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Abstract

Numerous studies have suggested that medical image derived computational mechanics models 

could be developed to reduce mortality and morbidity due to cardiovascular diseases by allowing 

for patient-specific surgical planning and customized medical device design. In this work, we 

present a novel framework for designing prosthetic heart valves using a parametric design platform 

and immersogeometric fluid–structure interaction (FSI) analysis. We parameterize the leaflet 

geometry using several key design parameters. This allows for generating various perturbations of 

the leaflet design for the patient-specific aortic root reconstructed from the medical image data. 

Each design is analyzed using our hybrid arbitrary Lagrangian–Eulerian/immersogeometric FSI 

methodology, which allows us to efficiently simulate the coupling of the deforming aortic root, the 

parametrically designed prosthetic valves, and the surrounding blood flow under physiological 

conditions. A parametric study is carried out to investigate the influence of the geometry on heart 

valve performance, indicated by the effective orifice area (EOA) and the coaptation area (CA). 

Finally, the FSI simulation result of a design that balances EOA and CA reasonably well is 

compared with patient-specific phase contrast magnetic resonance imaging data to demonstrate the 

qualitative similarity of the flow patterns in the ascending aorta.
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1. Introduction

Computer simulations of fluid and solid mechanics greatly expand the scope of what can be 

inferred from non-invasive imaging of the cardiovascular system. This claim has been 

argued by academic researchers for at least 20 years, starting with the works of Makhijani et 

al. [1], Taylor et al. [2, 3], and Lemmon and Yoganathan [4]. But the recent entry of 

computational fluid dynamics (CFD) into mainstream clinical practice, as a method of 

estimating fractional flow reserve (FFR) from computed tomography angiography (CTA) [5, 

6], has decisively proven that the paradigm of image-based predictive modeling of the 

cardiovascular system can simultaneously improve diagnoses and outcomes while reducing 

costs. However, the use of image-based CFD to circumvent costly invasive measurements of 

clinical quantities of interest realizes only a fraction of the potential benefits outlined in 

Taylor et al.’s proposed paradigm of predictive cardiovascular medicine [7]. Over the past 

decade or so, numerous studies have suggested that using medical images to construct 

computational mechanics models could reduce mortality and morbidity due to 

cardiovascular diseases by allowing for patient-specific surgical planning [8–14] or even 

customized design of medical devices [15–19].

The possibility of patient-specific prosthetic heart valve design is the topic of the present 

study. In particular, we focus on the potential role of computational fluid–structure 

interaction (FSI) analysis in the design of stentless aortic valve prostheses that conform to 

the aortic root geometries of individual patients, as obtained from non-invasive medical 

imaging modalities. Aortic valve replacement is commonly indicated for patients suffering 

from heart valve diseases; over 90,000 prosthetic valves are implanted in the United States 

each year [20]. While valves can sometimes be surgically repaired, prosthetic replacement is 

the only option for a vast majority of patients [21]. Replacement heart valves fabricated from 

biologically derived materials are referred to as bioprosthetic heart valves (BHVs). While 

these devices have blood flow characteristics similar to the native valves, device failure 

continues to result from leaflet structural deterioration, mediated by fatigue and/or tissue 

mineralization. Mechanical stress has long been known to play a role in this deterioration 

[22] and substantial work has been done by academic researchers to predict and optimize the 

distribution of this stress by using tools from engineering analysis to simulate (quasi-)static 

[23] and dynamic [24] structural mechanics, and, more recently, fluid–structure interaction 

[25].

Most BHVs consist of chemically-treated bovine pericardial leaflets sutured to a rigid stent 

[26]. Stents are available in multiple sizes, but this several-sizes-fit-all paradigm may not 

provide optimal results for many patients since valve performance is highly dependent on 

the geometry of the root and the leaflets. Alternatives to rigid stented valves include stentless 

valves [26], offering larger orifice areas and improved hemodynamics. However, as stated by 
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Xiong et al. [27], the prosthetic leaflet geometry of a stentless valve plays a key role for its 

efficacy and durability. Auricchio et al. [17] found that geometrically symmetric stentless 

prosthetic valves implanted in patient-specific aortic roots, in general characterized by 

asymmetric sinuses, can cause heart valve misclosure, leading to valve insufficiency. 

Clinical aspects of stentless valves are reviewed in Ennker et al. [28]. The cited study 

concluded that stentless valves decrease the incidence of mismatch between patients and 

prostheses [28, pp. 81] and that all studies from the literature report a survival advantage for 

stentless prostheses relative to stented valves [28, pp. 77]. However, the authors also noted 

that many surgeons remain hesitant to use the total root technique or perform any kind of 

stentless valve implantation [28, pp. 79–80], due to the technical complexity of the 

operation. The implantation technique is non-trivial and therefore the clinical outcomes of 

these implants are strongly dependent on an appropriate choice of both prosthesis size and 

replacement technique, which is, at present, strictly related to the surgeon’s experience and 

skill [29]. In the present study, we propose a patient-specific computational approach to 

support pre-operative planning of stentless aortic valve implants by studying the sensitivity 

of prosthesis geometric features and determining the best-performing prosthesis shape. More 

precisely, we hypothesize that image-based patient-specific computational FSI analysis 

could provide a rational method for planning and optimizing the details of this complex 

surgery in advance, increasing the probability of realizing the full benefits of stentless valve 

replacement.

The construction of geometrical computer models of heart valves is already attracting 

interest from the medical device industry. For example, the Siemens eSie Valves system [30] 

is marketed as a means for physicians to extract geometrical quantities of interest (e.g., 

annulus diameter, orifice area, etc.) from medical images of patients’ heart valves. Desirable 

features of such a system are closely aligned with those of computer-aided design (CAD) 

programs used in engineering. For instance, a recent white paper [31] on the eSie Valves 

technology emphasizes the importance of “intuitive editing” of semi-automatically-

generated segmentations of patients’ valve leaflets. Recent work by academic researchers 

also indicates that spline surfaces and curves used in CAD programs provide a convenient 

representation of heart valve geometries segmented from medical imaging data [32–34]. If 

we want to develop computational mechanics analysis technologies that align with this 

trend, we are naturally led to the field of isogeometric analysis (IGA).

Isogeometric analysis was originally proposed by Hughes et al. [35] as a way to unify 

engineering analysis and design, by directly employing designer-friendly representations of 

geometry as computational analysis models. This eliminates the difficult task of converting 

between design geometries and finite element/volume representations needed for numerical 

analysis. As mentioned above, clinicians would prefer design-like representations of 

geometry that can be intuitively manipulated. Obtaining these representations from medical 

images is itself nontrivial, but one can at least avoid doubling the segmentation workload by 

leveraging IGA to re-use these representations as analysis models. Image-based patient-

specific IGA of heart valve structural mechanics has been previously studied by Morganti et 

al. [36], who found that IGA of heart valves does not just permit convenient re-use of 

intuitive geometry representations; it can also dramatically increase the accuracy of 

mechanical analyses relative to traditional finite element discretizations [36, Figures 13 and 
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14]. The current contribution extends this body of work on patient-specific heart valve IGA 

to include FSI analysis. Due to the difficulty of developing general-purpose methods for 

tracking fluid–solid interfaces through large and complex deformations, such as those 

undergone by aortic valve leaflets, we have combined ideas from IGA with the concept of 

immersed boundary FSI analysis [37–40]. We refer to this combination of ideas as 

immersogeometric FSI analysis [41].

Immersogeometric analysis is ideally-suited to automatic optimization of engineered 

systems and/or exploration of design spaces, as it directly immerses CAD boundary 

representations of engineering designs into unfitted discretizations of volumes [42, 43]. 

