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Abstract

Background: The ability of finding complex associations in large omics datasets, assessing their significance, and
prioritizing them according to their strength can be of great help in the data exploration phase. Mutual information-based
measures of association are particularly promising, in particular after the recent introduction of the TICe and MICe

estimators, which combine computational efficiency with superior bias/variance properties. An open-source software
implementation of these two measures providing a complete procedure to test their significance would be extremely
useful. Findings: Here, we present MICtools, a comprehensive and effective pipeline that combines TICe and MICe into a
multistep procedure that allows the identification of relationships of various degrees of complexity. MICtools calculates
their strength assessing statistical significance using a permutation-based strategy. The performances of the proposed
approach are assessed by an extensive investigation in synthetic datasets and an example of a potential application on a
metagenomic dataset is also illustrated. Conclusions: We show that MICtools, combining TICe and MICe, is able to highlight
associations that would not be captured by conventional strategies.
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Introduction

With the growing popularity of high-throughput quantitative
technologies, it is now common to characterize living systems
by measuring thousands of variables over a wide range of con-
ditions. In these large datasets, the number of potential associ-
ations between variables is enormous. Computational and sta-
tistical methods should be able to highlight the significant ones
(striking a balance between flexibility and statistical robustness)
and to prioritize the more relevant for downstream analysis. Tra-
ditionally, the presence of a potential relationship between two
variables X and Y is assessed on the basis of a certain measure
of association that is often able to reveal specific types of re-
lationships but it is blind to others. Then, once the measure is

computed, its significance is tested against the null hypothe-
sis of no association. For linear associations, the Pearson cor-
relation coefficient is the natural choice, while the Spearman
rank coefficient represents a more flexible alternative for general
monotonic relationships. In the exploratory analysis of datasets
produced by modern -omics technologies, this conventional ap-
proach shows its limits, because a huge number of potential as-
sociations needs to be screened without any a priori informa-
tion on their form. In these cases, it would be desirable to use a
measure of dependence that ranks the relationships according
to their strength, regardless of the type of association. A mea-
sure with this property has been defined equitable [1], and a con-
sistent mathematical framework for the definition of equitabil-
ity has been proposed [2–6]. The second challenge faced in the
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unsupervised screening of large datasets is that the number of
associations to be tested is usually huge and the statistical as-
sessment of significance has to face well-known multiplicity is-
sues [7,8].

Recently, a family of measures based on the concept of mu-
tual information has been proposed, and one of the most pop-
ular (and debated) members of this family, the maximal in-
formation coefficient (MIC), has been shown to have good eq-
uitability [1]. Unfortunately, MIC does not have state-of-the-
art power [9,10], and its heuristic estimator, APPROX-MIC, is
computationally demanding [5]. These two drawbacks have
severely hampered the application of MIC to large datasets. In
order to overcome these limitations, two new MIC-based mea-
sures, the MICe—a consistent estimator of the MIC popula-
tion value (MIC*) and the related TICe (total information coef-
ficient) statistics—have been proposed [5]. Both quantities can
be calculated more efficiently than APPROX-MIC and have bet-
ter bias/variance properties [5]. In particular, TICe is character-
ized by high power, which has been obtained at the cost of eq-
uitability, while MICe performs better on this side, showing re-
duced performances in terms of power. These two MIC-based
measures compensate each other, and their combination is ex-
tremely promising as a data exploration tool. In particular, a
two-step procedure can be applied where TICe is used to perform
efficiently for a high-throughput screening of all the possible
pairwise relationships and assess their significance, while MICe

is used to rank the subset of significant associations in terms
of strength [5]. Despite the potential of this approach, an effi-
cient software implementation of these two measures and of a
statistical procedure to test the significance of each association
controlling multiplicity issues is still lacking.

Here we present MICtools, an open-source and easy-to-use
software that provides:

� an efficient implementation of TICe and MICe estimators [11];
� a permutation-based strategy for estimating TICe empirical

p values;
� several methods for multiple testing correction, including

the Storey q value to control the false discovery rate (FDR);
and

� the MICe estimates for each association called significant.

