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Abstract

The progression of chronic obstructive pulmonary disease (COPD)
is associated with marked alterations in circulating immune cell
populations, but no studies have characterized alterations in these cell
types across the full spectrum of lung function impairment in current
and former smokers. In 6,299 subjects from the COPDGene and
ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive
Surrogate Endpoints) studies, we related Coulter blood counts and
proportions to cross-sectional forced expiratory volume in 1 second
(FEV1), adjusting for current smoking status. We also related cell
count measures to 3-year change in FEV1 in ECLIPSE subjects. In a
subset of subjects with blood gene expression data, we used cell type
deconvolution methods to infer the proportions of immune cell
subpopulations, and we related these to COPD clinical status. We
observed that FEV1 levels are positively correlated with lymphocytes
and negatively correlated with myeloid populations, such as

neutrophils and monocytes. In multivariate models, absolute cell
counts and proportions were associated with cross-sectional FEV1,
and lymphocytes, monocytes, and eosinophil counts were predictive
of 3-year change in lung function. Using cell type deconvolution to
study immune cell subpopulations, we observed that subjects with
COPD had a lower proportion of CD41 resting memory cells and
naive B cells compared with smokers without COPD. Alterations
in circulating immune cells in COPD support a mixed pattern of
lymphocyte suppression and an enhanced myeloid cell immune
response. Cell counts and proportions contribute independent
information to models predicting lung function, suggesting a critical
role for immune response in long-term COPD outcomes. Cell type
deconvolution is a promising method for immunophenotyping in
large cohorts.
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Chronic obstructive pulmonary disease
(COPD) is associated with profound
alterations in immune cells within the
lung and in the systemic circulation.
The systemic inflammation may reflect
“spillover” of inflammatory processes
within the lung, primary alterations in the
extrapulmonary immune response, or a
combination of both processes (1). These
alterations affect cell types involved in both
the innate (2–6) and adaptive (7–15)
immune response. In population studies
(16, 17) and a systematic review (18), total
counts of peripheral leukocytes were
associated with cross-sectional and prospective
changes in lung function, but few studies
have been performed in large cohorts with
detailed cell count data to observe
relationships across the full spectrum of
lung function. In addition, current
smoking (CS) has an independent effect
on immune cells (8, 19), and often serves
as an important potential confounder of
immunologic studies of current and
former smokers with COPD.

Cell type quantification by flow
cytometry is rarely available from large,
population-based studies of COPD.
However, novel, cell type “deconvolution”
approaches have been shown to infer
accurately the relative proportions of
immune cell types from genome-wide
blood gene expression data (20, 21). Thus,
cell type deconvolution is a potentially
powerful approach to enable the simultaneous
study of many different cell types in large
cohorts of subjects with available blood gene
expression, but it has not yet been applied to
cohorts of subjects with COPD.

We hypothesized that: 1) peripheral
immune cell types quantified through
Coulter complete blood counts (CBCs)
have significant associations to cross-
sectional forced expiratory volume in 1
second (FEV1) and prospective FEV1

decline; and 2) cell type deconvolution
methods can enable the simultaneous study
of multiple immune cell subpopulations in
cohorts of smokers with COPD and blood
gene expression data. We explored the first
hypothesis in two large cohorts of smokers
enriched for COPD, the COPDGene and
Evaluation of COPD Longitudinally to
Identify Predictive Surrogate Endpoints
(ECLIPSE) studies, which enabled the
characterization of immune cell profiles
across the full spectrum of lung function
impairment while accounting for CS
effects. The large number of study

subjects allowed for detailed modeling of
the relationship between multiple cell types,
CS status, and lung function. To explore the
second hypothesis, we used two cell type
deconvolution methods to infer immune
cell subpopulation proportions in a subset
of smokers with blood gene expression data
in the ECLIPSE study, and we validated
these inferred cell type proportions against
measured CBC data. We then compared
levels of inferred circulating immune
cell subpopulations by COPD status,
confirming that inferred estimates of
circulating immune cell types, such as
monocytes, naive B cells, and resting T
memory cells, are altered in the COPD
state.

Methods

Study Populations
Recruitment criteria and study protocols for
the ECLIPSE and COPDGene studies have
been previously reported. COPDGene
enrolled 10,192 subjects across the entire
GOLD (Global Initiative for Obstructive
Lung Disease) spectrum between the ages of
45 and 80 years with at least a 10-pack-year
smoking history (22). These subjects
completed their phase 1 study visit between
2007 and 2011. As of September 24, 2016,
5,000 subjects had completed their phase 2
5-year follow-up visit, which included all of
the data items collected in phase 1, as well
as complete blood count data, which was
not collected at the phase 1 visit.

The ECLIPSE study was a multicenter
study that enrolled subjects aged 40–75
years with COPD and at least a 10-year
smoking history (COPD defined by FEV1

,80% of predicted and FEV1/FVC <0.7)
or who were smokers without COPD (FEV1

.85% and FEV1/FVC .0.7). Details of this
study have been previously published (23).
Gene expression analyses were performed
in a subset of subjects in this study from
whom genome-wide gene expression data
were generated on the Affymetrix Human
U133 Plus2 chip, as previously reported
(24). For both COPDGene and ECLIPSE,
the institutional review boards of all
participating centers approved these studies,
and written informed consent was obtained
from all subjects.