CAD geometries are often parameterized in terms of a few key dimensions; this is known as 

parametric design. Using traditional finite element or finite volume analysis methods, one 

would need to regenerate an analysis mesh every time a design parameter is modified, which 

often requires some manual intervention by the analyst. Using immersogeometric 

approaches, design parameters can be varied freely, and the modified design can be re-

analyzed without human intervention. This is demonstrated by the parametric design 

optimization of a water brake in Wu et al. [44]. The idea of applying immersogeometric FSI 

analysis to a parametric BHV design is shown in Hsu et al. [45].

Parametric design of heart valve leaflet geometries dates back to Thubrikar [46, Chapter 1], 

which introduced a 3D geometry description of the aortic valve by considering the 

intersection surfaces of a cone with inclined planes and used this description to search for 

optimal prosthetic dimensions with appropriate coaptation, minimum volume, and efficient 

use of energy. Subsequent studies on parameterized heart valve geometries include Labrosse 

et al. [47], Auricchio et al. [17], Haj-Ali et al. [48], Kouhi and Morsi [49], Fan et al. [19], 

and Li and Sun [50]. These studies have focused on defining general guidelines for 

prosthetic valve design that might be expected to improve average outcomes for the 

population considered as a whole. However, with the advent of 3D bioprinting [51] (which 

has already been studied in the context of aortic valve replacement [52]), it may one day be 

possible to perform optimization of geometry on a per-patient basis, taking into account 

variations in patient aortic root geometry and other patient-specific factors. Computational 

methods enabling patient-specific simulations of native and prosthetic heart valves were 

reviewed by Votta et al. [53] and Soares et al. [54].

In this work, we develop a framework for designing patient-specific prosthetic heart valves 

using an IGA-based parametric design platform and immersogeometric FSI analysis. The 

patient-specific aortic root geometry is reconstructed from the medical image data and is 

represented using non-uniform rational B-splines (NURBS). The leaflet geometry is 

parameterized using several geometric design parameters which allows for generating 

various perturbations of the leaflet design for the patient’s aortic root. Each design is 

analyzed using our hybrid arbitrary Lagrangian-Eulerian/immersogeometric FSI solver, 

which allows us to efficiently perform a computation that combines a boundary-fitted, 

deforming-mesh treatment of the artery with a non-boundary-fitted treatment of the leaflets. 

We simulate the coupled dynamics of the patient-specific aortic root, parametrically 

designed heart valves, and surrounding blood flow, under physiological conditions. The 

leaflet and arterial wall motion are coupled using a penalty formulation imposed over the 
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intersection of the artery wall with a fictitious smooth extension of the leaflets. The artery 

wall tissue prestress is included to improve the physical realism of the modeling. A 

parametric study is carried out to investigate the influence of the geometry on heart valve 

efficiency and performance, indicated by the effective orifice area (EOA) during the opening 

phase and the coaptation area (CA) during the closing phase, and to identify a design that 

balances EOA and CA reasonably well, Finally, the simulation result of this best-performing 

prosthetic valve is compared with the phase contrast magnetic resonance imaging (PC-MRI) 

data from the patient to demonstrate the qualitative similarity of the flow patterns in the 

ascending aorta.

The paper is organized as follows. In Section 2, we describe the tools that we use to perform 

patient-specific valve simulations: Section 2.1 introduces our techniques for obtaining 

spline-based geometrical representations of arteries and valves, using medical image 

processing and parametric design; Sections 2.2–2.5 cover the mathematical models of 

continuum mechanics that we assume for the fluid and structural components, and our 

isogeometric and immersogeometric discretizations of those models. In Section 3, we 

explore the parametric BHV design space and evaluates candidate valves in terms of clinical 

quantities of interest. In Section 4, we compare simulated hemodynamics with patient-

specific magnetic resonance velocimetry data. Finally, the conclusions are presented in 

Section 5.

2. Modeling and simulation framework

This section describes our pipeline for processing medical image data into geometrical 

models of the ascending aorta, parameterizing patient-specific BHV design spaces, and 

discretizing FSI problems posed on these custom geometries.

2.1. Patient-specific geometry modeling

We demonstrate our geometrical modeling approach using ECG-gated CTA and PC-MRI of 

the aortic valve region of a 69 year-old patient. This data was obtained from the internal 

database of the IRCCS Policlinico San Donato hospital in Milan, Italy. The selected patient 

underwent radiological investigations for descending aorta disease, while being 

characterized as having a healthy aortic valve. This and the amount of available imaging data 

are the main reasons for choosing this specific patient.

2.1.1. Patient-specific medical image processing—Contrast enhanced multislice 

CTA was performed using a Siemens SOMATOM Definition AS scanner (Siemens Medical 

Solutions, Erlangen, Germany), with a collimation width of 0.6 mm, slice thickness of 0.75 

mm, and pixel spacing of 0.685 mm × 0.685 mm. We process CTA images using the open-

source Vascular Modeling ToolKit (vmtk) [55] to segment the aortic root from the left 

ventriculo-aortic junction to the sinotubular one. CTA images from end diastole have the 

highest quality and are therefore selected for segmentation. We use level sets following the 

approach proposed by Antiga et al. [56]. After completing the segmentation step, a 

triangulated surface representation of the aortic lumen is obtained using the marching cubes 
algorithm. A centerline of the aortic root segment is computed from its surface model using 

vmtk. A simple and fast least-squares approach is then adopted to map a primitive NURBS 
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geometry (e.g., a cylinder) onto the obtained target lumen surface representation. We refer 

readers to Morganti et al. [36] for more details on this procedure.

As will become evident in the following sections, the end diastolic configuration presents a 

challenge for stentless valve design because the leaflets are highly deformed and subjected 

to nontrivial self-contact constraints, while supporting a substantial transvalvular pressure 

gradient. To avoid these complications, we scale the lumen surface radially by 1.1, which is 

the ratio between peak systolic and end diastolic radii observed from the patient’s PC-MRI 

images. The scaled geometry represents the peak systolic configuration and is used as the 

reference geometry. The final quadratic NURBS surface representation of the patient-

specific aortic root is shown in Figure 1a.

In this work, we plan to simulate the blood flow in a deforming ascending aorta interacting 

with different designs of the BHV. To do so, we first add a short tubular extension between 

the aortic root and the left ventricle, and a longer tubular extension between the aortic root 

and the arch. This gives us the lumen surface of our ascending aorta, extended from the 

patient-specific aortic root geometry. For the purpose of constructing a 3D discretization of 

the artery wall, we expand the lumen surface in the outward normal direction to obtain a 

model of the outer surface of the aortic wall. (As a result, the lumen surface also serves as 

the inner surface of the aortic wall.) For simplicity, we choose a constant wall thickness of 

2.5 mm, which is in the range of physiological values [57]. The final NURBS surfaces of the 

ascending aorta are shown in Figure 1b. The control points and control mesh of the outer 

surface are shown in Figure 1c. The NURBS inner and outer surfaces are used to construct 

volumetric NURBS descriptions of the fluid (lumen) and solid (artery wall) domain 

geometries that are suitable for isogeometric analysis.

