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Abstract

Preliminary experiments at the NIST Spectral Tri-function Automated Reference Reflectometer 

(STARR) facility have been conducted with the goal of providing the diffuse optical properties of 

a solid reference standard with optical properties similar to human skin. Here, we describe an 

algorithm for determining the best-fit parameters and the statistical uncertainty associated with the 

measurement. The objective function is determined from the profile log likelihood, including both 

experimental and Monte Carlo uncertainties. Initially, the log likelihood is determined over a large 

parameter search box using a relatively small number of Monte Carlo samples such as 2·104. The 

search area is iteratively reduced to include the 99.9999% confidence region, while doubling the 

number of samples at each iteration until the experimental uncertainty dominates over the Monte 

Carlo uncertainty. Typically this occurs by 1.28·106 samples. The log likelihood is then fit to 

determine a 95% confidence ellipse.

The inverse problem requires the values of the log likelihood on many points. Our implementation 

uses importance sampling to calculate these points on a grid in an efficient manner. Ultimately, the 

time-to-solution is approximately six times the cost of a Monte Carlo simulation of the radiation 

transport problem for a single set of parameters with the largest number of photons required. The 

results are found to be 64 times faster than our implementation of Particle Swarm Optimization.

1. Introduction

The measurement of the scattering parameters of optical tissue phantoms has been underway 

since the late twentieth century. [1–3] Optical scattering for biological tissues has been 

reviewed recently. [4, 5] Various measurements techniques, in the time domain, [6, 7], in the 

frequency domain, [8, 9] in the spatial domain using either fiber-based [10, 11] or non-

contact [12, 13] techniques, and using one or two integrating spheres, [14–18] were used to 

measured the optical properties of liquid and solid phantoms.
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In the past decade, the need for optical tissue phantoms which mimic the properties of 

human skin has been a prominent issue. After polytetrafluoroethylene (PTFE) was found to 

have attenuation parameters far from human skin, [19] other reference phantoms were 

sought, including both solid [20] and liquid [21, 22] samples. Liquid phantoms mixing 

Intralipid, [23] a lipid solution of calibrated scatterers and India Ink as an absorber have 

been proposed as a reliable reference sample with accurate values of the reduced scattering 

coefficient μs′ and the absorption coefficient μa [7, 10, 24] and were used for inter-

comparison studies. [25] Intralipid is more economical than calibrated polystyrene micro-

spheres and hence is more practical for the production of large batches of liquid phantoms. 

However, solid phantoms are preferred since they are easier to disseminate and tend to be 

more stable in time. They typically use a base material such as polyurethane or 

polydimethylsiloxane (PDMS) with an added mixture of titanium dioxide (TiO2) powder or 

aluminum oxide (Al2O3) powder to match the desired scattering coefficient and an absorber 

such as India Ink, carbon black, carbon nanotubes, or 9096 dye to match the desired 

absorption coefficients. [20, 26, 27] Other materials such as polyvinyl chloride plastisol 

(PVCP) have been used for phantoms. [28]

As part of the National Institute of Standards and Technology’s (NIST) current effort to 

develop a reference measurement service for the optical properties of biomedical phantoms, 

[29] in this study we present measurements of solid biomedical phantoms manufactured by 

the Institut National d’Optique (INO, Quebec, Canada) using NIST’s Spectral Tri-function 

Automated Reference Reflectometer (STARR) goniometric instrument for measuring angle 

resolved scattering (ARS) functions in reflectance and transmittance. An inversion algorithm 

based on a Monte Carlo model is used to estimate the optical scattering parameters μa and μs 

and confidence regions from the measured ARS.

This paper focuses on the inversion algorithm including its time-to-solution and its ability to 

estimate the statistical uncertainty of the measurement. Issues of validity of the measurement 

and intercomparisons with other national metrological institutes will be the subject of future 

communications.

Recently, a algorithm based on Particle Swarm Optimization (PSO) for determining diffuse 

optical parameters in a different measurement geometry was presented. [30] Because of that 

work and the fact that PSO is a very widely used method today, [31] we implement PSO for 

comparison.

2. Measurements

2.1. Samples and physical measurements

The phantoms are polyurethane-based with added carbon black and TiO2 to match the 

nominal values of μa and μs′ at a wavelength specified below. The phantoms are square slabs 

with a nominal lateral dimension of 100 mm and present a specular face resulting from the 

surface tension while molding and a rough face resulting from machining to obtain a 

specified thickness. The phantoms were prepared from one batch of material, INO B0455, 

with nominal thicknesses of 6 mm, 8 mm and 10 mm and a nominal μa = 0.01 mm−1 and 
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μs′ = 1 mm−1 at λ = 800 nm. The actual thicknesses of the samples were measured with a 

dial gauge micrometer at nine locations on a 3×3 grid with a center point set near the center 

of the sample. The variance of the measured thickness sd
2 was combined with the uncertainty 

attributable the precision of the dial micrometer udial
2  to compute the combined uncertainty 

associated with thickness, ud
2 = sd

2 + udial
2 . In this paper we use coverage factor k = 2, unless 

noted. The measured thickness values t are 6.10±0.09 mm, 8.10±0.11 mm, and 10.12±0.06 

mm. These values are used in the simulation.

