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Abstract
B-cell development is characterized by a number of tightly regulated selection
processes. Signals through the B-cell receptor (BCR) guide and are required
for B-cell maturation, survival, and fate decision. Here, we review the role of the
BCR during B-cell development, leading to the emergence of B1, marginal
zone, and peripheral follicular B cells. Furthermore, we discuss BCR-derived
signals on activated B cells that lead to germinal center and plasma cell
differentiation.
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Introduction
B cells, the antibody-producing cells, have a protagonist role  
in the immune response. Although the presence and relevance 
of antibodies were established more than 100 years ago1 and  
antibody-producing cells were identified in the mid-20th century2,  
it took until 1965 for the distinctive B-cell lineage to be  
recognized3,4. Today, there are still many questions about B-cell  
differentiation during development and after activation and about 
the signals that govern such differentiation.

B cells undergo a diversification process during their develop-
ment in bone marrow and fetal liver, and, as part of this differen-
tiation, B cells rearrange the immunoglobulin (Ig) heavy (H) and  
light (L) chain gene loci to create a complete Ig molecule5,6. The 
commitment of the common lymphoid progenitor to the B-cell lin-
eage can be recognized by the expression of the B220 isoform of 
CD456–8. B cells then develop through several well-characterized 
stages, ending with the expression of surface IgM and IgD class 
Ig molecules, which, in association with Igα and Igβ, form the  
B-cell receptor (BCR) for the antigen5,6. BCR signaling is  
required for B-cell maturation and survival, and BCR must pro-
vide tonic signals, either spontaneously or on interaction with 
ligands in the environment9–12. After this, B cells emerge to recir-
culate through secondary lymphoid organs such as the spleen and  
lymph nodes13. Being well positioned in the secondary lymphoid 
organs, mature naïve B cells are ready to respond to antigens.  
Recognizing the antigen through the BCR, B cells are  
activated and differentiate into plasma cells through extra-follicular 
differentiation14, or they become germinal center (GC) precursor 
cells to start GC reactions15,16. The precise signaling mechanisms  
of B-cell fate decision during this stage are not entirely  
understood.

In this review, we will focus on B-cell subsets in the spleen,  
key steps of differentiation after activation, and, in particular,  
recent findings about the role of the BCR driving these distinct  
differentiation stages (Figure 1).

Brief overview of B-cell receptor signaling
BCR signaling has been intensely studied over the last 30 years, 
and details of this complex process are still not fully understood. 
In-depth reviews have been produced by others17–20. In brief,  
BCR is activated by binding of the antigen. This leads to  
phosphorylation of immunoreceptor tyrosine-based activation 
motif (ITAM) by the first kinase in the BCR signaling pathway, 
primarily LYN (part of the src-kinase family). After this, SYK is  
recruited through its SH2 domain to the phosphorylated Igα–Igβ 
heterodimer. The higher propensity of ligand-bound BCR mol-
ecules to aggregate can enhance their association with src-family 
PTKs17,20. Once SYK is activated, the BCR signal is propagated 
via a group of proteins associated with the adaptor protein B-cell 
linker (BLNK, SLP-65). Phospho-BLNK serves as a scaffold for 
the assembly of the other components, including Bruton’s tyrosine 
kinase (BTK), VAV 1, and phospholipase C-gamma 2 (PLCγ2)19.  
The initiation of the BCR signal is indirectly regulated by  
at least two non-receptor-associated molecules: B220 and  
C-terminal src tyrosine kinase (CSK)17.

Additionally, following BCR ligation, tyrosines of the  
cytoplasmic tail of CD19 are phosphorylated by LYN to create 
binding sites for the SH2 domains of the p85 adaptor subunit of 
PI-3K as well as other SH2 domain-containing effectors. Activated 
PLCγ 2 cleaves membrane-associated phosphoinositide PI(4,5)P2 
into the second messengers I(1,4,5)P3 and DAG. I(1,4,5)P3 gen-
eration causes the mobilization of Ca2+ from intracellular and  
extracellular stores. Ca2+ signaling is required for the activation of 
transcription factors such as nuclear factor kappa B (NF-κB) and 
nuclear factor of activated T cells (N-FAT) by protein kinase C  
(PKC)21. DAG represents a classic activator of PKC isotypes 
which regulate the mitogen-activated protein kinase (MAPK) 
family (extracellular signal-regulated kinase [ERK], c-Jun NH2- 
terminal kinase [JNK/SAPK], and p38 MAPK); the overall 
result of these processes drives activation of the B cell, antigen  
presentation, cytokine production, and cell proliferation and  
differentiation17–19. In the following, we will discuss the effects  
of BCR signaling during B-cell development and after the  
encounter with the antigen.