2.1.2. Trivariate NURBS parameterization of the ascending aorta—To obtain a 

volumetric parameterization of the artery and lumen, we first construct a trivariate multi-

patch NURBS in a regular shape, e.g. a tubular domain, with lateral boundaries and an 

internal hypersurface that have the same control mesh topologies as the outer and inner 

surfaces of the artery wall shown in Figure 1b. We then solve a linear elastostatic, mesh 

moving problem [58–60] for the displacement from this regular domain to a deformed 

configuration that represents the artery and lumen. The control points shown in Figure 1c are 

used to prescribe Dirichlet boundary conditions on the displacement of the regular domain’s 

lateral boundaries and internal hypersurface. However, solving a linear elastostatic problem 

to obtain the deformed interior mesh is only effective for relatively mild or translational 

deformations. For scenarios that involve large rotational structural motions, such as the 

deformation of a straight tubular domain into the curved shape of patient-specific ascending 

aorta in Figure 1b, the interior elements can become severely distorted. To avoid this, we 

construct the initial regular domain in the following way.

We first obtain a centerline along the axial direction of the patient-specific artery wall 

surface. Along this centerline, we define a number of cross sections corresponding to the 

control points of the NURBS artery wall surface in the axial direction. (These cross sections 

are shown as blue curves in Figure 2a.) At each cross section, we calculate its unit normal 

vector nc and the effective radius rc, which is determined such that the area of a circle 
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calculated using this radius matches the area of the cross section. (A circle corresponding to 

one of the cross sections is shown in the red curve in Figure 2a.) Finally, using this 

information, we construct a tubular NURBS surface that has the same control point and knot 

vector topology as the target patient-specific artery wall surface, as shown in Figures 2b and 

2c. Another tubular surface corresponding to the lumen surface is also constructed, using the 

same cross sections but smaller effective radii coming from the lumen NURBS surface.

These two tubular NURBS surfaces are used to construct a primitive trivariate multi-patch 

NURBS that includes (pre-images of) the solid and fluid subdomains, shown in gray and 

red, respectively, in Figure 2d. The multi-patch design avoids the parametric degeneracy that 

would occur in a cylindrical-polar single-patch parameterization. Due to this, a total of six 

C0-continuous locations are present in the circumferential direction of the NURBS domain.1 

Basis functions are made C0-continuous at the fluid–solid interface, so that velocity 

functions defined using the resulting spline space conform to standard fluid–structure 

kinematic constraints while retaining the ability to represent non-smooth behavior across the 

material interface.

The resulting volumetric NURBS can then be morphed to match the patient-specific 

geometry with minimal rotation, so an elastostatic problem can provide an analysis-suitable 

parameterization. Mesh quality is further enhanced by including Jacobian-based stiffening 

techniques [62], to avoid excessive distortion of small elements in critical areas such as the 

vicinity of the fluid–solid interface. Displacements at the ends of the tube are constrained to 

remain within their respective cross sections. Finally, we refine the deformed trivariate 

NURBS for analysis purposes, by inserting knots at desired locations, such as around the 

sinuses and the flow boundary layers. The final volumetric NURBS discretization of the 

patient-specific ascending aorta is shown in Figure 2f. The mesh of the lumen and artery 

wall consist of 66,960 and 8,928 quadratic elements, respectively.

2.1.3. Parametric BHV design—In this paper, we aim to advance methods for designing 

effective prosthetic valves for specific patients. This requires the capability to control the 

design of aortic valve leaflets within the geometrical constraints imposed by an arbitrary 

patient-specific aortic root. We focus specifically on the leaflet geometry and assume that 

non-leaflet components of stentless valves move with the aortic root and do not affect aortic 

deformation or flow. Leaflets are therefore modeled as being directly attached to the aortic 

root. Starting from the NURBS surface of a patient-specific root, valve leaflets are 

parametrically designed as follows. We first pick nine “key points” located on the ends of 

commissure lines and the bottom of the sinuses. The positions of these points are indicated 

by blue spheres in Figure 3. These define how the leaflets attach to the sinuses. The key 

points solely depend on the geometry of the patient-specific aortic root and will remain 

unchanged for different valve designs. We then parameterize families of univariate B-splines 

defining the free edges and radial “belly curves” of the leaflets. These curves are shown in 

red and green in Figure 3. The attachment edges, free edges, and belly curves are then 

interpolated to obtain smooth bivariate B-spline representations of the leaflets.

1It is in fact possible to define an arbitrarily-smooth spline space over the entire tubular volume, by leveraging recent progress on 
polar splines [61], but we require only C0 continuity for the analysis methods used in the present work.
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Figure 4 shows the details of parameterizing the free-edge curve (red) and the belly-region 

curve (green). We take one of the three leaflets to address the parameters controlling the 

valve designs. In Figure 4, p1, p2 and p3 are the key points on the top of the commissure 

lines and p4 is the key point on the sinus bottom, as labeled in Figure 3. p1 to p3 define a 

triangle Δp1–3, with pc being its geometric center. The unit vector pointing from pc to pn 

(the geometric center of p1 and p2) is denoted as tp, and the unit normal vector of Δp1–3 

pointing downwards is np. We first construct the free edge curve as a univariate quadratic B-

spline curve determined by three control points, p1, pf, and p2. pf is defined by pf = pc + 

x1tp + x2np. By changing x1 and x2 to control the location of pf, the curvature (length) and 

the height of the free edge can be parametrically changed. We then take pm as the midpoint 

of the free edge, the point pb, and the key point p4 to construct a univariate quadratic B-

spline curve (green). The point pb is defined by pb = po + x3np, where po is the projection of 

pm onto Δp1–3 along the direction of np. The physical meaning of x3 is the vertical distance 

between pb and Δp1–3. Thus, the free edge and the belly curve share the point pm in the 

physical space. Note that the aforementioned control points are used to construct the curves 

only and are not the control points of the final surface. Finally, the fixed attachment edges 

and the parametrically controlled free edge and belly curve are used to construct a cubic B-

spline surface with desired parameterization.

By choosing x1, x2 and x3 as design variables, we can parametrically change the free edge 

and belly curve, and therefore change the valve design. This procedure is implemented in an 

interactive geometry modeling and parametric design platform [63] based on Rhinoceros 3D 

[64] and Grasshopper [65]. Some sample points in the design space are depicted in Figure 5, 

to illustrate the effect of each parameter on the geometry. Four examples of heart valve 

designs are shown in Figure 6.

2.2. Fluid–structure interaction problem

We model the ascending aorta and prosthetic valve leaflets at time t as elastic structures 

occupying a region (Ωs)t, coupled to blood flow through (Ωf)t by kinematic and traction 

compatibility conditions at the fluid–structure interface (ΓI)t. The blood flow within (Ωf)t is 

assumed to be incompressible and Newtonian. The subscript t may be omitted in some 

formulas below, when there is no risk of confusion. This coupled partial differential equation 

(PDE) system can be expressed in weak form as: Find a fluid velocity uf ∈ 𝒮u and pressure 

p ∈ 𝒮p, a structural displacement field y ∈ 𝒮y, and a fluid–solid interface traction λ ∈ 𝒮𝓁
such that for all wf ∈ 𝒱u, q ∈ 𝒱p, ws ∈ 𝒱y, and δλ = 𝒱l,

Bf wf, q , uf, p − Ff wf, q + Bs ws, y − Fs ws + ∫
ΓI

wf − ws ⋅ λ dΓ +∫
ΓI

δλ

⋅ uf − us dΓ + ∫
ΓI

wf − ws ⋅ β uf − us dΓ = 0,

(1)

where 𝒮 ⋅  and 𝒱 ⋅  are trial solution and test function spaces, Bf, Ff, Bs, and Fs are 

variational forms defining the fluid and structure subproblems, us is the material time 
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derivative of y, and β is a penalty parameter. The additional terms integrated over ΓI enforce 

the fluid–structure coupling conditions on the fluid–structure interface2. The presence of the 

last term facilitates the development of certain numerical schemes based on the “augmented 

Lagrangian” concept, as detailed in Bazilevs et al. [66, Section 2]. The forms defining the 

fluid and structure subproblems are specified in the sequel.