2.2. Index of refraction

A bench-top spectrophotometer equipped with an integrating sphere detector (Lambda 1050, 

Perkin-Elmer, Waltham, MA, USA) was used to measure the Fresnel reflectance from the 

specular face of the sample at an 8° incident angle by subtracting the diffuse reflectance 

measured with the specular port of the sphere open from the total diffuse reflectance 

measured with the specular port blocked (measurements corrected from the background 

signal). The Fresnel reflectance was measured from λ = 400 nm to λ = 1000 nm in steps of 

10 nm and using the Fresnel equation for unpolarized light at 8° incident angle, the index of 

refraction n of the sample bulk material was obtained. Measuring the composite material 

with Fresnel reflectance is consistent with the definition of the index of refraction in 

MCML. The values were fit to the Cauchy dispersion law between 450 nm and 850 nm 

yielding values for the index at λ = 543 nm, 632 nm, and 805 nm. The results are n805 = 

1.493 ± 0.010, n632 = 1.498 ± 0.011, and n543 = 1.502 ± 0.012. In arriving at these 

uncertainty estimates, the standard deviation was found among four measurements of the 

three samples (the 6 mm sample having been measured twice).

2.3. Angle-resolved scattering

Measurements of the angle-resolved scattering (ARS) functions were performed using 

NIST’s STARR, [32] a home-built instrument which serves as the national reference for 

spectral bidirectional reflectance measurements. The instrument also allows measurement of 

spectral bidirectional transmittance measurements. Measurements provided by STARR are 

absolute. Validation measurements were made prior to the experiments using a check 

standard composed of sintered polytetrafluoroethylene (PTFE). The results were found to be 

in the tolerance range. A schematic is shown in Fig. 1. Each sample was measured at three 

different wavelengths, λ = 543 nm, 632 nm, and 805 nm, at a polarization state either 

parallel or perpendicular to the plane of incidence. The measurements were averaged over 

polarization.

The radiant flux from the source (a quartz-tungsten-halogen lamp) is focused through an 

order-sorting filter and a shutter onto the entrance slit of a single-grating monochromator. 

The beam exits the monochromator and is collimated by an off-axis parabolic mirror. It then 

passes through a Glan-Taylor polarizer before passing through the sample goniometer. The 

beam is collected by the detector aperture, and is focused by a lens onto the detector 

(ultraviolet-enhanced silicon photodiode), which produces a signal proportional to the 

radiant flux. The translation and rotation stages of the goniometer enable the acquisition of 
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both reflected or transmitted and incident signals. The sample is positioned in the holder so 

that it is normal to the incident beam. The detector rotates around the sample to collect the 

reflected or transmitted signals at various viewing angles, which are in the same plane as the 

sample normal and the incident beam. The incident radiant flux is measured by positioning 

the detector in the incident light beam with the sample translated out of the beam.

The viewing angles, θν in reflectance and θν′  in transmittance, are about the axis of rotation 

which is the vertical axis Y. Below, we will report the transmittance angle by extending θν 
to cover the range 0° to 180°, using θν = π − θν′ . The data was collected with θν incremented 

from 5° to 180° in 5° steps, excluding θν = 90°.

The first surface of the sample coincides with the vertical plane defined by the X and Y axes. 

The distance between the first surface of the sample and the detector aperture is R = 669.8 

mm. The aperture has an area A = 796.7 mm2. The ARS is

ARS =
Ps

ΩPi
(1)

where Pi is the incident power measured by the detector when no sample is present and Ps is 

the power scattered from the area of the sample included in the detector field of view at 

angles within the solid angle defined by Ω = A/R2. This formula applies in both 

transmission and reflectance.

3. Theory

Although we are concerned with the measurement of particular scattering parameters, the 

general question of estimating parameters from experimental data is an inverse problem. In a 

typical inverse problem, there is a physical theory (known in engineering as a “forward 

model”) which gives predictions based on values of some input parameters. One varies the 

parameters to achieve a best fit under some criterion such as least-squares. Said differently, 

the parameters are chosen to maximize some objective function.