B1 B cells
Three major populations of mature B cells have been described 
in mice: B1, marginal zone (MZ), and follicular (Fo) B cells. 
The phenotypic, microanatomic localization and functional dif-
ferences that characterize them suggest specialized functions 
linked to the niches in which they reside5. B1 cells produce poly-
reactive natural antibodies (NAbs) of relatively low affinity and  
primarily of the IgM isotype22. NAbs play a critical role in the 
innate immune response against pathogens, and their absence can 
lead to increased susceptibility to microbial infections23–25. B1 cells  
are the major subpopulation in pleural and peritoneal cavities; 
however, they can also be found in the spleen and other lymphoid 
organs but at low frequency26. B1 cells consist of two functional 
specialized subpopulations regarding the expression of CD5: 
CD5+ B1a and CD5− B1b cells27. However, expression of Blimp-1 
also delineates two main coexisting B1 subpopulations in the 
bone marrow and spleen: B1 Blimp-1hi cells that are dependent on 
Blimp-1 for maximal natural Ig production and those B1 cells that 
neither express Blimp-1 nor require it for steady-state antibody  
production28. Recently, it has been shown that interleukin 17A  
(IL-17A) promotes B1-cell infiltration into lungs during viral infec-
tion, where B1a cells differentiate into IgM-producing plasma  
cells. This process was promoted through Blimp-1 expression  
and NF-κB activation25. It is conceivable that the regulation of 
Blimp-1 expression would also drive the functional role of B1  
subsets in sites such as the lung.

What is the role of BCR signaling in B1-cell differentiation?  
Studies with genetically modified mice indicate that the strength 
of BCR signaling may control the development or persistence  
of B cells (or both)29–36. Mutations that enhance BCR signaling 
strength through the specific deletion of SHP-1 in B cells expand 
the B1a population. SHP-1 is a protein-tyrosine phosphatase 
expressed in hematopoietic cells and plays a signal-attenuating  
role in pathways initiated by many ITAM-containing receptors37–39. 
The signal-attenuating effects of SHP-1 are mediated primarily 
via its binding to inhibitory receptors, such as CD5, expressed by  
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Figure 1. B-cell receptor signaling during B-cell development and for B-cell differentiation after the encounter with the antigen.  
(1) Common lymphoid progenitor (CLP) cells commit to the B-cell lineage when they start expressing the B220 isoform of CD45. (2) Pro-B 
cells undergo DJ rearrangements and become pre-B cells when they express membrane forms of μ heavy chains with surrogate light chains 
(pink dotted lines) in the pre-B receptor. The transition between pro-B and pre-B cells has been described as being dependent on membrane 
association of Igα/Igβ complexes and their ability to generate basal signals. It seems that pre-B receptors do not have a ligand-recognition 
function40,41. (3) After VDJ recombination in the pre-B cell stage, immature B cells pair light chains with μ chains to form monomeric IgM, 
which is expressed at the cell surface in association with Igα/Igβ to form the B-cell receptor (BCR). Newly formed immature B cells exit the 
bone marrow to reach the spleen, where, as transitional B cells, they will complete their maturation before entering the follicles or the marginal 
zone (MZ). (4) BCR signaling strength appears to have a critical role during follicular (Fo) or MZ B-cell differentiation. There is evidence of  
at least two possibilities29,30,36,42–44: increased BCR signaling could drive differentiation to Fo B cells or to MZ B cells. This could depend on other 
factors such as the microenvironment or the timing of BCR signaling. (5) Mature naïve B cells are ready to respond to antigens. By specifically 
binding antigen through the BCR, B cells are activated and differentiate into plasma cells through extra-follicular differentiation (6) or start the 
T-cell-dependent germinal center (GC) reaction (7). The mechanism of activated B cells entering the GC reaction or undergoing rapid plasma 
cell differentiation in extra-follicular proliferative foci is controlled by the nature of the interaction between the BCR and antigen. Responding 
clones that undergo a strong initial interaction with antigen can efficiently differentiate into extra-follicular plasma cells45. However, it has also 
been shown that B cells expressing higher-affinity BCRs are more competitive to become pre-GC B cells during T–B interaction46,47. This 
seems contradictory, but timing may be a very important factor. B cells in the GC reaction are selected on the basis of their interaction with 
the antigen through BCRs. Based on how efficiently B cells present antigen to Fo T helper cells, they are allowed to further differentiate inside 
the GC. Whether this BCR–antigen interaction results in significant signaling and has a role for selection is not clear.

B1a cells34. Additionally, enhanced tonic BCR signaling results 
in an increased B1 B-cell subpopulation and a dysregulated  
homeostasis of other B-cell subsets33. These findings indicate 
that BCR signaling is important in fate decisions during B1 cell  
development, and further studies are needed to better understand 
these mechanisms.

