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Context: The paradigm of evidence-based practice (EBP) is
well established among the health care professions, but
perspectives on the best methods for acquiring, analyzing,
appraising, and using research evidence are evolving.

Background: The EBP paradigm has shifted away from a
hierarchy of research-evidence quality to recognize that multiple
research methods can yield evidence to guide clinicians and
patients through a decision-making process. Whereas the
‘‘frequentist’’ approach to data interpretation through hypothesis
testing has been the dominant analytical method used by and
taught to athletic training students and scholars, this approach is
not optimal for integrating evidence into routine clinical practice.
Moreover, the dichotomy of rejecting, or failing to reject, a null
hypothesis is inconsistent with the Bayesian-like clinical
decision-making process that skilled health care providers
intuitively use. We propose that data derived from multiple
research methods can be best interpreted by reporting a
credible lower limit that represents the smallest treatment effect
at a specified level of certainty, which should be judged in

relation to the smallest effect considered to be clinically
meaningful. Such an approach can provide a quantifiable
estimate of certainty that an individual patient needs follow-up
attention to prevent an adverse outcome or that a meaningful
level of therapeutic benefit will be derived from a given
intervention.

Conclusions: The practice of athletic training will be
influenced by the evolution of the EBP paradigm. Contemporary
practice will require clinicians to expand their critical-appraisal
skills to effectively integrate the results derived from clinical
research into the care of individual patients. Proper interpreta-
tion of a credible lower limit value for a magnitude ratio has the
potential to increase the likelihood of favorable patient out-
comes, thereby advancing the practice of evidence-based
athletic training.
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E
vidence-based practice (EBP) has become widely
accepted as the best approach for optimizing
clinical outcomes, but the prevailing interpretation

of best-research evidence is now being vigorously
challenged by medical researchers who have provided a
compelling rationale for a broadened perspective.1–7

Athletic trainers, along with students enrolled in sport and
exercise science programs, have historically received
instruction in research methods that has exclusively focused
on traditional null-hypothesis testing at an arbitrary level of
statistical significance (eg, a¼ .05). This type of statistical
inference is designated as a frequentist approach because it
is based on the probability that repeated random sampling
of a specified number of cases from a given population will
produce the same hypothesis-test result.8–10 Therefore,
when research is conducted to assess efficacy by comparing
treatments or interventions, randomized sample selection
and randomized assignment of each participant to an
experimental or control condition are absolutely essential
for valid interpretation of frequentist data-analysis results.
However, the importance of randomization is often
underappreciated or ignored.9 Furthermore, the widespread
erroneous belief is that a nonsignificant P value indicates
the absence of an effect and that progressively smaller P
values represent greater evidence against the null hypoth-
esis of no effect.7–15 The board of directors of the American

Statistical Association recently issued a statement15 criti-
cizing this common interpretation of statistical significance
as a distortion of the scientific process, which can lead to
erroneous beliefs and poor decision making.

Clearly, many leading clinicians and health care
researchers are beginning to advocate for the expansion
of the methods used to acquire, analyze, appraise, and apply
research evidence for guiding practice decisions. The
purpose of this report is to provide athletic trainers with
an overview of clinical research methods that can offer a
quantifiable estimate of certainty that an individual patient
will derive a meaningful degree of benefit from a given
preventive or therapeutic intervention.

INDIVIDUALIZED CLINICAL CARE

The properly conducted randomized controlled trial
(RCT) is recognized as the best source of evidence for
benefit when a treatment is administered under ideal and
highly controlled conditions (ie, efficacy) that ensure strong
internal validity. However, even when conducted optimally,
an RCT does not provide a good mechanism for
determining which individual patients are likely to derive
benefit from a treatment delivered under normal clinical
circumstances (ie, effectiveness).2,3,6 Whereas RCT results
have been extensively promoted for guiding EBP, other
research methods can provide evidence that is much more
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relevant to the process of making patient-centered clinical
decisions (Figure 1).6,16 Unfortunately, many of the senior
personnel who provide leadership for professional journals,
grant agencies, and academic programs can have rather
dogmatic expectations for using a randomized experimental
design, combined with hypothesis testing and a frequentist
interpretation of significant results.7–9,11–14

An alternative to estimating the objective probability of
the frequency of a given hypothesis-test result is the
Bayesian approach to quantifying subjective probability.
The process of examination and evaluation leading to a
diagnosis is an exercise in Bayesian reasoning. Gill et al17

inferred that ‘‘clinicians are natural Bayesians.’’ A Bayesian
approach is also used consciously or subconsciously to
develop and appraise the degree of belief that a clinically
important treatment effect or preventive effect (ie, an
association that has prognostic value) exists.7 The primary
limitation of Bayesian inference is the necessity of
estimating the level of probability that existed before the
availability of a definitive classification of outcome status
(ie, prior probability), which is related to an updated
probability estimate after outcome status is known (ie,
posterior probability). In the context of diagnostic testing,
an estimate of prior probability is based on the history and
physical examination findings known before the perfor-
mance of some clinical test expected to provide new
information that will better represent the probability of a
specified diagnosis.18 Such integration of information is

central to reducing uncertainty in clinical decision mak-
ing,19 but very little information exists to guide the
formulation of an accurate prior probability estimate.20–22

An often acceptable solution to this problem is an
assumption of equal prior probability for all study
participants, which corresponds to the proportion ultimately
identified by a designated criterion-standard test as
criterion-positive cases.