We follow this paradigm with a wrinkle: our predictions are based on a Monte-Carlo 

algorithm so the predictions come with an uncertainty which can be reduced for a price: 

additional Monte Carlo trials. With sufficient trials, we can approximate the exact 

predictions of the theory to any specified accuracy. However, the use of Monte Carlo to 

calculate optical properties has been considered to be impractical due to excessive 

computation time, [2, 10, 18, 33] although Monte Carlo methods have been used to 

determine the optical properties of tissues in the context of the double integrating sphere 

[34] and a homogeneous semi-infinite medium. [35] Other methods used to solve the inverse 

problem in optical scattering include Alerstam et al. [36] who use scaling methods, Chen et 
al. [37] who vary the parameters and keep random numbers constant to send photons on 

similar trajectories, and Kholodtsova et al. [30] who use Particle Swarm Optimization 

(PSO).
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We take advantage of the following circumstances: (a) the fits tend to get worse as the 

parameters become farther removed from their optimum values and (b) very bad parameters 

can be eliminated from consideration with relatively few Monte Carlo trials. Schematically, 

we will sample a few values from the full allowed search space for the parameters with a 

relatively small number of Monte Carlo trials. From the quality of the fits, we obtain a 

somewhat smaller search region. We increase the Monte Carlo trials and iterate the 

procedure. At some point, the experimental uncertainties are much greater than the Monte 

Carlo uncertainties and the iterations can stop. In the present case, we found 7 or 8 iterations 

were sufficient. The process is highly efficient: if we double the number of Monte Carlo 

trials at each stage, then half of the trials will be taken in the final stage because 

∑n = 0
N − 12n ≈ 2N.

We obtain an additional acceleration by using importance sampling to find our objective 

function, a profile log likelihood as explained below, on a grid of points for three times 

computational cost than obtaining the log likelihood for a single pair of parameters. Further 

computational speed is obtained by using a parallel random number generator SPRNG. [38, 

39]

3.1. The forward model: radiation transport with Monte Carlo

For our forward model, we re-implemented the MCML [40] code in C++. MCML is the de 
facto standard in the field of biomedical optics: the original paper has been cited over 1800 

times according to Web of Science. MCML is a computer program for Monte Carlo 

modeling of light transport in multilayer tissues. The material is assumed to be infinite in the 

x y plane and consists of a finite number of layers with surfaces orthogonal to the z axis. In 

our case, there is a single layer. Each layer is characterized by the following optical 

parameters: the index of refraction n, the absorption coefficient μa, the scattering coefficient 

μs, and the anisotropy factor g. For reference, g is the parameter in the Henyey-Greenstein 

scattering function [41]

pHG(θ; g) = 1 − g2

2(1 + g2 − 2g cos θ)3/2 , (2)

where θ is the scattering angle and pHG(θ) is a probability distribution. We often compute 

using the transformed variables μt = μa + μs and ηa = μa/μt.

We rely on an earlier determination of the scattering anisotropy factor g = 0.621 ± 0.015 (k = 

1) at 660 nm, measured in the single scattering regime. [20] We neglect dispersion in the 

anisotropy factor. We find that varying g and μs such that μs′ = μs(1 − g) is constant leads to 

no discernible change when g is varied between 0.521 and 0.721 which is a k = 6.7 

expanded uncertainty.

The program models the light particles as being unpolarized and incoherent. When photons 

encounter boundaries, whether internal or external, they are transmitted or reflected 

according to the Fresnel reflectance and transmittance formulas. Absorption is modeled 
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through deweighting the particle for the absorption in the layer it is traveling through. 

Scattering is modeled through Monte Carlo sampling. Refraction according to Snell’s law is 

also included.

In MCML, particles leaving either the front or back surface are scored according to their 

direction of travel. In our implementation, after exit, we trace particles into annular bins 

located at a finite radius which represent the detector. If the photon is traveling through air in 

the direction ν̂ from position r⃗0 inside a circle of radius R, its line of travel is described by

r = αν + r 0 (3)

where α is the directed distance. The intersection of the line in Eq. (3) with a circle of radius 

R occurs at

α = − ν0· r 0 + [(ν0· r 0)2 + R2 − r0
2]

1/2
(4)

which is positive for R > r0. Physically, this is true because the sample is smaller than the 

distance to the detector. Eq. (3) and Eq. (4) together give the point on the detector; an 

annular bin can be found through the arc tangent function.

3.2. The objective function: profile log likelihood

Because we are interested in both best-fit values (called “point-estimates” in the field of 

statistics) and confidence regions, we employ a likelihood-based algorithm. We assume that 

the uncertainty in each measurement is unknown, but equal. This allows us to handle the 

nuisance parameters associated with measurement uncertainty and Monte Carlo error using 

the profile log likelihood. [42] We prefer the ARS to the bidirectional reflectance and 

transmittance distribution (BRDF and BTDF) functions, which provide equivalent 

information, because the ARS comes closer to obeying the equal uncertainty condition.