Methods

MICtools implements a multistep procedure to identify relevant
associations among a large number of variables, assess their sta-
tistical significance, and rank them according to the strength of
the relationship. Starting from M variable pairs xi and yi mea-
sured in n samples, the procedure can be broken into 4 steps
(Fig. 1):

1. Estimating the empirical TICe null distribution by permuta-
tions.

2. Computing TICe statistics and the empirical p value for each
variable pairs.

3. Applying a multiple testing correction strategy in order to con-
trol the family-wise error rate (FWER) or the FDR [12].

4. Using MICe to estimate the strength of the relationships called
significant.

The pipeline can be run as a sequence of subcommands im-
plemented into the main command mictools (Fig. 1).

The empirical TICe null distribution

Since TICe depends only on the rank-order of the vectors xi and
yi [1], the empirical null distribution can be estimated for a given
sample size and set of parameters by performing R permutations
of the elements of the vectors yi and by calculating the set of null
TICe statistics t0

1 , . . . , t0
R . Two parameters control the estimation

of the null distribution of TICe: the parameter B controlling the
maximal-allowed grid resolution and the number of permuta-
tions R. In the current implementation, B was set to the default
value 9, which guarantees good performance in terms of statis-
tical power against independence in most situations [10]. How-
ever, different values of B can be chosen; for example, B = 4 for
less complex alternative hypothesis, B = 12 for more complex
associations [10]. With regard to the number of permutations,
instead, the results obtained on the synthetic datasets (see Ad-
ditional File 2, Figs. A2 and A3 and Additional File 1, Table A2)
empirically indicate that 200,000 permutations represent a rea-
sonable choice for the dataset SD1 (see the Synthetic datasets
section).

Computing the TICe and its associated empirical p
values for each variable pair

The TIC is computed for each (nonpermuted) variable pair, ob-
taining a set of TICe values ti (with i = {1, . . . , M}). For each ti, the
p value pi is estimated as the fraction of values of the empirical
null distribution that exceeds ti [13]:

pi = 1 + #{r : t0
r ≥ ti , r = 1, . . . , R}

1 + R

Multiple testing correction

Considering the large number of tests of independence per-
formed, it is necessary to correct the p values for multiplicity.
In general, this can be done either by controlling the FWER or
the FDR. The first approach aims at controlling the probability
of making at least one type I error in the set of tests, and this is
done by decreasing the significance threshold of each individual
test (as in Bonferroni correction). In the case of FDR, the pres-
ence of false positives (FPs) is accepted and what is controlled
is their fraction among the associations called significant. This
is done by estimating the distribution of the p values under the
hypothesis of independence and comparing it with the observed
one. MICtools implements several state-of-the-art strategies to
accomplish this task. For all the examples presented here, we
have used the Storey method for estimating the q values to con-
trol the FDR [7]. Assuming a uniform distribution for the null
p values, the fraction of associations for which the null is true
(π0) is estimated directly from the shape of distribution at high
p values. π0 is then used to calculate the q value for the ith as-
sociation as the minimum FDR that can be obtained varying the
significance threshold (h):

q(pi ) = min
h≥pi

FDR(h) = min
h≥pi

π0 Mh
#{pi ≤ h} .

Briefly, setting a q value cutoff to 0.05, we accept an FDR of 5% at
most. To check the method assumptions, MICtools provides the
empirical distribution of p values as a diagnostic plot.
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Figure 1: The MICtools pipeline. Each step is implemented as a subcommand of the mictools main command. mictools null estimates the empirical TICe null distribu-
tion of the M variable pairs (xi , yi). mictools pval computes the TICe values and estimates their p values (boxes within the dashed line). The multiple testing correction
is performed by mictools adjust. Finally, mictools strength estimates the MICe value for the subset of significant relationships. The color of the boxes highlights the

criterion used for parameter optimization.

Table 1: Default values of the α parameter vary according to the num-
ber of samples

Number of samples α parameter

n < 25 0.85
25 ≤ n < 50 0.80
50 ≤ n < 250 0.75
250 ≤ n < 500 0.70
500 ≤ n < 1,000 0.65
1,000 ≤ n < 2,500 0.60
2,500 ≤ n < 5,000 0.55
5,000 ≤ n < 10,000 0.50
10,000 ≤ n < 40,000 0.45
n> 40,000 0.40

Computing the MICe on the significant relationships

Finally, the strength of the associations that pass the signifi-
cance threshold is estimated using the MICe estimator. In this
case, we define the B parameter as a function of the number of
samples n, B(n) = nα [1]. The default values are optimized for eq-
uitability [6] and summarized in Table 1.