2.3. Structural formulations

The artery wall is substantially thicker than the valve leaflets. We model the artery wall as an 

elastic solid and we model the valve leaflets as a thin shell structure. This distinction can be 

formalized by introducing superscripts “so” and “sh” to denote the solid and shell, 

respectively, and expressing 𝒮y = 𝒮y
so × 𝒮y

sh and 𝒱y = 𝒱y
so × 𝒱y

sh, such that y ={yso, ysh} and 

ws = ws
so, ws

sh . We can then write

Bs ws, y = Bs
so ws

so, yso + Bs
sh ws

sh, ysh , (2)

and likewise for Fs.

Remark 1—In a slight abuse of notation, linear combinations of ws and y with functions 

defined on the fluid domain (as seen in the fluid–structure interface terms of (1)) are 

understood to involve only whichever component of the structure trial/test function tuple is 

defined at a given point on ΓI.

2.3.1. Artery wall modeling—The artery wall is modeled as a hyperelastic solid, subject 

to damping forces. We thus define

Bs
so ws, y − Fs

so ws = ∫
Ωs

so
0
ws ⋅ ρs

∂2y
∂t2 x

dΩ+∫
Ωs

so
0

∇xws:F S + S0 dΩ − ∫
Ωs

so
0
ws

⋅ ρsfs dΩ − ∫
Γs

so, h
t

ws ⋅ hs dΓ,

(3)

where Ωs
so is the portion of Ωs corresponding to the artery wall, ρs is the solid mass density, 

X are coordinates in the reference configuration, F is the deformation gradient associated 

with displacement y, S is the hyperelastic contribution to the second Piola–Kirchhoff stress 

tensor, S0 is a prescribed prestress in the reference configuration Ωs
so

0
3, fs is a prescribed 

body force, and hs is a prescribed traction on the Neumann boundary Γs
so, h. The elastic 

contribution to the second Piola–Kirchhoff stress in (3) derives from a compressible neo-

Hookean model with dilational penalty [67]:

2If the fluid and structural velocities and test functions are explicitly assumed to be continuous (i.e., uf = us and wf = ws) at the 
interface (e.g., matching lumen and inner artery wall surface meshes), these additional terms integrated over ΓI are zero.
3(·)0 is a specific time instance of (·)t, for t = 0.
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ψ = μ
2 J−2/3I1 − 3 + κ

2
1
2 J2 − 1 − ln J , (4)

S = 2 ∂ψ
∂C = μJ−2/3 I − 1

3 I1C−1 + κ
2 J2 − 1 C−1, (5)

where J = detF, C = FTF is the right Cauchy–Green deformation tensor, I1 = tr C, μ is the 

shear modulus, and κ is the bulk modulus. The stress–strain behavior of the model (5) was 

analytically studied on simple cases of uniaxial strain [60] and pure shear [68]. It was shown 

in Bazilevs et al. [69] that this model is appropriate for arterial wall modeling in FSI 

simulations; while the level of elastic strain in arterial FSI problems is large enough to 

preclude the use of linearized strain measures, it is small enough that any model with the 

correct tangent stiffness at small strains, relative to the reference configuration, is sufficient 

to capture the effects of arterial deformation on hemodynamics. We discretize this 

subproblem in space by using multi-patch trivariate quadratic NURBS to approximate each 

Cartesian component of the displacement.

The additional prestress S0 in (3) is needed because the aorta configuration at the peak 

systole is subject to blood pressure and viscous traction, and is therefore not stress-free. We 

determine S0 by setting the displacement from the imaged configuration to zero in (3) and 

assuming that external forces on the solid subproblem are due to interaction with the fluid. 

This leaves us with the problem: Find the symmetric tensor S0 such that for all ws ∈ 𝒱y
so,

∫
Ωs

so
0

∇xws : S0 dΩ + ∫
ΓI

so
0
ws ⋅ h∼f dΓ = 0, (6)

where ΓI
so

0 = ΓI 0 ∩ Ωs
so

0
4 and h∼f is a prescribed fluid traction. h∼f may be obtained from a 

separate rigid-wall blood flow simulation on the reference domain with constant inflow 

pressure and resistance outflow boundary conditions. Because (6) is a vector-valued 

equation with a tensor-valued unknown S0, it, in principle, may have an infinite number of 

solutions. In this work, we obtain a particular solution for the state of prestress following the 

procedure proposed by Hsu and Bazilevs [70], Starting with step n = 1 and setting S0
n = 0, we 

repeat the following steps:

1. Set S0 = S0
n and y = 0, which gives F = I and S = 0.

2. From tn → tn+1, solve the following variational problem: Find y, such that for all 

ws,

4The notation A indicates the topological closure of a set A.
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∫
Ωs

so
0
ws ⋅ ρs

∂2y
∂t2 x

dΩ + ∫
Ωo

so
0

∇xws:F S + S0 dΩ − ∫
ΓI

so
0
ws ⋅ h∼f dΓ = 0.

(7)

3. Update S0
n + 1 = S + S0

n and increment n.

The above iteration is continued until y → 0. As a result, F → I, S → 0, and we arrive at a 

solution for (6).

2.3.2. Thin shell formulations for the leaflets—The portion of Ωs corresponding to 

the valve leaflets, denoted Ωs
sh, is assumed to be extruded from a midsurface, Γs

sh. To 

facilitate the specification and discrete approximation of coupling conditions at the interface 

between the solid artery and the leaflets, we extend this parametric surface into the solid 

artery domain at time t = 0, such that Γs
sh

0 ∩ Ωs
so

0 ≠ ∅, as illustrated in Figures 7 and 8. 

The shell structure problem for the valve leaflets (in the Lagrangian description) is then 

posed on Γs
sh

0 ∩ Ωf 0. Since we assume the portion of the fluid–structure interface ΓI 

corresponding to the valve leaflets to coincide with Γs
sh ∩ Ωf in the reference configuration, 

we denote ΓI
sh

0 = Γs
sh

0 ∩ Ωf 0.

The assumption that Ωs
sh is extruded from Γs

sh is consistent with the kinematic assumptions 

used to derive the Kirchhoff–Love thin shell formulation. We model the valve leaflets using 

the isogeometric Kirchhoff–Love shell formulation studied by Kiendl et al. [71–73]. In 

summary, this amounts to defining

Bs
sh ws, y − Fs

sh ws = ∫
ΓI

sh
0
ws ⋅ ρshth

∂2y
∂t2 x

dΓ + ∫
Γs

sh
0
∫

−hth/2

hth/2
δE:S dξ3dΓ

− ∫
ΓI

sh
0
ws ⋅ ρshthfs dΓ − ∫

ϕt ΓI
sh

0
ws ⋅ hs

netdΓ,

(8)

where ρs is the mass density of the structure, S is the second Piola–Kirchhoff stress, δE is 

the variation of the Green–Lagrange strain E, ΓI
sh

0 and ϕt ΓI
sh

0  are the shell midsurface in 

the reference and deformed configurations, respectively, ξ3 ∈ [−hth/2, hth/2] is the through-

thickness coordinate, hth is the shell thickness, and hs
net = hs ξ3 = − hth/2 + hs ξ3 = hth/2

sums traction contributions from the two sides of the shell. The Green–Lagrange strain used 

to compute S and δE is simplified, following the kinematic assumptions of Kirchhoff–Love 

thin shell theory, to depend entirely on the midsurface deformation, as detailed in Kiendl et 
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al. [71]. In this paper, we assume that the material is incompressible and S is computed from 

(the simplified) E using an isotropic Fung-type material model, in which the matrix and 

fiber stiffening effect are modeled with neo-Hookean and exponential terms, respectively. 