Our likelihood model is given somewhat abstractly next. Let yi be the measurements, 

indexed from i = 1 to N. In our case, these are the reflectance or transmittance measurements 

at a given angle. Let Θ be a list of parameters of length ν to vary (such as μa and μs, leading 

to ν = 2, with fixed parameters such as the thickness t, the index of refraction n, and the 

anisotropy scattering parameter g implicit) and let α̂
i (Θ; Nphot) be a particular prediction 

from the Monte Carlo code. For the ith measurement using Nphot photons. The Strong Law 

of Large Numbers applies here so that α̂
i (Θ; Nphot) converges to a constant, αi (Θ), as Nphot 

grows large. We model this process as

yi = αi(Θ) + εi

αi(Θ) = αi(Θ) + δi (5)
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where εi and δi are independent mean zero normal deviates with variance σε
2 and σδ

2, 

respectively. Here, εi describes the measurement error and δi describes the Monte Carlo 

error.

The above implies that

yi − αi(Θ) Normal(0, σε
2 + σδ

2) . (6)

Letting the variance V = σε
2 + σδ

2, the log likelihood is

ℓ(Θ, μs′, V) = − N
2 log(2π) − N

2 log(V) − 1
2V ∑

i = 1

N
[yi − αi(Θ)]2 (7)

using natural logarithms. Since V is a nuisance parameter, it is profiled (or optimized) out of 

the log likelihood. Taking the derivative with respect to V, setting the derivative to zero, and 

solving for V gives

V = 1
N ∑

i = 1

N
[yi − αi(Θ)]2, (8)

i.e., the mean square difference of the measurements and the Monte Carlo predictions. 

Plugging the optimized value for V back into ℓ gives

ℓP(μa, μs′ = − N
2 log  1

N ∑
i = 1

N
[yi − αi(Θ)]2 + log(2π) + 1 . (9)

An approximate confidence region is obtained by finding all values of x⃗ such that

ℓP( x mle) − ℓP( x ) ≤ 1
2(χν

2)−1(p) (10)

where (χν
2)−1(p) is the inverse of the χ2 cumulative distribution function with ν degrees of 

freedom, and p is a confidence level such as 0.95 [43].

3.3. The optimization algorithm: iterative refinement guided by confidence regions

The profile log likelihood yields confidence regions that include contributions of uncertainty 

from both Monte Carlo and fixed errors (namely, measurement error and model mismatch). 

In a baseline algorithm, we would use a large number of Monte Carlo runs so that the 

uncertainty attributable to the fixed errors dominate. However, to do that across a large set of 
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points in the (μa, μs) plane, requires a considerable amount of computation, as evidenced by 

its implementation on graphics processing units (GPUs). [44]

However, as discussed above, here we double the number of Monte Carlo samples at each 

iteration which will lower the Monte Carlo contribution to the uncertainty. Eq. (9) can be 

used to shrink the search region at each iteration.

In our implementation, we start with 2 · 104 Monte Carlo samples and double this value at 

each iteration, typically to a maximum value of 1.28 · 106. shrinking the search space each 

time. We shrink the search space by excluding any points outside of a 99.9999% confidence 

region. We also impose an ad hoc rule that the search space will never shrink by more than a 

factor of 2 at any given iteration. In practice, this rule comes into effect only in the first 

couple of iterations.

3.3.1. Importance Sampling—A major difference between the forward problem and the 

inverse problem is that we require the solution to the forward problem on a grid of points to 

perform the inverse problem. Here, we use importance sampling to produce predictions for a 

grid of points in our parameter space with one set of random numbers. Importance sampling 

dates back several decades, but its early use was as a variance reduction technique. [45] The 

idea has strong antecedents even in the field of optical scattering. Graaff et al. [35] varied the 

single-scattering albedo (1 − ηa in our notation) analytically to produce results for several 

values without rerunning the Monte Carlo simulation. Sassaroli et al. [46] extended the 

weighting procedure to scattering events. Hayakawa et al. [47, 48] used the technique in 

perturbative Monte Carlo (pMC) to values for alternative parameters as well as differential 

Monte Carlo (dMC) to produce derivative of objective functions. They implement the 

technique for inverse problems in one variable.

In our code, we follow the MCML code [40] in using the variables of (a) the inverse of the 

mean interaction length μt = μs + μa, where μs
−1 is the mean scattering length and μa

−1 is the 

mean absorption length and (b) the absorption fraction ηa = μa/μt. At each iteration, we 

specify a rectangular box in (μt, ηa) to search for the optimum parameters. The profile log 

likelihood is found for all of the points on a grid in the box. During propagation phase, 

weighting factors are assigned to each property separately for several uniformly spaced 

values. At the end, the weights are multiplied together to form a grid of predictions, all of 

which are scored. Although we need to make the grid for each photon, the amount of 

computation at for each event (whether it is scattering, propagation, or a boundary event) is 

linear in the number of grid lines in a given dimension, so a computation on the full grid 

occurs only once for each photon. The weighting factors are given in Table 1.