Findings

Two synthetic datasets (SD1 and SD2) were created in order to
assess the statistical power (or recall, i.e., the fraction of non-
independent relationships that were recovered at a given sig-
nificance level) and the ability to control the FDR. The analyses
were performed varying the number of samples (SD1) and the ef-
fect chance [14], i.e., the percentage of nonindependent variable
pairs (SD2). Both datasets contain a set of independent variables
and a fixed number of variable pairs X and Y related by asso-
ciations in the form Y = f(X) + η, where f(X) is a function and
η is a noise term. To characterize the performance of MICtools
in the presence of associations that could not be described by a
function, a series of Madelon datasets [15,16] was also analyzed.
The main characteristics of the three synthetic datasets are
summarized in Table 2. Finally, the proposed pipeline was ap-
plied to the analysis of an environmental/metagenomic dataset
that has been recently made available within the Tara project, a
global-scale characterization of plankton using high-throughput
metagenomic sequencing [17].

Synthetic datasets

SD1 contains 60,000 associations between variable pairs X and
Y. The effect chance was set to 1%. The relationships between

the 600 nonindependent variable pairs were randomly chosen
among six types of functional associations, namely, cubic, ex-
ponential (2x), line, parabola, sigmoid, and spike (see Table S3
in [1]). The noise term η is a random variable with uniform dis-
tribution in the range of f(X) multiplied by an intensity factor
kη. Different values of kη were chosen randomly among 18,000
values obtained joining the following three sequences: the first
ranging from 0.05 to 1 (with steps of 0.0001), the second rang-
ing from 1 to 2 (with steps of 0.0002), and the third ranging from
2 to 9 (with steps of 0.002). Using these values, the coefficient
of determination (R2) between Y and the noiseless function f(X)
ranges from approximately 0 to 1. The remaining 99% (59,400)
ofassociations were defined with X and Y randomly generated
from a uniform distribution between 0 and 1. To characterize
the effect of the sample size, we created 20 replicates of SD1 for
an increasing number of samples (n ∈ {25, 50, 100, 250, 1,000}),
for a total of 100 datasets. Considering that the fraction of true
positive associations was known, this design of experiment al-
lowed us to quantify the statistical power and the performances
in terms of FDR of the proposed pipeline. The results for 2 × 105

permutations are summarized in Fig. 2 and in Additional File 1,
Table A1. The dependence of the power and of the number of
FPs from the number of samples is shown in Fig. 2A and Fig. 2B.
The power increases with the number of samples, reaching 75%
for a sample size of 100. As expected, considering that we used
the Storey q value as a strategy to control the FDR, the number
of FPs also grows for increasing sample size (Fig. 2B) to keep the
false discovery rate constant (0.05 in this case). Fig. 2C shows
the observed FDR, which is almost equal to the expected value
of 0.05 for all sample sizes. In Fig. 2D we show the values of MICe

as a function of the coefficient of determination (R2) between Y
and the noiseless function f(X) for the associations that pass the
significance filter (i.e., associations with q values <0.05). As ex-
pected, MICe and R2 were always linearly correlated, especially
for the larger sample sizes [5] (Fig. 2D, upper panel). Moreover, we
found that for small sample sizes, only relationships with rela-
tively high values of R2 passed the significance filter. This effect
decreases with increasing number of samples, showing that the
pipeline is able to identify relationships with more noise, pro-
vided that a sufficient number of experimental points is avail-
able. This effect is clearly visible in Fig. 2E, where we show the
statistical power as a function of the strength of the relation-
ships for different sample sizes. While on less noisy associa-
tions (having R2 close to 1) the pipeline shows high power also
for smaller sample sizes, a high number of samples is needed to
attain high power for very noisy relationships (having R2 close
to 0). Upon closer inspection, panel D in Fig. 2 also shows that
the power depends on the form of the association. For instance,
red points (corresponding to cubic functional forms) are hardly
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Table 2: Characteristics of the three synthetic datasets analyzed in this work

