
of small molecules such as cholesterol and fatty acids may affect
the vaccine efficacy of BmVAL-1, and it remains to be determined
whether BmVAL-1 has the ability to bind commonly used adju-
vants such as squalene.

With the crystal structure of BmVAL-1 now revealed, a more
detailed antigenic analysis of this vaccine candidate will be possi-
ble. In particular, the structure defines exposed regions which may
be epitopes preferentially recognized by antibodies in infected
subjects and/or vaccinated animals, and can serve as a starting
point to define features common to VAL antigens from different
helminth species, as well as those unique to BmVAL-1 which
may confer upon it protective potential against filarial infection.

The structure of the first filarial nematode SCP/TAPS protein
BmVAL-1 reveals structural similarity to hookworm Na-ASP-2.
Uniquely, BmVAL-1 has a larger central cavity and a glycosylated
CBM with uncompromised sterol-binding ability. While sterol is
required for molting, the roles of SCP/TAPS proteins in molting
require further investigation. The structure of BmVAL-1 reveals
for the first known time that the central, sterol-binding CBM, and
palmitate-binding cavities are connected within a monomer by
tunnels that are large enough for the passage of ions and water
molecules, which may explain how sterol binding is affected by
divalent cations bound in distinct cavities. Future studies will clar-
ify the roles of the carboxyl terminal extension as well as identify
lipids that specifically bind to the palmitate-binding cavity. There
is also a need to determine whether the ability to bind so many
small molecules will affect the possible application of CAP proteins
as vaccines.
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