In the case of a path which reaches a boundary, the weighting factor for the arrival at the 

boundary applies in lieu of the weighting factor for the propagation in the medium. The 

CDF is used for arrival at the boundary because the probability of doing so is the integral of 

the probability of stopping at any distance greater than or equal to ℓ in a hypothetical 

extended medium which includes the region past the physical boundary.
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Our implementation is in C++ using OpenMP and SPRNG. [38, 39] Software will be 

available shortly, including, separately, a stand-alone parallel version of the MCML code 

and the inverse code for a single layer. [49]

We do not make use of importance sampling for the anisotropy parameter or the index of 

refraction, but we include the formulas in Table 1 because they fit in the scheme proposed 

here, wherein a given photon travels on the same path, but has a different weight. 

Importance sampling for n is slightly more complicated because the direction of the 

outgoing photon depends on n. Hence, an implementation varying n would need to flexibly 

adjust the angular range of each detector bin. It would be necessary to use the smallest value 

of n as the reference value because of the total internal reflection phenomenon.

Because the variables μt, ηa, g, and n are sampled independently from each other, it is 

possible to accumulate information on varying each with an amount of computational effort 

which is linear in the number of points of each quantity required. However, we can produce 

a full grid of weights at the end of each photon run. We emphasize that the weights on the 

grid do not need to exist at each scattering event, merely at the end of each photon’s path.

The algorithm is summarized in Table 2.

3.3.2. Verification with Ground Truth—The profile log likelihood method takes into 

account both Monte Carlo uncertainty and experimental uncertainty. For this test, we use the 

forward model to generate simulated experimental data. For the results shown in Fig. 2, the 

forward model exactly matches the inverse model so the “experimental” uncertainty is 

entirely due to the finite number of Monte Carlo samples in preparing the “experimental” 

data. When the number of Monte Carlo trials used to determine the best fit parameters 

increases from a small number to a large number we expect the bounding box will shrink at 

first; subsequently, when the number of Monte Carlo trials in the inverse increases past the 

number used to simulate the experimental data, then the size of the bounding box will 

asymptote to some value determined by the noise in the experiment. Additionally, we expect 

that the bounding boxes for less noisy “experimental” data will be smaller than those for 

more noisy data. All of these features are seen in Fig. 2, and the cross-over occurs when the 

number of photons used for the inverse problem equals the number used in simulating the 

data.

3.3.3. Profile Log Likelihood Optimization—We illustrate the log likelihood surfaces 

for the inverse problem with the experimental data of λ = 805 nm and t = 10.12 mm. At the 

final iteration, we find the maximum log likelihood value among those calculated on the grid 

and fit points in a 3×3 neighborhood centered on that point to a quadratic. The fit is seen to 

be excellent, as illustrated in Fig. 3.

The set of points for the quadratic fit are in the center of the likelihood surfaces, shown in 

Fig. 4. Although the quadratic fit is good near the top, over the full region, the quadratic 

surface falls off more quickly than the actual likelihood calculated with importance 

sampling.
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The smoothness of the surface generated by importance sampling eases the process of 

finding a quadratic fit to the maximum. For comparison, a log likelihood surface formed 

using our algorithm with the exception that the log likelihood is evaluated independently at 

each grid point rather than using importance sampling, as shown in Fig. 5.

3.4. Comparison Algorithm: Particle Swarm Optimization

The PSO update equations are

V i + i = wiV i + c1ℛ1(Xcl
(opt) − Xi) + c2ℛ2(Xgl

(opt) − Xi) (11)

Xi + i = Xi + V i + 1 (12)

where i is the 0-based iteration number, Xi is the position of a particle at iteration i (the 

particle index is suppressed), Vi is the “velocity” (or step size) of the particle, Xcl
(opt) is the 

best position achieved up to and including iteration i for any particle in the cluster of a 

particle, Xgl
(opt) is the best position achieved up to and including iteration i for any particle in 

any cluster, ℛ1 and ℛ2 are two uniform random deviates on [0, 1), and c1 = 0.2 and c2 = 0.8 

are constants, following Ref. [30]. We also follow the reference in varying the weight wi 

linearly from 0.9 at iteration 0 to 0.5 at iteration 10 with the value remaining constant 

thereafter. We operate in the space of the logarithm of μa and μs. The 27 points are initially 

spread out in 9 clusters populating a grid from 0.001 mm−1 ≤ μa ≤ 0.007 mm−1 and 1 mm−1 

≤ μs ≤ 4 mm−1. Within each cluster, the search space is temporarily scaled to the unit square, 

then the points are arranged on a circle with 120° spaces and a radius of 0.05. The particles 

are not required to remain in the original bounding box. Part of the motivation for working 

in the space of the logarithm is to ensure μa > 0 and μs > 0 throughout the process.

The log likelihood surface found during Particle Swarm Optimization is shown in Fig. 6. 

Although there is a clear maximal region shown in the graph, there is a large amount of 

variation in the log likelihood calculated by the various points. The region shown in Fig. 6 is 

many, many times the size of that shown in Fig. 5.