Characteristic SD1 SD2 Madelon

N. associations 60,000 60,000 19,900
Effect chance (%) 1 1, 2, 5, 1

10, 20, 50
N. samples 25, 50, 100, 100 50, 250, 1,000,

250, 1,000 2,500, 5,000
N. replicates 20 20 1
Total n. replicates 100 120 7

Figure 2: Analysis on SD1 dataset at the 0.05 significance level. A) Statistical power, B) number of FPs, and C) FDR for varying number of samples n. Each range represents
the results of the 20 replicates. D) MICe values and E) statistical power at different levels of R2, for increasing number of samples (from 25 to 1,000, plots from left to
right). Only significant relationships, i.e., relationships with q < 0.05, are shown.

visible for sample sizes smaller than 100, while sigmoidal, lin-
ear, and exponential relationships can be identified for all sam-
ple sizes, albeit with a power that depends on the amount of
noise. This finding can be easily interpreted considering that
more complex relationships (e.g., polynomials of higher order)
are defined by a higher number of parameters that makes them
more difficult to distinguish from random associations if the
number of points is limited. A clearer representation of this phe-
nomenon is included in Additional File 2 (Fig. A1). Moreover, the
downward bias in terms of equitability, especially for the more
complex relationships (Fig. 2D and A1), is a result of the core ap-
proximation algorithm EQUICHARCLUMP, which speeds up the

computation of MICe [5,18]. The EQUICHARCLUMP parameter c
controls the coarseness of the discretization in the grid search
phase; by default, it is set to 5, providing good performance in
most settings [10].

As anticipated, SD1 was also used to investigate the depen-
dence of the performances of MICtools on the number of inde-
pendent permutations used to estimate the empirical null distri-
bution. Figures A2 and A3 (Additional File 2) show the FDR and
the power as a function of the number of samples and of the
number of permutations. The plots indicate that for all the com-
binations of the two parameters, the measured FDR was consis-
tent with the expected value 0.05 (Additional File 2, Fig. A2 and
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Additional File 1, Table A2) and that the true value is always in-
cluded in the shaded interquartile area. As expected, the vari-
ability is stronger for the smaller dataset (25 samples); however,
with such a small number of samples above 2 × 105 permuta-
tions, the median measured FDR stabilizes around 0.05. Figure
A3a (Additional File 2) shows the expected increase in power
with the number of samples, from 0.25 to almost 1. The median
value does not show a strong dependence on the number of per-
mutations. Figure A3b indicates that below 100 samples, at least
2 × 105 permutations are needed to obtain stable values of power
and that its variability is anyway larger for small sample sets. In
MICtools, the default value of the number of permutations is set
to 2 × 105, and the parameter can be optimized by the user on
the basis of the characteristics of the dataset under analysis.

SD2 was generated to characterize how the effect of chance,
i.e., the fraction of nonrandom associations, affected the perfor-
mance of MICtools. Similar to SD1, SD2 contains a subset of vari-
able pairs X and Y related by associations of the form Y = f(X) + η,
where η is defined as in SD1. The number of samples was fixed at
n= 100, and the total number of associations was 60,000. For each
effect chance value (1%, 2%, 5%, 10%, 20%, and 50%),we gener-
ated 20 independent datasets, for a total of 120. The power, num-
ber of FPs, and FDR as a function of the effect chance are shown
in Fig. 3, panels A, B, and C, respectively (see also Additional File
1, Table A3). In Fig. 3A, we can observe that the statistical power
grows with the effect chance, while the actual FDR remains con-
stant. In fact, an increase of effect chance corresponds to a de-
crease of the fraction of relationships for which the null is true,
π0 (effect chance = 1 − π0). Consequently, an increase in the p-
value threshold and therefore a growth of power is expected in
order to maintain the FDR cutoff constant [7,14].

The Madelon classification dataset

The analysis of SD1 and SD2 demonstrates that MICtools
is able to identify the relationships described by analytic
functions with additive noise. However, more general forms
of nonrandom associations are possible. Consider, for in-
stance, the presence of clusters that might indicate the pres-
ence of subpopulations. To test the ability of MICtools to
identify this type of association, we created seven datasets
with an increasing number of samples n ∈ {50, 250, 500,
1,000, 2,500, 5,000} with a structure similar to the Made-
lon binary classification dataset [15,16] (http://archive.ics.uci.ed
u/ml/machine-learning-databases/madelon/Dataset.pdf) using
the datasets.make classification() function available in the
scikit-learn library [19]. Each dataset contains four clusters (two
for each class), placed on the vertices of a five-dimensional four-
sided hypercube. Each cluster was composed by normally dis-
tributed points (σ = 1). The five dimensions defining the hyper-
cube constitutes the five “informative” features. Fifteen other
“redundant” features were generated as random linear combi-
nations of the informative features and added to the dataset.
Finally, 180 random variables without predictive power were
added, for a total of 200. In this type of setting, the number of as-
sociations to be tested was 19,900= (200 × 199)/2. Among them,
190 are “real” (the relationships between the variables belonging
to the “informative” and “redundant”). Figure 4 a summarizes
the results of the analysis. Panel A shows the association called
significant (q-value cutoff set to 0.05) on a Hive plot [20] as a
function of the number of samples. Each branch of the Hive rep-
resents a type of variable (informative: 5 variables; redundant:
15; random: 180). The blue lines identify true positives (associ-
ations between nonindependent variables correctly identified),