Some caution must be exercised in making an assumption
of equal prior probability because subgroups within the
population from which participants are drawn may possess
characteristics that are known to modify the probability that
the target condition exists (eg, sex, age, or differential
exposure to a causative factor). Multivariate analysis
methods provide a means of making adjustments for the
effects of all variables included in a prediction model,
which is essential to control for any confounding effect that
would otherwise produce an invalid result. This recalibra-
tion of prior probability is consistent with Bayesian
reasoning, which considers additional information an
iterative step in formulating a posterior probability. The
value of a positive or negative clinical test result can then
be represented by the magnitude of prior-to-posterior
change in the odds of having criterion-positive status (ie,
confirmed criterion-standard diagnosis as positive). In the
context of prognosis (ie, prediction), criterion-positive
outcome status corresponds to the documented occurrence

Figure 1. Circular representation of equally important and complementary sources of research evidence for guiding clinical practice,
which has been proposed as an alternative to the widely recognized hierarchy of research evidence pyramid. Adapted from Walach et al16

with permission.
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of a specified event (ie, injury) within a defined period of
surveillance.23

The assessment of treatment effect can be approached
through a similar process. The goal of treatment is to
change, for the better, the outcome of care. One’s belief that
a treatment will achieve this goal is influenced by what is
known about an outcome without the intervention (ie,
placebo control) or from the known outcome of a current
standard-of-practice procedure (ie, active comparator).
These outcomes data may emerge from a variety of
prospective or retrospective research methods (eg, cohort
and case-control studies). Magnitude-based inference is a
term used to designate a pragmatic combination of
frequentist concepts and Bayesian reasoning,7,11,12 which
characterizes the approach that is widely used in the field of
epidemiology. Estimating the likely size of an effect is
arguably the most important goal of a statistical analysis.7

Hypothesis testing can only confirm or refute the existence
of an effect and does not provide any information about the
likely magnitude of a true effect. Increasingly, the
confidence interval (CI) is viewed as a better representation
of a study’s findings than a hypothesis-test result or an
exact P value.11–13

ESTIMATION OF CERTAINTY FOR A SPECIFIED
OUTCOME

Including a 95% CI in published research reports has
become increasingly common in recent years,5 but the
information provided tends to be viewed as an alternate
means of assessing 2-tailed statistical significance using a¼
.05 (ie, 2.5% of values below the CI lower limit and 2.5%
of values above the CI upper limit).13 A 90% CI has been
recommended to discourage a perceived connection to
hypothesis testing, and the term credibility interval has
been suggested as an alternative designation that empha-
sizes a Bayesian interpretation of the range of values as that
which includes the true effect magnitude with some level of
certainty.7,13 A CI function depicts all possible CIs around a
point estimate of effect magnitude, which does not require
specifying a single probability level for assessing the
magnitude and precision of an effect that may be deemed
clinically important.24 For example, the risk ratio (RR)
represents a point estimate of the magnitude of difference
in the proportion of injury cases predicted to occur in a
high-risk subgroup versus that predicted for a low-risk
subgroup within a specified period. The RR point estimate
is based on actual injury events that have been observed in
a cohort study, but the precision of prediction accuracy for
a similar cohort is best judged by a CI function (Figure 2A).

Whereas hypothesis testing is discouraged for expressing
the importance of a test result, the lower limit of a 90% CI
provides the equivalent of a 1-sided focus on the minimal
probable size of the true effect (ie, 5% of values below the
CI lower limit).11,12 A 1-sided assessment of an effect size
represented by a ratio measure provides an indicator of
certainty that its true value exceeds 1.0 (ie, any value .1.0
can be viewed as a clinically important effect).8,9 Given that
calculating CI limits for a ratio measure involves natural
log transformation, the CI function for a relatively small
cohort is positively skewed (ie, the upper limit is farther
from the point estimate than the lower limit). To facilitate
the interpretation of uncertainty about the size of an effect,

we propose using the term credible lower limit (CLL) as a
designation for the smallest effect that corresponds to a
selected level of probability, thus serving as a representa-
tion of the uncertainty tolerance deemed acceptable by the
clinician. For example, CLL95% would be the value
corresponding to the lower limit of a 90% CI (ie, 95%
certainty that the true effect size equals or exceeds
CLL95%). If 90% certainty about the smallest effect
magnitude is deemed adequate for a given clinical decision,
the value of CLL90% would correspond to the lower limit of
an 80% CI (Figure 2B). The CI function becomes narrower
and more symmetrical as cohort size increases, which
reflects less uncertainty about the true effect magnitude
(Figure 3A and B). Therefore, the combination of the RR
point estimate of effect magnitude with the CLL quantifi-
cation of the smallest likely effect for any similar cohort
provides a clinician with the essential information needed
to judge the potential risk versus potential benefit of a
specific course of action or inaction.