Specifically,

S = 2
∂ψel
∂C − pC−1, (9)

where

ψel =
c0
2 I1 − 3 +

c1
2 e

c2 I1 − 3 2
− 1 , (10)

and

∂ψel
∂C = 1

2 c0 + 2c1c2 I1 − 3 e
c2 I1 − 3 2

I . (11)

In the above, C = 2E + I, p is a Lagrange multiplier enforcing incompressibility5, and c0, c1, 

and c2 are material parameters. A more detailed discussion of this model can be found in 

Hsu et al. [45].

By using at least C1 -continuous NURBS patches to represent the leaflets, the weak problem 

for the shell midsurface displacement can be discretized using a straightforward 

isogeometric Bubnov–Galerkin method, as in Kiendl et al. [71]. To represent approximate 

displacement solutions of the shell structure, we refine the spline space used to define the 

parametric leaflet geometry, by inserting knots. In the computations of this paper, the shell 

structure analysis mesh comprises 609 cubic B-spline elements for each leaflet, as shown in 

Figure 6. A schematic illustration of the artery wall, lumen and leaflet mesh relations is 

shown in Figure 8.

In principle, fluid–structure kinematics should prevent interpenetration of the valve leaflets 

if the fluid velocity field is continuous. (Under mild assumptions, it is not even possible for 

objects immersed in incompressible viscous flow to contact one another in finite time [74, 

75].) However, in discrete solutions, the FSI kinematic constraint is only satisfied 

approximately and we find that penalizing leaflet interpenetration improves the quality of 

solutions. The penalty contact method used in this work is detailed in Kamensky et al. [41, 

Section 5.2].

5For shell analysis, one can use the plane stress condition in order to analytically determine the Lagrangian multiplier p (see Kiendl et 
al. [73, Section 5.1] for details).
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2.3.3. Leaflet–artery coupling—The connection between the artery and the leaflets of 

the stentless prosthetic valve is modeled by constraining the shell structure midsurface 

displacement and its derivatives with respect to ξ1 and ξ2 to equal those of the solid artery 

displacement along the basal edge of each leaflet. The derivatives of the solid artery 

displacement with respect to the midsurface coordinates are well-defined due to the 

extension of the surface parameterization into the solid, as illustrated in Figures 7 and 8. 

This extension is not considered to be part of the leaflets; it is a fictitious extension for the 

purpose of formulating a coupling penalty. These coupling conditions are approximated in 

the discrete model by adding the following penalty term to Bs(ws, y):

+ ∫
Γs

sh
0 ∩ Ωs

so
0

βdisp ws
sh − ws

so ⋅ ys
sh − ys

so dΓ . (12)

This penalty term is integrated over the region labeled “leaflet–wall intersection” in Figure 

8. The parameter βdisp > 0 is the penalty parameter. Numerical experiments indicate that 

βdisp = 1 × 108 dyn/cm3 is effective for the problem class considered in this paper. To 

effectively penalize displacement differences due to tensile forces, one would expect the 

penalty parameter to scale like tensile stiffness, i.e.

βdisp
E
h

hth
h , (13)

where E is some effective material stiffness with units of pressure (e.g. the Young’s 

modulus, in an isotropic material) and h is a length scale indicating the size of the shell 

elements. To penalize rotation about the boundary, βdisp would need to scale with bending 

stiffness, like

βdisp
E
h

hth
h

3
. (14)

This suggests that a possible rule-of-thumb for estimating appropriate penalty values for this 

type of coupling might be

βdisp
E
h max

hth
h ,

hth
h

3
, (15)

If one applies (15) to the computational models of the present study and estimates E ~ 107 

dyn/cm2, the first branch of the max is taken for most elements and the resulting value of 

βdisp is of the same order of magnitude as the one selected through numerical testing. The h
−4 dependency of the second branch prompts some concerns regarding discrete stability and 

Xu et al. Page 13

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditioning in the limit of h → 0, but a systematic study of penalty parameter selection 

across different problem classes is beyond the scope of the present study.

2.4. Fluid formulation

The fluid subproblem in (1) is given in the arbitrary Lagrangian–Eulerian (ALE) description 

[76] as follows:

Bf wf, q , uf, p − Ff wf, q = ∫
Ωf t

wf ⋅ ρf
∂uf
∂t x

+ uf − u ⋅ ∇uf dΩ + ∫
Ωf t

ε wf

:σ dΩ + ∫
Ωf t

q∇ ⋅ uf dΩ − γ∫
Γf

h
t

wf ⋅ ρf uf − u ⋅ nf −uf dΓ − ∫
Ωf t

wf ⋅ ρfff dΩ

− ∫
Γf

h
t

wf ⋅ hf dΓ,

(16)

where ρf is the fluid mass density, ε is the symmetric gradient operator, σ = −pI + 2μfε (uf) 

is the fluid Cauchy stress, μf is the dynamic viscosity, γ ≥ 0 is a dimensionless parameter 

that improves the well-posedness of the problem when there is significant inflow through the 

Neumann boundary Γf
h, nf is the outward-facing normal vector to the fluid domain, {·}− 

isolates the negative part of its argument, ff is a prescribed body force, and hf is a prescribed 

flux on Γf
h. This flux is a traction on outflow portions of the boundary (where 

uf − u ⋅ nf > 0) and some γ-dependent combination of traction and advective flux on the 

inflow portion of the boundary [77]. The introduction of the γ term serves to reduce the 

effects of artificial domain truncation on the fluid subproblem. This approach was proposed 

in Bazilevs et al. [78] and found to be the most effective out of several alternatives in 

Esmaily-Moghadam et al. [79]. The vector field u is the (arbitrary) velocity with which the 

fluid subproblem domain (Ωf)t deforms and x is a point in the reference fluid subproblem 

domain (Ωf)0.

This ALE Navier–Stokes subproblem is discretized using the variational multiscale (VMS) 

approach, with some modifications to the stabilization parameters to improve mass 

conservation, as described in Kamensky et al. [41] and the references cited therein. The 

ALE–VMS formulation may be interpreted both as a stabilized formulation and a large-eddy 

simulation (LES) turbulence model [80–83]. The stabilization due to the ALE–VMS 

formulation permits us to use arbitrary spaces to discretize the pressure and velocity fields; it 

does not require special inf–sup-stable combinations. We therefore take advantage of the 

possibility of using a single scalar trivariate NURBS space to represent the pressure and 

each Cartesian component of the fluid velocity (i.e. “equal-order interpolation”). The 

deformation velocity u of the the fluid domain is determined solving a fictitious elastostatic 
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problem for the displacement of the domain from each time step to the next, with local 

changes in stiffness to improve robustness, as detailed in Bazlievs et al. [60, Section 3.2].

