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Nipah virus is a zoonotic virus harbored by bats and lethal 
to humans. Bat-to-human spillovers occur every winter in 
Bangladesh. However, there is significant heterogeneity in the 
number of spillovers detected by district and year that remains 
unexplained. We analyzed data from all 57 spillovers during 
2007–2013 and found that temperature differences explained 
36% of the year-to-year variation in the total number of spill-
overs each winter and that distance to surveillance hospitals 
explained 45% of spatial heterogeneity. Interventions to prevent 
human infections may be most important during colder win-
ters. Further work is needed to understand how dynamics of bat 
infections explains spillover risk.
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Nipah virus (NiV) is a bat-borne virus, lethal in humans, first 
identified in Malaysia in 1998 [1]. Pteropus bats are the natural 
reservoir host [2]. Since 2001, outbreaks have been observed 
nearly every year with mortality >70% [3]. In contrast to the 
Malaysian outbreak, where exposure to infected pigs was key, in 
Bangladesh the 2 major risk factors are person-to-person con-
tact with a case and consumption of raw date palm sap [3–5]. 
Bats contaminate date palm sap by licking sap as it is collected 
in pots hanging in trees overnight [6]. Sap is typically collected 
early in the morning and sold and consumed within hours be-
fore it ferments [6]. Both human sap consumption and spillover 
events occur during the cooler and drier winter months [7].

Pteropus bats are found throughout Bangladesh [8]. However, 
spillovers are concentrated in the central and northwest region 

of the country. Bangladeshi villages where outbreaks have been 
observed are different from other communities in primarily one 
way: they have a higher proportion of residents who report drink-
ing fresh date palm sap [8]. However, there are presumably many 
villages with relatively high date palm sap consumption, and we 
do not understand why outbreaks have been observed in some vil-
lages but not others. In addition, these community-level behaviors 
do not explain year-to-year variation in the number of outbreaks 
that are detected [3]. Weather, in particular, temperature and pre-
cipitation, may help determine some of these geographic and tem-
poral differences. For example, we know that communities prefer 
to collect sap when the weather is coolest and the sap is sweet 
[7], so risk behavior could increase during colder winters. Since 
precipitation could spoil the sap being collected in open pots, 
increased precipitation could the reduce risk. In addition, NiV has 
been shown to survive longer in fruit juice at lower temperatures, 
suggesting that it may also survive longer in date palm sap at lower 
temperatures [9, 10]. Further, surveillance for NiV cases is cen-
tered on a network of 3 surveillance hospitals. Cases occurring 
farther away from surveillance hospitals may remain undetected 
[11]. The objective of this study was to describe the timing and 
location of observed spillover events in Bangladesh from a 7-year 
period (2007–2013) and to understand the factors associated with 
the risk of spillover over space and time.

METHODS

Spillover Events

In Bangladesh, cases have been identified through case-based 
surveillance at 3 tertiary care hospitals [12] since 2006 or 
through surveillance of media reports [13]. Most NiV infec-
tions cause severe disease with neurological symptoms [14]. 
All cases that present to surveillance hospitals with fever and 
signs of neurological illness during December through March 
are tested using an immunoglobulin M enzyme-linked immu-
nosorbent assay to confirm NiV infection. Year-round surveil-
lance of media reports for outbreaks covers all regions of the 
country. We defined a spillover event as the occurrence of the 
index case in every outbreak detected (ie, those presumably 
infected through contaminated date palm sap and not through 
person-to-person contact).

Our objective was to look at variation within the area where 
spillovers occur, so we restricted our analysis to districts where 
at least 1 spillover event was identified, as well as the districts 
located in between spillover districts, when the spillover dis-
tricts were not contiguous (ie, the Nipah belt; Figure 1A). One 
case, in a resident of Dhaka, was excluded because it was linked 
to date palm sap acquired from elsewhere. Rural population 
estimates for each district were obtained from the 2011 census.

B R I E F  R E P O R T

© The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society 
of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DOI: 10.1093/infdis/jiy015

Received 16 June 2017; editorial decision 8 January 2018; accepted 15 January 2018;  
published online January 17, 2018.

aJoint senior authors
Correspondence: H. Salje, MSc, MHS, PhD, Institut Pasteur, Paris, France (henrik.salje@pasteur.fr).