The critical factor limiting the advancement of EBP is
clearly a lack of sufficient information to estimate
uncertainty about the likely outcome an individual patient
will experience from a clinical choice.19 The importance of
an accurate diagnostic classification of a patient’s status is
obvious, but many clinicians do not recognize that
sensitivity and specificity cannot be properly interpreted

Figure 2. Confidence interval (CI) function for the risk ratio in a
cohort of 40 individuals equally distributed between high-risk and
low-risk classifications, 37.5% criterion-positive outcome, and
diagnostic/prognostic test sensitivity of 67% and specificity of
60%. A, Two-sided probabilities for values outside the lower limits
and upper limits of 90% CI and 95% CI. B, Credible lower limit (CLL)
values and 1-sided probabilities for risk ratio values below the
lower limit for CI levels of 60%, 70%, 80%, and 90%.
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separately.18,25,26 Furthermore, prediction accuracy is best
estimated by likelihood ratios, which incorporate both the
sensitivity and specificity for a given diagnostic or
prognostic classification.18 Patient-centered outcomes, such
as return-to-sport participation, return to work, or a global
rating of change (ie, the patient’s perception of a much
improved condition), can be defined as indicators of
successful versus unsuccessful treatment. The likelihood
of achieving the desired outcome can be derived in the
same manner as estimates of the diagnostic utility of a
physical examination procedure. The definition of success
is often absent from studies of treatment effects that are
quantified on continuous scales. For example, an investi-
gator may report improved restoration of postinjury ankle-
dorsiflexion range of motion through a new treatment
approach. A narrow CI may suggest that the new treatment
leads to greater motion restoration than an alternative
approach that has been widely used in the past. What is
missing is whether the new treatment, or the comparison
treatment, yields a level of benefit that is detectable by the
patient (Figure 4). A minimal clinically important differ-
ence (MCID) refers to the smallest change that patients
perceive as beneficial, which should influence clinical
decision making about injury care. Despite very narrow CIs
for the absolute mean difference between treatments A and
B (identified by brackets in Figure 4), as well as very large
standardized mean difference values for each of the 3
scenarios, some patients will not achieve the MCID.

Defining satisfactory outcomes from the perspective of
patients is often lacking in clinical research. A broader and
Bayesian-influenced perspective will yield new insights
into treatment effectiveness and advance the practice of
evidence-based care.

The term effect is widely used to refer to a quantifiable
relationship between variables, which provides the basis for
a judgment about the clinical utility of a procedure. When
the variables are continuous, effect size may be represented
as the difference between group means in standard
deviation units (ie, standardized mean difference) or the
proportion of explainable variance (ie, r2 for bivariate
correlation and g2 for group difference). In the context of
diagnosis and prognosis, effect relates to the strength of
association between a binary classification (ie, positive
versus negative prediction) and a binary outcome (ie,
occurrence versus nonoccurrence) that is represented by a
ratio.

The term clinical epidemiology has been defined as the
science of making predictions about individual patients by
counting clinical events in groups of similar patients and
using strong scientific methods to ensure that the predic-
tions are accurate.23 Authors of prospective cohort studies
designed to assess risk for injury occurrence often report
the RR as a point estimate effect magnitude (ie, RR ¼
injured proportion of index group/injured proportion of
comparison group), but the most widely used numeric value
for representing observed effect magnitude is the odds ratio
(OR). An OR compares the odds for criterion-positive
status, which may be some outcome other than injury,
between 2 subgroups (ie, OR ¼ index group odds/
comparison group odds). The hazard ratio, which is
derived from a time-to-event analysis, represents the
magnitude of difference in instantaneous risk for event
occurrence between 2 subgroups. A judgment about the
clinical utility of a given hazard ratio, RR, or OR point
estimate requires consideration of its uncertainty in relation
to the smallest credible value deemed clinically important
(eg, CLL) for an association between prediction and
outcome (Figure 5).27,28

Whereas comparative-effectiveness studies typically
involve measuring a continuous dependent variable (eg,
the example presented in Figure 4), a binary classification
of each patient case within the respective groups can be
based on a cut point corresponding to the MCID. Such an
approach can be used to calculate the OR for the
association between group membership and the binary
outcome, as well as a CLL for the therapeutic effect. The
process of converting degrees of ankle-dorsiflexion im-
provement to a binary classification illustrates a key
distinction between frequentist and Bayesian approaches
(Figure 6). Frequentist statistical inference relies on a
theoretical probability that is derived from the proportion of
continuous dependent variable values expected to be found
within a specified area beneath a normal curve (ie,
parametric statistical analysis), whereas Bayesian reasoning
is based on discrete counts of observations that are assigned
to binary prediction and outcome categories (ie, nonpara-
metric statistical analysis).