To illustrate how the swarm of particles converges, in Fig. 7 we plot the convex hull of the 

points at each iteration, starting from the iteration 1 (which is not the initial position, 

iteration 0), through iteration 17 at which point the size of the swarm has substantially 

stabilized. The shrinking of the regions is evident, as is the “swarm” nature of many points 

testing one side of the ultimate optimum or another as they home in on the best value.

4. Comparison to Experiment

Going forward, all results refer to our importance sampling algorithm unless stated. The 

angle-resolved scatter is show in Fig. 8. Although the pattern of the angle-resolved scatter 
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for the three wavelengths shown is quite similar, it is clear that the predictions are 

sufficiently different to clearly distinguish them.

This point is illustrated more formally in Fig. 9 where we present our point estimates and 

confidence regions for the 9 samples. In principle, we expect the values of the scattering 

parameters to be the same as the thickness is varied. This is not quite true, suggesting an 

unresolved material preparation or other experimental issue at the level of about 3%. In this 

paper, we treat the experimental results as given, hence the discussion is restricted to the 

statistical precision which the algorithm can achieve with real data. It is notable that the full 

set of results in Fig. 9 was generated with about 10 minutes of computer time on a modest 4 

processor desktop.

The effect of varying the random seed is shown in Fig. 10. The variation in the choice of the 

seed is smaller than the effect of varying the wavelength experimentally. Moreover, each of 

the five solutions for each of three experimental conditions lies in the 95% confidence 

intervals of each of the other solutions.

As noted above when presenting Eq. (3) and Eq. (4), we keep track of the finite radius of the 

source to the detector. As shown in Fig. 11, this proves to be about a 1% effect. This effect is 

small enough to be neglected in most cases, but large enough to be included in standards 

work.

Although we do not formally include the thickness t or the index of refraction n in our log 

likelihood, nevertheless we may see their effects through a sensitivity analysis, shown in Fig. 

12. The effects of the uncertainty in the thickness and index of refraction are comparable to 

other measurement uncertainties in the problem.

The uncertainty in thickness cannot resolve the discrepancy between the samples with 

nominal thicknesses of 6 mm and 10 mm because it does not bring the uncertainty regions 

closer together. The uncertainty in the index of refraction could resolve the discrepancy, 

although it is at least as likely that there is a small difference in properties between the 

samples or other factors are in play.

5. Computational Issues

5.1. Range of Validity

As mentioned in the introduction, the experimental program has been centered on obtaining 

medical phantoms with scattering properties comparable to that of human skin. One question 

is whether the method proposed here is particularly specialized to that range of parameters, 

and, in particular, whether it can be extended into the single-scatter regime.

In Fig. 13, we show the effect of varying μs from 0.1875 mm−1 to 3 mm−1 in steps of a 

factor of 2. as well as taking μa to be 0.003 mm−1 and 0.010 mm−1. The results show that the 

program is capable of tracking the ground truth over this range. The probability of passing 

directly through the detector is 0.32 for the longest scattering length considered, which 

approaches the single-scatter regime. As a large number of photons accumulate in the 
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unscattered bin, the assumption of equal noise for each bin becomes increasingly doubtful, 

suggesting our likelihood model would need to be refined.

5.2. Timing

Because this paper is principally about algorithms, we close with the timing comparison of 

our method to some alternatives given in Table 3. First, considering the forward model, our 

implementation is comparable in speed to the benchmark MCML code. Our lower reported 

number does not necessarily reflect any improvement because of small differences in 

implementations. For example, MCML uses particle splitting during the Fresnel reflection/

transmission event whereas we simply pick one alternative. By implementing OpenMP 

(OMP) for our algorithm, allowing the use of parallel random number generation, we gain a 

factor of 2.5 with 4 processors. Finally, we are able to predict the results on a 15 × 17 grid in 

ηa, μt at a cost of a factor of 3.0 compared to predicting on a single point.

Turning to the inverse problem, our solution takes 1.9 times as long as the forward problem, 

in line with our estimate given earlier that the total time-to-solution comparing the full 

problem to the evaluation on the last grid. Although we have 7 iterations, the number of 

photons used in the earlier iterations doubles, so half the time is spent on the final iteration. 

Operations other than Monte Carlo sampling take a negligible amount of time. Because the 

time-to-solution is dominated by the Monte Carlo sampling, the explicit grid method for the 

inverse problem is also estimated to take about 70 times longer than the importance 

sampling method.

Particle Swarm Optimization requires about the same number of Monte Carlo samples 

evaluations as the explicit grid method, and hence the time is comparable. the importance 

sampling method is 64 times faster than Particle Swarm Optimization which is a key result 

of this manuscript.