XX

XXXX

STANDARD

The Journal of Infectious Diseases®    2018;217:1390–4



BRIEF REPORT  •  JID  2018:217 (1 May)  •  1391

Weather and Date Palm Tree Data

We obtained the mean temperature over 3-hour periods and 
daily rainfall data for 8 districts within the Nipah belt from 
2007 to 2013 from the Bangladesh Meteorological Department. 
We estimated the mean temperature and precipitation for each 
week and month for each district. For each week, we also calcu-
lated the average daily minimum and maximum temperatures. 
For the 19 districts for which we did not have weather data 
available, we used data from the nearest district for which data 
were available. Because the number of date palm trees may also 
be an important driver of spillovers, we obtained counts of the 
number of date palm sap trees by district from the Bangladesh 
Bureau of Statistics.

Statistical Analysis

We used logistic regression to explore the factors associated 
with observing at least 1 spillover event for each district-week 
between 2007 and 2013. We fit a series of univariable logistic 
regression models in terms of explanatory factors that differed 
spatially (ie, rural population size, total number of date palm 
trees, and distance between the district’s centroid and the near-
est surveillance hospital) and weather patterns that differed in 
both space and time (ie, temperature [mean, minimum, and 
maximum] and precipitation [mean, minimum, and maxi-
mum]). This approach allowed us to separately explore factors 
associated with the spatial heterogeneity and factors associated 

with temporal heterogeneity in spillover risk. Further, since the 
period of incubation for infection in humans is approximately 
7–10 days [12, 14], for the explanatory variables that changed 
over time (ie, precipitation and temperature), we considered 
models that used values from the week before the illness onset 
of the index case, as well as models that used values from the 
same week of illness onset. We fitted polynomial splines for 
each model up to order 4 and selected the form with the lowest 
Akaike information criterion (AIC) as the best model.

Ethical Approval

Data used for this analysis were collected by studies approved 
by the ethical review board at icddr,b. All personal identifying 
information was delinked from the data before use.

RESULTS

Between January 2007 and December 2013, there were 57 
spillovers detected in 20 different districts. Some districts only 
identified 1 spillover, while up to 7 spillovers were detected in 
others (Supplementary Figure 1). The number of spillover events 
detected each winter varied considerably. During the winter of 
2008–2009, there were only 2 spillovers detected, but in the 
winter spanning 2012–2013 there were 18 (Supplementary 
Figure 1). January, when 40% of the spillover events occurred, 
was the month with the lowest mean temperature during every 
year of the study (Figure 1B and 1C).
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Figure 1.  A, District map of Bangladesh. B, Proportion of all observed spillover events by month. C and D, Monthly mean minimum temperature (C) and mean precipitation 
(D) for 10 districts, averaged for each month during 2007–2013.
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Explaining Heterogeneities Across Districts

Temperature and precipitation were consistent across districts 
within any given month (Supplementary Figure 2). Across the 
8 districts where climate data were available, there was an aver-
age standard deviation of only 0.6°C in mean weekly tempera-
tures and an average standard deviation of 2.9 mm in weekly 
rainfall. These small differences in minimum temperature were 
not able to explain heterogeneities in the number of spillover 
events across districts (correlation,  −0.33; P  =  .1; Figure  2A). 
Each 10-fold increase in the estimated number of date palm 
trees was associated with a 1.8-fold increase (95% confidence 
interval [CI], 1.1–2.9) in the odds of detecting a spillover 
event (Supplementary Table 1). The number of date palm trees 
explained only 8% of the variance in the number of spillover 
events (correlation,  0.28; P  =  .2). Each 10-km increase in the 
distance from a surveillance hospital was associated with a 0.78 
reduction in the odds of detecting a spillover event (95% CI, 
.70–.87). The distance from the nearest surveillance hospital 
explained 45% of the variance in the number of spillover events 
per district (correlation, 0.67; P <  .001; Figure 2B). Including 
the number of date palm trees per district in addition to the 
distance to a surveillance hospital in the same model did not 
improve model performance (P = .26, by the χ2 test). The size of 
the rural population in each district was not associated with the 
probability of a spillover (Supplementary Table 1).

Explaining Heterogeneities in Spillover Risk Across Time

Low precipitation and low temperatures within any district-week 
were both strongly associated with an increased risk of a spill-
over event. Further, temperature and precipitation in the week 
prior to the spillover event were better predictors of events than 
temperature and precipitation during the week of the event, with 
AIC differences of 23 and 1, respectively (AIC differences of >10 

are typically used as evidence of strong support of one model 
over another; Supplementary Table  1). Of all the weather fac-
tors considered, the minimum temperature in the week before 
a spillover event had the best model fit. We used this variable 
to predict the number of spillover events each year (Figure 2C). 
The observed and estimated number of spillover events were sig-
nificantly correlated (correlation, 0.81; P = .03), and the model 
explained 36% of the variance in the number of spillover events 
per year.