The overlapping distributions depicted in Figure 6
correspond to those for treatment A and treatment B1 in
Figure 4. Note that each histogram bar represents the
number of cases observed to achieve a given amount of

Figure 3. Confidence interval function for risk ratio with a focus on
the proximity of the credible lower limit (CLL) values to the null
value of 1.0 (ie, no association). A, Influence of an increase in
cohort size to 80 individuals on the precision of estimates. B,
Influence of an increase in cohort size to 200 individuals on the
precision of estimates.
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Figure 4. Example illustrating the uncertainty that a beneficial group-mean effect will provide benefit to an individual patient. Assuming
�68 of improvement represents a minimal clinically important difference (MCID), pooled standard deviation ¼ 2.0, and n ¼ 50, the 95%
confidence interval is defined by 60:6ð1:96½2:0=

ffiffiffiffiffiffi

50
p
�Þ . Despite very narrow confidence intervals for the absolute mean difference (AMD)

between treatments A and B (identified by brackets), as well as very large standardized mean difference (SMD) values for each of 3
scenarios, some patients will not achieve the MCID. The potential for a given patient to derive meaningful benefit is possible for scenario
B1 (50% �MCID), probable for scenario B2 (84% �MCID), and highly probable for scenario B3 (95% �MCID). Adapted with permission from
the National Athletic Trainers’ Association from Denegar CR, Wilkerson GB. Evidence-based practice and uncertainty about patient
outcomes. NATA News. 2017;April:20–22.

Figure 5. Recommended standards for interpreting point estimates and credible lower limits for ratio measures of association between
prediction and outcome.27,28
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ankle-dorsiflexion improvement and that the width of each
bar extends 0.58 above and below a given value. The
probability (P) for a patient to achieve or exceed the MCID
(ie, 68 of improvement) corresponds with the proportion of
such cases within a group (ie, 11/50¼ 0.22 for treatment A
and 30/50¼ 0.60 for treatment B1). Odds are calculated as
P/1 – P (ie, 0.22/0.78¼ 0.28 for treatment A and 0.60/0.40
¼ 1.50 for treatment B1), and the OR represents the relative
magnitude of difference in odds between the groups (ie, OR
¼ 1.50/0.28 ¼ 5.32). In the example provided, the odds of
achieving or exceeding the MCID are 5.32 times greater for
a patient who receives treatment B1 than for a patient who
receives treatment A. A 95% level of certainty about the
smallest comparative effect magnitude would correspond to
the lower limit of a 90% CI for the OR point estimate (ie,
CLL95% ¼ 2.55). From a clinical perspective, these results
indicate that the odds of achieving the desired clinical
benefit are at least 2.55 times greater with the investigated
treatment than the reference treatment. This information
can be used by the patient and provider to select a plan of
care based on the likelihood of benefit, known risks,
personal preferences, and costs in a manner that truly
reflects both an evidence-based and patient-centered
approach to clinical practice.

CLINICIAN EXPERTISE

Whereas the frequentist approach to interpreting RCT
results is still widely viewed as the best source of guidance
for EBP, a more advanced model for evidence-based
decision making emphasizes the importance of the

clinician’s consideration of the individual patient’s clinical
state and circumstances in making clinical decisions
(Figure 7).29 In fact, clinical epidemiology and evidence-
based medicine have been referred to as synonymous
terms.29,30 Despite the necessity of making decisions on the
basis of imperfect data and limited knowledge, the culture
of medicine has historically led physicians to suppress and
ignore uncertainty.4 In the same manner that null-
hypothesis testing can obscure the existence of a clinically
important effect,31 transforming a patient’s complex
clinical presentation into a black-and-white diagnosis can
present a major obstacle to delivering patient-centered care.
Conversely, critical-thinking skills allow for uncertainty,
which can counteract hidden assumptions and unconscious
biases that might otherwise lead to adverse patient
outcomes.

CONCLUSIONS

Scholars in the athletic training profession should
recognize the potential that clinical epidemiology offers
for dramatically enhancing the quality of health care
service, as well as the need to adopt a broad view of EBP
that includes a Bayesian interpretation of research findings
derived from a variety of study designs.
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