Marginal zone B cells
MZ B cells contribute about 5–10% of the B cells in the spleen. 
The “marginal zone” designation refers to the splenic structure 
that separates the red and the white pulp adjacent to the marginal  
sinus, where—in both mice and humans—these MZ B cells are 
in direct contact with blood and its contents5,48. The specialized 
localization and migration of B cells are strictly regulated under  
the guidance of different chemokine–chemokine receptor pairs, 
such as CXCL13–CXCR5, S1PR1, and S1P49–53.

Blood from the primary sinusoids in the spleen perfuses the MZ;  
the anatomic location of MZ B cells facilitates their role as a rapid 

first line of defense against blood-borne particulate antigens52,54. 
After MZ B cells capture the antigen, they transport it to the  
follicles and deliver it to follicular dendritic cells (FDCs)52,53,55.  
Furthermore, MZ B cells respond to thymus-independent  
type 2 antigens producing high quantities of IgM and IgG314,56,57.

Newly formed B cells exiting the bone marrow reach the spleen at 
a relatively immature stage; these are termed transitional B cells  
and they need to complete their maturation in the spleen before 
entering the follicles or the MZ58. It has been described that B 
cells in the transitional 2 (T2) stage face a decision to mature into 
either Fo or MZ B cells5,48. However, very recently, it was shown  
that T1 B cells can differentiate to MZ B cells32. During this dif-
ferentiation, signaling through the BCR is important for the  
Taok3-mediated acquisition of membrane expression of ADAM10, 
which cleaves Notch2 and CD2331,32. MZ B-cell instruction  
requires triggering of Notch2 on developing B cells by Delta- 
like 1 (Dll1) expressed by splenic red pulp sinus endothelial cells 
or MZ reticular cells35,59. How exactly B-cell-positive selection 

Page 4 of 9

F1000Research 2018, 7(F1000 Faculty Rev):429 Last updated: 06 APR 2018



and BCR signaling are causing Taok3 activation and ADAM10  
surface expression will require further study32. Furthermore, BCR 
signaling strength appears to have a critical role during MZ B-cell 
development; mice lacking secreted IgM displaying increased  
BCR signaling had increased MZ and decreased Fo B-cell  
numbers36,42,43. However, some studies reported that MZ B cells 
need low BCR signaling strength for their differentiation but that 
transitional B cells with higher BCR signaling strength favor  
differentiation into Fo B cells29,30,44.

Follicular B cells
Fo B cells are the most prevalent of the three subsets of B cells 
and the better-studied subpopulation. Their anatomic enrichment 
in primary follicles gives them their name; however, they are  
not confined to the follicles and also predominate among the 
mature populations of B cells in the bone marrow, blood, and other 
lymphoid organs5. Fo B cells are involved mainly in interactions 
with T cells, and their responses to T-cell-dependent antigens  
eventually originate GC reactions16. Many of the mechanisms  
producing the selection of B-cell subsets, the roles of self- and 
environmental antigens, and survival signals that drive or main-
tain them in their proper anatomic and functional niches remain  
to be elucidated. BCR signaling has been proposed to be crucial 
in the selection of B1, MZ, and Fo B cells, supported by  
different genetically manipulated mice where the altered BCR  
signaling affected different B-cell subsets32–34,36.

Follicular B-cell activation
After Fo B cells encounter the antigen through the BCR, 
CXCL13–CXCR5 slows down the motility of B cells by promot-
ing membrane ruffling and LFA-1-supported adhesion to facilitate  
the antigen-recognizing process and enhance B-cell activation60.  
Meanwhile, surface expression levels of CCR7 on responding 
B cells increase rapidly to make them more sensitive to CCL19/
CCL2151. CCL19/CCL21 is expressed by T-zone reticular cells  
and extends a gradient to the Fo region. Along the chemokine  
gradient, antigen-engaged B cells migrate from follicles to 
T–B border in order to get signals from primed T cells51,61,62. 
EBI2 drives B cells to move back to the outer follicle and inter- 
follicular regions63,64. These results indicate interplay between 
activated BCR downstream signaling and surface chemokine  
receptors60,61. Although the possibility is less studied on steady 
state, tonic BCR signaling could also regulate chemokine recep-
tor expression during their anatomic enrichment in specific  
areas within the secondary lymphoid organs.

Germinal center B cells
After T–B cell interaction, activated B cells either differenti-
ate into plasma cells in the extra-follicular response14 or become  
GC precursor cells, migrating back into follicles to start GC  
reactions16. To get co-stimulation from T cells, B cells need to 
present cognate antigens to T cells in the major histocompat-
ibility complex II (MHC-II) context. B-cell-captured antigen goes 
through both extracellular and intracellular degradation to become  
peptides65. These peptides then are assembled with MHC-II  
molecules and expressed on the B-cell surface as peptide–MHC 
(pMHC). pMHC–T-cell receptor recognition has an essential 
role in the process of T–B “pairing” to ensure the specificity of 

later reactions. Schwickert et al. showed that a higher amount of  
pMHC help activated B cells, locking T-cell help on the  
T–B border, thus enabling them to become GC precursor B cells46. 
CD40L is the most important cognate signal delivered from  
T cells. In mice and humans, CD40–CD40L ligation is indis-
pensable for the initial formation of GCs66,67 and is needed to  
maintain ongoing GC reactions68.