while FPs (incorrectly identified associations between indepen-
dent variables) are marked in red. This representation clearly
shows that, as expected, the number of true positives increases
with the number of samples. A more quantitative representa-
tion of the effect of the number of samples on the number of
false negatives (FNs) (nonindependent associations incorrectly
rejected) is shown in panel B. Again, an increase in the number
of samples is beneficial because it reduces the number of FNs.
Panel C shows the effect of n on the FDR, which is always ap-
proximately constant and very close to the theoretical value of
0.05.

On the basis of these results, we conclude that with a rela-
tively low number of samples, MICtools is able to identify non-
functional associations typical of cluster structures efficiently.
It is interesting to note that the associations among the infor-
mative variables started to be recovered when at least 250 sam-
ples were considered, while the associations between informa-
tive/redundant and redundant/redundant variables were signif-
icant for a smaller number of samples (50). This apparently odd
behavior is due to the different nature of the association among
the variables. Binary associations among informative variables
are indeed characterized by the presence of clusters, while re-
dundant associations are constructed by linear combinations.
In accordance to the results discussed for SD1, the statistical
power of the procedure depends on the type of association; with
a smaller number of samples, the results are biased toward less
complex association patterns.

Identifying ecological niches: the Tara dataset

The Tara Oceans project is a large multinational effort for the
study of plankton on a global scale [17]. Within the project, a
large study of the microbiota in water samples from the oceans,
characterized using metagenomic techniques, has been recently
made available. To illustrate the added value of using MICtools to
analyze such large datasets, we downloaded the annotated 16S

mitags [21] OTU count table of 139 water samples from http://
ocean-microbiome.embl.de/companion.html, together with the
accompanying metadata on temperature and chemical compo-
sition [22]. MICtools was used to identify the existence of signifi-
cant relationships between the environmental variables and the
taxonomic composition of the microbiota. The genus relative
abundances, the environment variables, and the sample meta-
data are available in Additional File 1, Tables A4, A5, and A6, re-
spectively. By using a q-value cutoff of 0.01, we found significant
associations between the relative abundances of 279 taxa with
water temperature and of 287 taxa with oxygen (Fig. 5, panels
B and C, respectively). To highlight the novel information pro-
vided by MICtools, Spearman rank correlation coefficients and
their associated p values were also calculated as in [23] (the de-
fault for the cor.test() function in the R environment). By us-
ing the Spearman coefficient alone, we could identify a subset
of the relations identified by MICtools, namely, 194 taxa were
associated with temperature and 191 taxa were associated with
oxygen concentration. Conversely, almost all relationships iden-
tified with Spearman correlation were also identified by MIC-
tools. While the Spearman coefficient-based approach identi-
fied associations well described by monotonic functions (Fig. 5E
and 5F), MICtools was able to highlight the presence of more
complex relationships between the taxa and the environmental
parameters. As an example, we found a sharp increase in the Al-
caligenaceae genus at an oxygen concentration of 200 μmol kg−1

(Fig. 5D) and a slow increase in the Sphingomonadaceae genus as a
function of temperature. In both cases, by highlighting the sam-

http://archive.ics.uci.edu/ml/machine-learning-databases/madelon/Dataset.pdf
http://ocean-microbiome.embl.de/companion.html
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A B C

Figure 3: Analysis on SD2 dataset at the 0.05 significance level. A) Statistical power, B) number of FPs, and C) FDR for increasing effect chance. Each range represents
20 replicated datasets.