Discussion

Understanding the drivers of heterogeneity in NiV spillovers in space 
and time may help optimize control efforts. We analyzed the spatio-
temporal location of all spillovers over a 7-year period in Bangladesh. 
We found that small changes in temperature were highly correlated 
with differences in the probability of detecting a spillover. These tem-
perature effects explained some of the differences in the number of 
outbreaks detected between years, with more outbreaks occurring 
in cooler years. These findings suggest that low temperatures are not 
simply a marker of winter, when date palm sap consumption occurs, 
but that small differences in temperature during this period result 
in differences in spillover risk. Mechanisms that could explain this 
observation include improved viral survivorship at colder tempera-
tures [9] or increased sap harvest in colder winters; there is evidence 
of year-to-year differences in human sap consumption, although the 
cause is poorly understood [15]. Future studies that monitor changes 
in sap consumption over time are needed to help disentangle the 
contribution of these factors. While our models captured the rank 
order of the yearly number of spillover events (ie, they identified 
years with small numbers of spillovers versus years with large num-
bers; Figure 2C), the range of estimates (6–10 spillover events) was far 
smaller than that observed (3–15 spillovers). This suggests that other 
factors, such as epidemic dynamics in bat populations, or differences 
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Figure 2.  The number of spillover events predicted versus the number of spillover events observed. A, Per-district predictions from a univariate logistic regression model, 
based on the minimum temperature during the previous week . B, Per-district predictions from a univariate logistic regression model, based on distance to surveillance hos-
pital. C, Per-year predictions from a univariate logistic regression model, using the minimum temperature during the previous week.
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in human behaviors, such as sap consumption, may also help deter-
mine year-to-year variation.

As weekly temperatures were highly homogeneous across the 
districts at any time point, they could not explain spatial differ-
ences in spillover risk. However, the distance to the closest sur-
veillance hospital was significantly correlated with where reported 
spillovers occurred and explained over half of the variability in 
the number of spillovers across districts. The NiV-endemic region 
represents a large area, with some communities >100 km from the 
nearest surveillance hospital. Infected individuals who reside far 
from surveillance hospitals may present to different hospitals or 
not make it to the surveillance hospitals before death, given that 
some patients die within 3–4 days after illness onset [14]. This sug-
gests that many spillovers go undetected. Future efforts to quantify 
these would provide useful information for public health officials 
and could lead to insights about how to improve surveillance. 
Nevertheless, >40% of the spatial heterogeneity in the distribution 
of observed spillovers remained unexplained by the distance to 
the surveillance hospitals. Spatial differences in the frequency of 
sap consumption may contribute to these differences in risk [8].

Our analyses are aggregated at the district level, so we were 
unable to investigate variation at smaller spatial scales. We also 
only had weather data for a subset of all districts. However, both 
temperature and precipitation appeared highly homogeneous 
at any point across the districts where data was available. Also, 
owing to the nature of surveillance, we may have missed mild 
cases. However, the distribution of these cases is likely similar 
to that of severe cases, and therefore our estimates are probably 
not impacted by this potential limitation.

Understanding the risk for NiV spillover events is important 
for global public health, given the high case-fatality rates and the 
risk of more-successful human-to-human transmission following 
viral adaptations or after introductions of more highly transmis-
sible strains. Our analysis shows that the risk of cross-species 
transmission from bats to humans across time and space in 
Bangladesh is partially  affected by climate. NiV transmission 
dynamics in bats and the inability of surveillance to capture many 
spillover events may also explain some of spatio-temporal differ-
ences in where spillovers are observed. NiV cross-species trans-
mission is complex, and a better understanding of transmission 
patterns in the reservoir host deserves further research. Policy 
makers could consider focusing prevention resources during 
the coldest weeks of the year, when the risk of NiV spillover is 
increased. Efforts to increase detection of spillover events could 
also be useful to reduce the risk of wider geographic spread of this 
lethal pathogen.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to ben-
efit the reader, the posted materials are not copyedited and are 

the sole responsibility of the authors, so questions or comments 
should be addressed to the corresponding author.
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