BCR affinity also plays an important role during the initial GC 
B-cell fate decision. The mechanism of activated B cells entering 
the GC reaction or undergoing rapid plasma cell differentiation in 
extra-follicular proliferative foci is controlled by the nature of the 
interaction between the BCR and antigen. Responding clones that 
undergo a strong initial interaction with antigen can efficiently dif-
ferentiate into extra-follicular plasma cells and contribute to the 
rapid early thymus-dependent antibody response45. Although the 
requirements for GC entry are not stringent69, responding B cells 
expressing higher-affinity BCRs on their surface are more com-
petitive to become pre-GC B cells during their T–B interaction46,47.  
High-affinity BCR captures more soluble antigens70 and 
leads to a higher amount of pMHC expressed on the B-cell  
surface, which results in a competitive cognate interaction with 
T cells. The durations of T–B interactions have critical roles in  
B-cell fate decisions. Recent research shows that ICAM-1/2  
adhesion molecules on B cells can secure long-lasting T–B interac-
tions to enhance T-cell help. The expression of ICAM-1/2 could 
compensate the lack of MHC-II signaling to form GC B cells71.

BCRs of B cells differentiating in GCs have to interact with  
antigen repetitively. Whether the BCR-antigen interaction in the 
GC results in significant signaling and what the role of this is are 
under debate72–74. The interaction is certainly important to test  
BCR specificity and binding competitiveness, probably mainly 
in competition with antibodies present in immune complexes 
on the FDC networks75,76. More important than BCR signaling  
may be that the affinity of the BCR–antigen interaction will  
let B cells take up more or less antigen, resulting in more  
or less efficient positive selection by Fo T helper cells47,74,76.

Much of the knowledge on B-cell differentiation in response 
to antigen has been gained by using BCR knock-in animals 
specific for haptens or single epitopes on model proteins46,77.  
Recent attempts to use complex protein antigens such as influ-
enza hemagglutinin should be better suited to understand the 
complex competition and crosstalk of many different clones 
interacting with different epitopes on a natural complex protein 
antigen78,79. However, for such experiments, it is important 
to develop methods that will allow the specific analysis of 
epitope-specific interactions of different B-cell clones. Without  
an understanding of whether clonal interactions happen 
because of BCR binding of overlapping epitopes or whether 
clones develop with less competition because they do bind  
different epitopes, it is impossible to conclude whether clones  
with different affinities compete for the antigen80.

Ultimately, it has been estimated that nearly 50% of newly pro-
duced auto-reactive B cells can avoid deletion and are induced 
into an anergic state in peripheral lymphoid tissues81,82. Thus,  
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perhaps B cells in the periphery are not in the same basal state  
as we thought they should be. The surface expression level of  
membrane IgM is downregulated on anergic B cells83,84, indicat-
ing that their BCR signaling is somehow different from that of 
normal naïve B cells. Indeed, anergic B cells maintain a distinct  
gene expression profile81,84 and have been observed preferentially 
residing in T-zone areas85, indicating that their surface chem-
okine receptor expression pattern is also different from that of  
naïve B cells, possibly because of their different signaling.  
Several studies have found that anergic B cells can be selected to 
become GC B cells, although these cells previously were thought 
to be non-responsive84,86. By recruiting anergic B cells into the 
GC response involving many rounds of mutation, these B cells 
may mutate away from their original auto-reactivity and become  
specific for antigens that may have a close relationship with  
autoantigens86–89. The mechanism—for example, whether anergic 
and normal B cells will follow the same rules of B-cell selection  
or which difference an anergic state can bring to B-cell activation 
and fate decisions at the T–B border—is still not clear.

Concluding remarks
Co-stimulation from T cells plays indispensable roles in B-cell  
fate decisions after activation and has been studied in some detail. 

However, BCR signaling strength and patterns not only affect  
B-cell selection during development but also have been shown 
to affect the differentiation of B1, MZ, or Fo B-cell populations. 
Furthermore, BCR signaling strength may affect antigen-induced 
B-cell activation, migration, and surface co-stimulator molecule 
expression levels. It seems that there is still work to be done  
on how differential BCR signaling influences the differential  
development of B cells and how the various stages of antigen-
induced T–B cell interactions affect further B-cell fate decisions.
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