2.5. Time integration and discretization of fluid–structure coupling

Partial derivatives with respect to time in the fluid and structure subproblem formulations are 

discretized using the generalized-α method [84]. The discrete spaces for the fluid and solid 

structure velocities are selected so as to conform to the FSI kinematic constraint; thus wf and 

ws
so are equal on ΓI

so and the Lagrange multiplier and penalty terms of (1) are zero. This is 

not true on ΓI
sh; we therefore need to approximate the Lagrange multiplier field on ΓI

sh. The 

fluid–shell structure interface Lagrange multiplier is discretized in space and updated semi-

implicitly in each time step following the procedures developed in Kamensky et al. [41]. In 

summary, the tangential component of the Lagrange multiplier is formally eliminated, 

leaving a penalty method to enforce the no-slip condition. The normal component λ = λ · 

nsh (where nsh is normal to Γs
sh) is represented in the discrete setting by a set of scalars 

stored at the quadrature points used to compute integrals over Γsh. After solving implicitly 

for the n + 1 time level fluid and structure velocities, but holding λ fixed at λn, these scalar 

samples are updated using the formula

λn + 1 = λn + βR
n + α f , (17)

where R
n + α f  is a perturbed normal constraint residual

R
n + α f = uf

n + α f − us
n + α f ⋅ nsh − r

β λn + 1 . (18)

In (18), n + αf is an intermediate time level, between steps n and n + 1, associated with the 

generalized-α approach (as detailed using such notation in Bazilevs et al. [60]). The 

constraint perturbation r ≥ 0 is a dimensionless parameter to ensure well-posedness in the 

steady limit (cf. the perturbed Lagrangian approach [85]). Following the conclusions of 

Kamensky et al. [86], we choose r ≪ 1 to ensure sufficient constraint enforcement. The 

details of this methodology, including choices of free parameters and analysis of stability 

and accuracy when applied to model problems, can be found in Kamensky et al. [87].

3. Application to BHV design

To determine an effective BHV design, we first need to identify quantitative measures of its 

performance. In this work, we focus on two quantities of clinical interest: to measure the 

systolic performance, we evaluate the effective orifice area (EOA), which indicates how well 

the valve permits flow in the forward direction. For a quantitative evaluation of the diastolic 

performance, we measure the coaptation area (CA), which indicates how well the valve seals 

and prevents flow in the reverse direction [54]. In this section, we study the impact of the 

design variables x1, x2, and x3 on our two quantities of interest. While a complete multi-
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objective optimization over our design space is outside the scope of the present study, we 

identify performance trends with respect to each design variable and highlight simulation 

results from a valve design that appears to function especially well.

3.1. Effective orifice area

The orifice area is defined as the aortic valve aperture during left ventricular ejection. 

Reduction in orifice area, due, for example, to the presence of aortic stenosis, makes the 

transvalvular blood flow more difficult, leading to a subsequent increase in left ventricular 

afterload [88]. Thus, all other things equal, a BHV with a larger orifice area is preferable.

The EOA of a valve is defined as the minimal cross-sectional area of the flow jet 

downstream of the aortic valve, which corresponds to the location of vena contracta (See 

Figure 9a). We compute EOA using the Gorlin formula [88, 89],

EOA = Q
50 Δp

, (19)

where Q is the systolic flow rate in mL/s and the transvalvular pressure gradient, Δp, is the 

pressure difference at peak systole between the left ventricular outflow tract and the vena 

contracta, i.e., the point downstream of the valve with the largest fluid velocity. Δp in (19) 

uses the unit of mmHg. The resulting EOA is in cm2.

3.2. Coaptation area

Coaptation area is a measure of how much the three aortic leaflets are in contact with each 

other during ventricular diastole. Normal coaptation can be directly associated with optimal 

long-term function of the valve [90]. If the leaflets do not seal properly during diastole, 

aortic regurgitation can occur, meaning that some of the blood that was already ejected from 

the left ventricle to the aorta leaks back into the heart, increasing the ventricular workload. 

This predicament generally requires surgical intervention. The success of the operation is 

typically evaluated by measuring post-operative coaptation [36]. Coaptation area has been an 

important index for identifying heart valve performance [91–95]. In this work, we consider a 

large coaptation area during the diastole to be preferable, since it reduces the possibility of 

aortic regurgitation. A typical coaptation is illustrated in Figure 9b. The coaptation area is 

calculated directly within our contact algorithm by summing over the quadrature points 

where contact occurs.

3.3. Simulation setup

Constitutive parameters in the governing equations are held constant over the design space. 

Fluid, solid, and shell structure mass densities are set to 1.0 g/cm3. The parameters of the 

Fung-type material model for the shell structure are c0 = 2.0 × 106 dyn/cm2, c1 = 2.0 × 105 

dyn/cm2, and c2 = 100. The thickness of the leaflet is set to 0.0386 cm. The bulk and shear 

modluii for the arterial wall are selected to provide a Young’s modulus of 107 dyn/cm2 and 

Poisson’s ratio of 0.45 in the small strain limit. The inlet and outlet cross sections are free to 

slide in their tangential planes and deform radially, but constrained not to move in the 
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orthogonal directions (see Bazilevs et al. [69] for details). Motion of the solid structure is 

damped by a body force of the form fs = − Cdampus
so, with Cdamp = 104 Hz, to model the 

interaction of the artery with surrounding tissues and interstitial fluid. The damping also 

helps in removing the high-frequency modes of the structural deformation [96]. The 

dynamic viscosity of the fluid is set to μf = 3 × 10−2 g/(cm s) for human blood [97]. The 

non-dimensional parameter γ determining the interpretation of the prescribed Neumann 

boundary flux at inflow portions of the domain is chosen to be γ = 0.5. The choice of these 

values is based on the discussions in Hsu et al. [45] and references therein.

In the FSI simulation, we apply a physiologically-realistic left ventricular pressure time 

history shown in Figure 10 as a traction boundary condition at the inflow. The applied 

pressure signal is periodic, with a period of 0.86 s for one cardic cycle. The traction −(p0 + 

RQ)nf is applied at the outflow for the resistance boundary condition [98], where p0 is a 

constant physiological pressure level, R > 0 is a resistance coefficient, and Q is the 

volumetric flow rate through the outflow. In the present computation, we set p0 = 80 mmHg 

and R = 200 (dyn s)/cm5. These values ensure a realistic transvalvular pressure difference of 

80 mmHg across a closed valve when Q = 0, while permitting a flow rate within the normal 

physiological range [99] and consistent with the flow rate estimated from the medical data 

(about 310 ml/s) during systole. A time step size of Δt = 10−4 s is used in all simulations. 

Each FSI simulation takes about 36 hours to compute a full cardiac cycle using 144 

processor cores on Lonestar 56 [100] at the Texas Advanced Computing Center (TACC) 

[101]. A detailed technical explanation and scalability study of our parallelization strategy 

can be found in Hsu et al. [102].

To obtain the artery wall tissue prestress, we apply the highest left ventricular pressure 

during systole (127 mmHg at t = 0.25 s) on the inlet and a resistance boundary condition (p0 

= 80 mmHg and R = 200 (dyn s)/cm5) on the outlet for the calculation of h∼f in the prestress 

problem (6) and solve for S0 following the procedure in Section 2.3.1.

3.4. Parametric study

This section discusses the effects of the design parameters on our quantities of interest. We 

perform FSI simulations of each of (x1, x2, x3) ∈ ({0.05, 0.25, 0.45} cm, {0.1, 0.3, 0.5} cm, 

{0.5, 0.8, 1.1, 1.4} cm), then calculate the EOA at peak systole and the maximum CA 

occurring during ventricular diastole. The simulation results and quantities of interest for 

each case are reported in Figures 11–13. As discussed in Sections 3.1 and 3.2, an ideal valve 

would have both a large EOA and a large CA. However, these two quantities tend to 

compete with each other: valves that close easily can be more difficult to open and vice 

versa.