6. Conclusions

On the experimental side, we demonstrate that the STARR is capable of delivering 

measurements which contribute about 2% to the uncertainty of measurement of the optical 

scattering parameters μa and μs. Such precision may be compared, to uncertainties of 0.5% 

for μa and 1.5% for μs′ were reported using a time-dependent method, [7] about 2% using a 

CW method with several optical fibers receiving scattered photons, [10] and 3% using a 

combination of broad-band and steady-state reflectance methods. [8] Uncertainties 

associated with the Inverse Adding Doubling method [15] have been reported recently to be 

10% or more for human tissue phantoms. [17, 18]

Although STARR integrates over a much smaller solid angle than an integrating sphere 

measurement would, it provides a more detailed view of the angular distribution. The low-

noise results allow a reasonably fine discrimination between values of (μa, μs) even though 

the detector subtends a modest solid angle. We emphasize that the 2% uncertainty represents 

only part of the uncertainty budget, and factors such as surface roughness, form errors, 

polarization, uncertainty in parameters such as t, g, and n are not included in the analysis of 

this paper, except to the extent that the effect of uncertainty in n and t was addressed by a 
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sensitivity analysis. We demonstrated that the effect of sample thickness and finite detector 

radius is at the level of 1% or less.

Algorithmically, we combine several ideas into a rapid computer program. First, we take the 

log likelihood to be our object function. We use this two ways: (a) as a guide for shrinking 

the search region, providing a principled method for discarding ranges of parameters, and 

(b) to produce not only maximum likelihood estimates but confidence regions as well. 

Second, we increase the number of Monte Carlo samples by factors of two as the search 

region shrinks. Thus we take advantage of the fact that some parameters in a large search 

region are bad enough to be ruled out with relatively few Monte Carlo trials. By doubling 

the number of Monte Carlo samples at each iteration, fully half of the trials occur on the 

final iteration where we make our likelihood predictions. Third, we take advantage of the 

cylindrical symmetry of the problem so that every photon which leaves the sample is scored 

in the detector. Fourth, we use a parallel random number generator to permit parallel 

processing. Fifth, we use importance sampling to make predictions not only at a single point, 

but over a whole grid of values. In a related point, we work with variables which are related 

by independent probability distributions, so the computational cost at each interaction is 

linear in the number of possibilities in 1D although score each photon on a 2D grid. The 

principle would hold with a multi-layer structure or if other parameters such as g and n were 

varied.

Using all of these techniques, we can create a 15×17 grid with 255 evaluated points at a 

computational cost of 3 standard Monte Carlo evaluations and we can solve an inverse 

problem at 6 times the cost of evaluating the forward problem at a single point. Through this 

combination of ideas, we are able to implement a program to solve the inverse problem of 

optical parameter estimation in single layers in 75 seconds on a desktop computer—fast 

enough to create real-time solutions in experimental laboratories.
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Fig. 1. 
Experimental schematic for the ARS measurements. Here, R is distance between the sample 

first face and the detector aperture θν is the viewing angle in reflectance, θν′  is the viewing 

angle in transmittance, and t is the thickness of the sample.
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Fig. 2. 
Search boxes for three trials with simulated data. The bounds of the search box relative to 

the exact answer are shown: (a) upper bound for μt, (b) upper bound for ηa, (c) lower bound 

for μt, and (d) lower bound for ηa. The blue, green, and red curves correspond to simulated 

data created with 2 · 105, 2 · 106, and 2 · 107, photons respectively, as indicated by the 

vertical arrows. The value Nphot corresponds to the number of photons used in each of 12 

iterations, starting from 2 · 104 and doubling 11 times to 4.096 · 107. The simulation used 

the parameters μs
(0) = 3 mm−1 and μa

(0) = 0.01 mm−1 corresponding to μt
(0) = 3.01 mm−1 and 

ηa
(0) = 0.003322 mm−1, thickness t = 4.76 mm, index of refraction n = 1.487, and asymmetry 

parameter g = 0.621.
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Fig. 3. 
The quadratic approximation to the likelihood surface is obtained from a fit to the 

importance sampling results on a 3×3 grid including the maximum likelihood point found on 

the grid.
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Fig. 4. 
The log likelihood surface ℓ as calculated by the importance sampling method is shown in 

green tones. The quadratic approximation to the same surface is shown in peach tones. The 

small patch at the top of the graph is the context for the whole surface shown in Fig. 3.
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Fig. 5. 
Log likelihood surface as calculated by the explicit grid method. The region shown was 

calculated with 2.56 · 106 photons per grid point with the region selected on the eighth 

iteration building up from 2 · 104 photons per grid point over a much larger region.
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Fig. 6. 
Log likelihood surface as calculated by the Particle Swarm Optimization. Each point was 

calculated with 1.28 · 106 photons. All of the points evaluated at any iteration are shown. A 

constant number of photons is used at every iteration.
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Fig. 7. 
The convergence of the Particle Swarm Optimization algorithm is illustrated in this figure. 