A

B

C

D

Figure 4: Madelon dataset. A) Hive plots of the detected association for increasing number of samples. The variables are grouped as “informative” (5), “redundant” (15),

and “random” (180). True positives (associations between nonindependent variables passing the significance test) are in blue; false positives (associations between
independent variable passing the significance test) are in red. B) Power and C) false discovery rate as a function of the number of samples. D) Example of significant
relationships between informative and redundant (IR) and redundant (RR) variables within the Madelon datasets with 50 and 500 samples.

ples on the basis of their specific aquatic layer of reference, it
is possible to see that the complex aggregation patterns identi-
fied by MICtools are associated with specific ecological niches.
These results show the advantage of the use of the proposed
approach as an automatic screening tool in the data exploration
phase. The lists of the relationships identified by MICtools and
by the Spearman coefficient-based procedure are available in
Additional File 1, Tables A7 and A8, respectively.

Implementation details

MICtools is a Python-based open source software (licensed un-
der GPLv3). MICtools requires the minepy [11] (https://minepy
.readthedocs.io), Statsmodels [24], NumPy, SciPy, pandas, and

Matplotlib scientific libraries. MICtools can handle different
types of experiments:

� given a single dataset X with M variables and n samples, MIC-
tools evaluates the M×(M−1)

2 possible associations;
� given two datasets, X (of size M × n) and Y (of size K × n),

MICtools evaluates all the pairwise relationships between the
variables of the two datasets (for a total of M × K associa-
tions);

� given two datasets, X (of size M × n) and Y (of size K × n),
MICtools evaluates all row-wise relationships, i.e., only the
variable pairs xi and yi (for i = 1, . . . , min (M, K)) will be tested;

https://minepy.readthedocs.io
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A

E

B C

D

F

Figure 5: Tara dataset: Venn diagrams of the significant relationships between the genus-level relative abundances and two environmental variables, temperature

(B) and oxygen (C), identified by MICtools and the Spearman coefficient-based procedure (q< 0.01). A, D) The relationships between the OM43 clade and temperature
and between the MWH-UniP1 aquatic group are detected only by MICtools. E, F) Two monotonic relationships identified by both methods. Abbreviations: DCM, deep
chlorophyll maximum layer; MES, mesopelagic zone; MIX, subsurface epipelagic mixed layer; SRF, surface water layer.

� for each experiment listed above, if the sample classes are
provided, the analysis will be performed within each class,
independently.

For multiple testing correction, MICtools makes available the
strategies implemented in Statsmodels and a Python implemen-
tation of the Storey q-value method [7]. The indicative number
of relationships tested per second during the empirical null es-
timation (using the TICe) and the strength estimation (MICe) for
an increasing number of samples are listed in Additional File 2,
Fig. A3.

MICtools source and the documentation are available at ht
tps://github.com/minepy/mictools. The Docker (https://www.do
cker.com/) image containing MICtools and the minepy library is
available at https://hub.docker.com/r/minepy/mictools/ and in-
stallable with the command docker pull minepy/mictools.

Availability of source code and requirements
� Project name: MICtools
� Project home page: https://github.com/minepy/mictools
� Research Resource Identification Initiative ID (RRID), Sci-

Crunch.org: SCR 016121
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: minepy, Statsmodels, NumPy, SciPy,

pandas, Matplotlib
� License: GNU GPLv3

Availability of supporting data

The Tara dataset is available at http://ocean-microbiome.embl.
de/companion.html. Code snapshots and additional tables are
available in the GigaScience GigaDB repository [25].

Additional file

Additional File 1.xlsx, Additional File 2.pdf
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FWER, family-wise error rate; MIC, maximal information coeffi-
cient; SD, synthetic dataset; TIC, total information coefficient.

Competing Interests

The authors declare that they have no competing interests.

Funding

This research was supported by the Autonomous Province of
Trento (Accordo di Programma).

Author Contributions

D.A., S.R., C.D., and P.F. conceived the manuscript. D.A. and P.F.
developed the methodology. D.A. wrote the software. D.A., S.R.,
and C.D. analyzed the data. D.A., S.R., C.D., and P.F. wrote the
manuscript.

References

1. Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel
associations in large data sets. Science 2011;334(6062):1518–
24.

2. Kinney JB, Atwal GS. Equitability, mutual information, and
the maximal information coefficient. Proc Natl Acad Sci
2014;111(9):3354–9.