From Figures 11–13, in general, the results show that increasing x1, which corresponds to 

decreasing the length of the free edge, decreases EOA and CA at the same time. Increasing 

x2, which decreases the height of the free edge, may increase EOA slightly but reduces CA 

significantly. The reduction of CA due to increasing x2 is particularly obvious from Figure 

13, which shows that many cases cannot seal completely. Finally, increasing x3, which 

increases the surface curvature in the leaflet belly region, improves CA but decreases EOA.
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Among the designs simulated in this paper, the combination of x1 = 0.05 cm, x2 = 0.1 or 0.3 

cm, and x3 = 0.5 or 0.8 cm reliably yields a high EOA between 3.92 and 4.05 cm2, near the 

upper end of the physiological range of 3.0–4.0 cm2 in healthy adults [88], and a CA 

between 3.49 and 4.54 cm2. Among these four cases, x* = (x1, x2, x3) = (0.05 cm, 0.1 cm, 

0.8 cm), which has a CA of 4.54 cm2 and EOA of 3.92 cm2, strikes the best compromise 

between EOA and CA.

Remark 2—The mesh independence study in Appendix A indicates that relative 

differences in CA and EOA on the order of a few percent are potentially influenced by 

discretization errors emanating from the choice of fluid and structure meshes. However, the 

conclusions drawn in this work are based on variations in the range of 10–20%, and it seems 

likely that the trends of these quantities of interest with respect to design parameters are less 

susceptible to discretization error than the precise numerical values. (Even in the complete 

absence of discretization error, the predicted numerical values for EOA and CA would most 

likely suffer from substantially-greater errors due to modeling assumptions, such as choices 

of boundary conditions and constitutive models.)

4. Comparison with patient-specific image data

We speculate that the valve geometry x* identified in the previous section might have 

comparable hemodynamics to the native valve of the considered patient, which, according to 

available records, was assessed to be functioning correctly. This leads us to compare the 

velocity field of the simulated blood flow with a velocity field reconstructed from PC-MRI 

data collected from the patient. The detailed FSI results of x* are shown in the present 

section and compared with patient-specific PC-MRI data. The comparisons are primarily 

qualitative in nature, and serve primarily to validate our design, as well as artificial domain 

extensions and boundary conditions of the fluid subproblem, by ensuring that these choices 

are not disrupting the overall aortic flow behavior.

4.1. Post-processing phase contrast magnetic resonance images

2D phase contrast magnetic resonance images were acquired using a Siemens Magnetom 

Aera 1.5T scanner. A virtual plane was positioned at the level of the sinotubular junction to 

record patient-specific flow data immediately downstream of the aortic valve with a 

temporal resolution of 30 samples per beat and pixel spacing of 2.08mm × 2.08mm. The 

cross section defined for blood velocity measurements shown in Figure 14 can be 

reconstructed from MRI output data7, such that the simulation results can be plotted and 

visualized exactly at the same level. We observed from dynamic MRI records that the 

identified cross section experiences negligible translation along the aortic centerline (i.e., 

towards or away from the heart), making the comparison with our fixed-plane measurements 

from the numerical simulations fair.

7Given the velocity encoding parameter, also known as venc (set to 150 cm/s for the considered MRI sequences), the gray-scale values 
of PC-MRI images can be translated in a velocity field description: phase images are in fact motion sensitive and can be adopted to 
measure local velocities of moving spins on a pixel-to-pixel basis.
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Figure 15 shows the comparison between the velocity field recorded using PC-MRI 

sequencies (right) and velocity results obtained from the immersogeometric simulation (left) 

for nine time points during the cardiac cycle. From a qualitative point of view, good 

agreement is observed: flow patterns of the measured and computed velocity fields are 

comparable. This tentatively suggests that, throughout the entire heart cycle, the developed 

simulation tool is able to provide hemodynamics predictions sufficiently accurate for 

medical applications. That is, it is capable of determining local flow profiles which can be 

associated to parameters of medical interest (e.g., blood flow alterations in case of 

cardiovascular disease, development of atherosclerosis [104], impairment of endothelial 

cells [105], and plaque or aneurysm formation [106, 107]). Differences between measured 

data and simulation results can be attributed to a combination of modeling assumptions (e.g., 

assumed pressure profile, simplified aortic wall material model, etc.) and measurement 

errors (e.g., limited PC-MRI spatial-temporal resolution, poor signal-to-noise ratio, and 

difficulty of accurately segmenting the moving vessel lumen to extract the blood flow 

velocities).

Finally, Figure 16 shows several snapshots of the valve deformation and the details of the 

flow field at several points during the cardiac cycle. The color indicates the fluid velocity 

magnitude. The visualization of flows and structures clearly shows the instant response of 

the valve to the left ventricular pressure. The valve opens with the rising left ventricular 

pressure at the beginning stage of systole (0.0–0.20 s), and then stays fully open near the 

peak systole (0.25–0.27 s), allowing sufficient blood flow to enter the ascending aorta. A 

very quick valve closure is then observed at the beginning of diastole (0.32–0.38 s). This 

quick closure of the valve minimizes the reverse flow into the left ventricle as the left 

ventricular pressure drops rapidly in this period. After that, the valve properly seals and the 

flow reaches a near-hydrostatic state (0.65 s). These flow and structural features during the 

cardiac cycle characterize a well functioning valve within the objectives considered in this 

paper: a large EOA during systole and a proper CA during diastole. In Figure 17, the models 

are superposed in the configurations corresponding to the fully-open and fully-closed phases 

for better visualization of the leaflet–wall coupling results. The deformation of the 

attachment edges can be clearly seen. The expansion and contraction of the arterial wall as 

well as its sliding motion between systole and diastole can also be observed.

5. Conclusions

This paper describes a framework for patient-specific design of aortic heart valve 

replacements. The framework is distinguished by its use of computational FSI models, 

derived from medical imaging data from patients, to predict the performance of different 

heart valve designs in conjunction with an individual patient’s aortic root geometry. The use 

of such predictive methods has the potential to create more effective designs and reduce 

patient–prosthesis mismatch.

In the present study, we have limited exploration of the prosthetic valve design space to a 

predetermined set of designs selected by the analyst. Such an approach is likely sufficient for 

use with present-day replacement valve technologies. Currently, clinicians have only a finite 

number of valves to choose from for each patient. However, in the direction of personalized 

Xu et al. Page 19

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



medicine and looking forward to emerging technologies such as 3D bioprinting, we 

anticipate that future replacement valve geometries could be optimized and fabricated on a 

per-patient basis, and we believe that computational FSI models provide a rational basis for 

identifying optimal designs.

Extending the design space exploration to the full space of possible valve geometries will 

require some form of automated optimization. We have previously optimized FSI systems 

using the surrogate management framework (SMF) [44], which minimizes a single objective 

function. In the case of heart valve design, various objectives pose competing demands on 

the design, as we discussed in Section 3. This setting necessitates either the careful 

construction of a quantity of interest that balances the competing demands, or the use of 

techniques from multi-objective optimization to obtain a frontier of Pareto optimal designs. 

In future work, we plan to extend the framework presented in this paper to include automatic 

exploration of the design space, to locate optimal valve designs without manual selection of 

candidates and inspection of results by the analyst.