Each region in the convex hull of the points in the swarm at a given iteration. The first 

iteration is purple and is placed at the bottom of the stack. Higher iterations are places upon 

it with the color tending toward yellow. Iterations fifteen and higher are represented in the 

same color yellow. The variables are plotted in the natural logarithm because the PSO 

operates in this space.
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Fig. 8. 
Angle-resolved scatter is given for three wavelengths, 543 nm (green), 632 nm (orange), and 

805 nm (black) for the sample with a thickness t = 6.10 mm. The values of μa and μs are 

shown in Fig. 9. Experimental points are given as dots. For convenience, the value of 0 was 

assigned to the measurement at 90°. The solid line is the prediction at the best fit found by 

the profile log likelihood importance sampling algorithm.
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Fig. 9. 
Point estimates and 95% confidence regions for 9 measured samples. The wavelengths are 

indicated, and the sample thickness is 6.10 mm (red), 8.10 mm (blue), and 10.12 mm 

(black).
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Fig. 10. 
Effect of the choice of the random seed is shown. The point estimates and 95% confidence 

regions shown with solid red circles and solid red lines are replotted from Fig. 9 for the 

sample thickness 6.10 mm. The hollow red circles and black lines represent other solutions 

which differ only in the seed of the random number generator.

Levine et al. Page 26

Opt Express. Author manuscript; available in PMC 2018 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 11. 
The effect of the finite detector radius is shown. Pairs of results are generated with the same 

seed for for λ = 543 nm, 632 nm, and 805 nm with the detector at a finite radius (solid 

circles and 95% confidence contours) and at an effectively infinite radius (hollow circles and 

dashed contours). The results are given for samples of two thicknesses, 6.10 mm and 10.12 

mm as marked in the figure.
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Fig. 12. 
The effect of changing the thickness and the index of refraction is given for a wavelength of 

805 nm. The red and black symbols refer to the sample with a thicknesses of 6.10 mm and 

10.12 mm, respectively. The solid dots and ellipses are carried over from Fig. 11. The solid 

and dashed arrows describe calculations with the the index of refraction and the sample 

thickness respectively changed at the k = 2 level as quoted in the text. The tails of the arrows 

represent lowering the central value at the k = 2 level and the heads of the arrows represent 

raising the central value at the k = 2 level. The shaft of the arrow is a guide to the eye.
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Fig. 13. 
Comparison of maximum likelihood estimates (large green circles) with ground truth (small 

red circles) for several values of μa and μs with fixed parameters g = 0.621, t = 6.10 mm, and 

n = 1.5. The ground truth was created with the forward program using 212 · 104 = 40 960 

000 photons, vs. 27 · 104 = 1 280 000 photons in the final round for the inverse problem.
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Table 1

Importance sampling weighting factors for various processes, based on the probability density function (PDF) 

or its integral, the cumulative density function (CDF). The superscript (0) refers to a reference value which is 

sampled with Monte Carlo. Note that all weights are 1 for the reference value. Here, ℓ is a distance a particle 

propagates in the medium whether it stops in the interior or at the boundary.

Process Weight Distribution Ref.

absorption
(1 − ηa)/(1 − ηa

(0))
PDF [35, 46, 47]

propagation in medium
μt

μt
(0)exp[ − μt − μt

(0))ℓ]
PDF [46, 47]

arrival at boundary
exp[ − μt − μt

(0))ℓ]
CDF

scattering angle pHG (θ; g)/pHG(θ; g(0)) PDF

boundary transmission or reflection
PT /PT

(0) or PR/PR
(0) Discrete
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Table 2

High-level flowcharts for importance-sampling-based inverse Monte Carlo algorithm for the determination of 

optical parameters. [49] The variables are defined in the text. Without the vector of weights, the forward model 

is very close to that of MCML. [40]

Forward model

Input n, t, g, R, μt
(0), list of μt, list of ηa, and Nphot.

Propagate each photon. Each photon carries a vector of weights for each value of μt and ηa.

Adjust weights for path length. After the path length is chosen from the exponential distribution with, parameter μt
(0), corresponding weights 

for all μt are updated.

Adjust weights for attenuation. At scattering event, the weights are adjusted according to ηa.

Detect each photon. Increment a grid of scored photons by the outer product of the lists of weights for the current photon.

After all photons are run, normalize to find ARS on a grid.

Inverse algorithm

Iterate changing Nphot which is doubled at each iteration.

Use forward model to find ARS curves on a grid of μt, ηa.

Find profile log likelihood for each grid point.

Reduce search box by eliminating any value for which the complete row or column is below the 99.9999% confidence limit.

After iterations are complete, fit profile log likelihood to a paraboloid. The arg max of the paraboliod is the maximum likelihood estimate. A 
contour corresponding to a 95% confidence is presented as the uncertainty region.
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