3. Murrell B, Murrell D, Murrell H. R2-equitability is satisfiable.
Proc Natl Acad Sci 2014;111(21):E2160–E2160.

https://github.com/minepy/mictools
https://www.docker.com/
https://hub.docker.com/r/minepy/mictools/
https://github.com/minepy/mictools
http://ocean-microbiome.embl.de/companion.html


8 MIC tools

4. Reshef DN, Reshef YA, Mitzenmacher M, et al. Cleaning up
the record on the maximal information coefficient and equi-
tability. Proc Natl Acad Sci 2014;111(33):E3362–E3363.

5. Reshef YA, Reshef DN, Finucane HK, et al. Measuring
dependence powerfully and equitably. J Mach Learn Res
2016;17(212):1–63.

6. Reshef YA, Reshef DN, Sabeti PC, et al. Equitability, interval
estimation, and statistical power. arXiv preprint 2015 May.

7. Storey JD, Tibshirani R. Statistical significance for
genomewide studies. Proc Natl Acad Sci U S A 2003
Aug;100(16):9440–5.

8. Franceschi P, Giordan M, Wehrens R. Multiple comparisons
in mass-spectrometry-based -omics technologies. Trends
Analyt Chem 2013;50:11–21.

9. Simon N, Tibshirani R. Comment on “detecting novel asso-
ciations in large data sets” by Reshef Et Al, Science Dec 16,
2011. arXiv preprint arXiv:1401.7645 2014 Jan.

10. Reshef DN, Reshef YA, Sabeti PC, et al. An Empirical Study of
Leading Measures of Dependence. arXiv preprint 2015 May.

11. Albanese D, Filosi M, Visintainer R, et al. Minerva and
minepy: a C engine for the MINE suite and its R, Python and
MATLAB wrappers. Bioinformatics 2012;29(3):407–8.

12. Storey JD. A direct approach to false discovery rates. J R Stat
Soc Series B Stat Methodol 2002;64(3):479–98.

13. North BV, Curtis D, Sham PC. A note on the calculation of
empirical P values from Monte Carlo procedures. Am J Hum
Genet 2002;71(2):439–41.

14. Krzywinski M, Altman N. Points of significance: comparing
samples—part II. Nat Methods 2014;11(4):355–6.

15. Guyon I, Elisseeff A. An introduction to feature extraction. In:
Guyon I, Nikravesh M, Gunn S, Zadeh LA , editors. Feature Ex-
traction. Studies in Fuzziness and Soft Computing, vol. 207,

Berlin, Heidelberg: Springer; 2006.
16. Guyon I, Gunn S, Nikravesh M, et al. Feature Extraction:

Foundations and Applications, Berlin, Heidelberg. Springer;
2008.

17. Bork P, Bowler C, de Vargas C, et al. Tara Oceans. Tara Oceans
studies plankton at planetary scale. Introduction. Science
2015;348(6237):873.

18. Reshef D, Reshef Y, Mitzenmacher M, et al. Equitability Anal-
ysis of the Maximal Information Coefficient, with Compar-
isons. arXiv preprint arXiv:13016314 2013.

19. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
machine learning in Python. J Machine Learning Res
2011;12:2825–30.

20. Krzywinski M, Birol I, Jones SJM, et al. Hive plots–
rational approach to visualizing networks. Brief Bioinform
2012;13(5):627–44.

21. Logares R, Sunagawa S, Salazar G, et al. Metagenomic 16S
rDNA Illumina tags are a powerful alternative to amplicon
sequencing to explore diversity and structure of microbial
communities. Environ Microbiol 2014;16(9):2659–71.

22. Sunagawa S, Coelho LP, Chaffron S, et al. Ocean plankton.
Structure and function of the global ocean microbiome. Sci-
ence 2015;348(6237):1261359.

23. Best DJ, Roberts DE. Algorithm AS 89: the upper tail probabil-
ities of Spearman’s rho. Appl Stat 1975;24(3):377.

24. Seabold S, Perktold J. Statsmodels: Econometric and Statisti-
cal Modeling with Python; 2010.

25. Albanese, D; Riccadonna, S; Donati, C; Franceschi, P et al.
Supporting data for ”A practical tool for maximal informa-
tion coefficient analysis” GigaScience Database. http://dx.d
oi.org/10.5524/100427; 2018.

http://dx.doi.org/10.5524/100427