Some other limitations of this work are the lack of sophistication in the fluid subproblem 

boundary conditions, and the inclusion of potentially non-manufacturable leaflet geometries 

in the design space. We plan to address the first limitation in the near future, by 

incorporating Windkessel-type boundary conditions [108] and developing a systematic 

method of parameter selection for such models. The second limitation could be resolved by 

including constraints within an optimization framework such as SMF, e.g., that leaflet 

geometries have low intrinsic curvature and can therefore be fabricated from initially-flat 

sheets of bovine pericardium. We discuss imposition of constraints in SMF-based 

optimization of FSI systems in Wu et al. [44].
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Appendix A. Mesh independence study

To show the convergence of the immersogeometric method, a refinement study based on 

three different meshes was carried out. The background meshes are denoted as M0, M1, and 

M2, where M1 is an h-refinement of M0 and M2 is an h-refinement of M1. The three BHV 

surface meshes are denoted as SM0, SM1 and SM2 in the same pattern. The BHV tested in 

this section corresponds to the point x* = (x1, x2, x3) = (0.05 cm, 0.1 cm, 0.8 cm) in the 

design space. The parametric study presented in Section 3 uses M1 and SM1. The mesh 

statics are given in Table A.1.
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The penalty parameter in Eq (1) can be separated into the normal component βNOR and the 

tangential component βTAN. Following [44], we scale these penalty parameters in the 

following way:

βNOR = CNOR
ρfh
Δt , (A.1)

βTAN = CTAN
μ
h , (A.2)

where CNOR and CTAN are two constants, and h is the length scale of the fluid element 

intersected by the immersed boundary. In simulations using M1, the two penalty parameters 

are estimated to be βNOR = 2000 g/(cm2 s) and βTAN = 200 g/(cm2 s). Because error is 

assumed to be dominated by spatial discretization, we hold Δt = 1 × 104 s constant and select 

the penalty parameters as βNOR = 4000 g/(cm2 s) and βTAN = 100 g/(cm2 s) for M0 

computations, and βNOR = 1000 g/(cm2 s) and βTAN = 400 g/(cm2 s) for M2 computations.

The mesh independence study is focused on the accuracy of the quantities of interest with 

which the present paper is concerned: CA and EOA. For simplicity, the artery wall is held 

rigid, so the effect of wall deformation is neglected. To study the convergence of CA, we 

first apply a pressure of p0 + RQ on the outlet, and a pressure of 0 mmHg on the inlet to 

close the valve. To investigate convergence of EOA, we apply a pressure of p0 + RQ on the 

outlet, and a pressure of 120 mmHg on the inlet. After the simulation converges to a quasi-

steady state, we perform a time average of the flow field and the valve deformation to 

evaluate the CA and EOA. In both convergence studies, we set p0 = 80 mmHg and R = 200 

(dyn s)/cm5. The results of CA and EOA with respect to the number of background elements 

are shown in Figure A.18. The relative error |CA1 – CA2|/CA2 is 3.69% and the relative 

error |EOA1 – EOA2|/EOA2 is 1.69%, where the subscript i denotes the results on Mi. While 

errors on the order of a few percent are not entirely negligible relative to the differences of 

10–20% in EOA and CA found while exploring the BHV design space in Section 3, these 

discretization errors likely already pale in comparison to modeling errors, and little further 

insight would be gained by using higher resolutions.

Remark 3

The EOA and CA are smaller than the results in Section 3 since we neglect the wall 

deformation. This confirms the significance of wall–leaflets coupling in order to correctly 

predict the quantities of interest.
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Figure A.18. 
The CA and EOA of the rigid wall FSI simulation results. The results show convergence 

with mesh refinement.

Table A.1

Mesh statistics.

M0 M1 M2

Number of elements 9,360 75,888 607,104

SM0 SM1 SM2

Number of elements 462 1,827 7,308
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Figure 1. 
(a) The NURBS surface representation of the patient-specific aortic root. (b) The NURBS 

surfaces of the ascending aorta. The lumen surface (or the inner artery wall surface) is 

shown in red and the outer artery wall surface is shown in gray. (c) The control points and 

control mesh of the outer artery wall surface.

Xu et al. Page 28

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The construction of the volumetric NURBS discretization of the blood and the artery wall 

domains. (a) Cross sections of the artery wall surface. (b) Circular cross sections. (c) 

NURBS tubular surface and corresponding control points. (d) Primitive volume mesh. (e) 

Deformed volume mesh. (f) h-refined volume mesh.
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Figure 3. 
The key geometric features used to parametrically control the valve designs. The blue key 

points define the attachment of the valve to the root. The red and green curves are 

parametrically controlled for valve design.
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Figure 4. 
The parametric control of the valve designs. The key points (blue spheres) are identical to 

those in the right plot of Figure 3. x1, x2, and x3 control the location of Pf and Pb and thus 

control the curvature and height of the red free edge, and the curvature of the green belly 

curve.
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Figure 5. 
The effect of increasing design parameters x1, x2, and x3. Red surfaces denote designs 

before increasing the design parameters and green surfaces denote designs after increasing 

the design parameters.
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Figure 6. 
Selected examples of the heart valve designs used in this work. (a) x1 = 0.05 cm, x2 = 0.1 

cm, and x3 = 0.8 cm. (b) x1 = 0.45 cm, x2 = 0.1 cm, and x3 = 0.8 cm. (c) x1 = 0.05 cm, x2 = 

0.5 cm, and x3 = 0.8 cm. (d) x1 = 0.05 cm, x2 = 0.1 cm, and x3 = 1.4 cm.
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Figure 7. 
Illustration of the associated domains and boundaries on which the FSI problem is posed.
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Figure 8. 
The aortic root magnified and shown in relation to the valve leaflets. A schematic of the 

wall, lumen and leaflet meshes is shown on the right. A fictitious smooth extension of the 

shell structure midsurface Γ extends into Ωs
so in the reference configuration to facilitate 

penalty coupling between the artery wall and leaflets.
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Figure 9. 
The illustrations of effective orifice area (EOA) and coaptation area (CA).

Xu et al. Page 36

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Left ventricular (LV) pressure profile applied at the inlet of the fluid domain. The data is 

obtained from Yap et al. [103]. The duration of a single cardiac cycle is 0.86 s.
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Figure 11. 
Results of different combination of design variables x1 and x3, with x2 being fixed as 0.1 cm. 

Velocity magnitude is plotted using a color scale ranging from 0 (blue) to ≥ 80 cm/s (red).
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Figure 12. 
Results of different combination of design variables x1 and x3, with x2 being fixed as 0.3 cm. 

Velocity magnitude is plotted using a color scale ranging from 0 (blue) to ≥ 80 cm/s (red).
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Figure 13. 
Results of different combination of design variables x1 and x3, with x2 being fixed as 0.5 cm. 

Velocity magnitude is plotted using a color scale ranging from 0 (blue) to ≥ 80 cm/s (red).
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Figure 14. 
Location of the cross section in the medical image data and in the simulation: (a) Long-axis 

view from MRI highlighting the cross section considered for phase-contrast blood velocity 

registration; (b) PC-MRI taken at peaksystole. The green circle highlights the ascending 

aorta cross section. Gray levels are associated to velocity values. (c) Cross section in the 

computational model taken consistent with that considered for in-vivo velocity registration.
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Figure 15. 
Comparison between FSI results (left) and patient-specific medical image data (right). The 

time t is synchronized with Figure 10 for the current cycle. Velocity magnitude is plotted 

using a color scale ranging from −20 cm/s (blue) to 60 cm/s (red). The time instant of the 

medical image is adjusted to match that of our FSI simulation.
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Figure 16. 
Volume rendering visualization of the velocity field from our FSI simulation at several 

points during a cardiac cycle. The time t is synchronized with Figure 10 for the current 

cycle.
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Figure 17. 
Relative displacement between fully-open (red) and fully-closed (blue) configurations, 

showing the effect of leaflet–wall coupling. The deformation of the attachment edges can be 

clearly seen. The expansion and contraction of the arterial wall as well as its sliding motion 

between systole (red) and diastole (blue) can also be observed.
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