Phenotype and Covariate Definitions
InCOPDGene and ECLIPSE, spirometrywas
performed before and after administration

of 180 mg of albuterol according to
international guidelines (25). COPD cases
and GOLD stages were defined according
to GOLD spirometric criteria (FEV1 %
of predicted ,80% and FEV1/FVC ,0.7)
(26). Subjects with preserved ratio impaired
spirometry were defined by post-bronchodilator
FEV1 % of predicted less than 80% and
FEV1/FVC greater than 0.7 (27). COPD
blood gene expression subtypes were
previously defined by Chang and colleagues
(24) using network-based stratification
(NBS). Of the four NBS subtypes identified
in the original publication, the two most
prevalent subtypes were analyzed. These
subtypes are referred to as the less-
impaired lung function and the more-
impaired lung function subtypes. CS
status, inhaled corticosteroid use, and oral
corticosteroid use were ascertained by
questionnaire. In ECLIPSE, only eight
subjects reported using oral steroids at
baseline, and these were removed from
subsequent analyses.

Association of CBC Cell Types with
COPD GOLD Stage, Cross-Sectional
FEV1, and Prospective Change
in FEV1

Using 4,558 subjects with complete CBC
and spirometric data from the COPDGene
phase 2 visit, we plotted the distribution
of neutrophil and lymphocyte counts and
proportions against GOLD stage after
removing outlying cell count observations
greater than 64 SD from the mean. We
tested for univariate association between
individual cell counts and proportions with
post-bronchodilator FEV1 % of predicted
using Wald tests from linear regression (LR)
models, and we constructed multivariate
regression models relating cell counts and
proportions to FEV1 adjusting for CS status
and oral and inhaled steroid use reported at
baseline.

In 1,741 smokers from the ECLIPSE
study with complete covariate, CBC, baseline,
and prospective FEV1 measurements,
we related absolute cell counts and
proportions to post-bronchodilator FEV1 %
of predicted levels, as described previously
here. For the analysis of 3-year change in
FEV1 % of predicted levels, we calculated
the difference between the first and last
available post-bronchodilator FEV1 %
of predicted measurement in all study
subjects (calculated as: last measurement2
first measurement; i.e., negative values
represent decline in lung function).
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To determine the association between CBC
measurements and change in FEV1, we
used multivariate LR models with change in
FEV1 as the response variable, adjusting for
baseline FEV1, days of follow-up, inhaled
corticosteroid use at baseline, and smoking
status at the first and last study visit.
Smoking status was represented in four
groups (i.e., current smokers at first and last
visit, former smokers at first and last visit,
current smoker at first visit and former
smoker at last visit, and former smoker at
first visit and current smoker at last visit).
Models were constructed to analyze cell
types individually as well as in the presence
of other cell types in the same model.
Subjects with less than 1,000 days between
their first and last spirometric
measurements were excluded from analysis.

Gene Expression
Sample preparation and quality control
procedures for genome-wide gene
expression data in ECLIPSE have been
previously described (28). Standard quality
control and quantile normalization were
performed. Gene expression data used in
this study are accessible via GEO (ECLIPSE
GSE76705).

Cell Type Deconvolution and
Association of Inferred Cell Types
with COPD Status
Cell type deconvolution was performed in
221 ECLIPSE subjects with complete
genome-wide gene expression and covariate
data. Cell type proportions were inferred
using two methods—CIBERSORT (21) and
the method of Abbas and colleagues (20)
using LR (least squares). Cell type reference
expression profiles were used from the
LM22 pure-cell dataset obtained on
December 21, 2015 from the CIBERSORT
website (https://cibersort.stanford.edu). A
detailed description is provided in the data
supplement.

After obtaining cell type estimates of
the 22 cell types from both methods, we
organized groups of similar cell types
into broader categories to create estimates
of additional aggregated groups: CD41

cells, T cells, B cells, lymphocytes, and
monocytes/macrophages. We performed
this aggregation by summing individual
cell type values for cell types within
each category. The 22 inferred cell type
proportions and aggregated cell type
estimates were tested for association
with COPD status and COPD molecular

subtypes using the Wilcoxon-Mann-
Whitney test. Significant cell type
associations were considered to be those
with a Wilcoxon-Mann-Whitney test P
value less than 0.05 for both CIBERSORT
and LR.

Prediction Models for COPD Status
and COPD Molecular Subtypes
Classification of subjects according to
COPD status or NBS molecular subtype
using estimated cell type quantities, CBC
quantities, and clinical covariates was
performed in 221 subjects from ECLIPSE
using the support vector machine (SVM)
implementation in the e1071 package (29).
Validation within ECLIPSE involved
performing one round of partitioning in
which half of the subjects was used in the
training set and the other half was used
in the validation set. Probabilities were
returned from the SVM and used with
the R package ROCR to generate receiver
operating characteristic plots and calculate
areas under the curves (AUCs) (30).

Additional details regarding study
cohorts and statistical methods are included
in the supplemental MATERIALS in the data
supplement.

Results

Relating Circulating Immune Cells to
Cross-Sectional FEV1 and CS
We examined CBC data from 4,558 smokers
from the COPDGene phase 2 visit and an
additional 1,741 smokers with more than
1,000 days of spirometric follow-up data
in the ECLIPSE study. The clinical
characteristics and cell type distributions
of analyzed subjects in both studies are
shown in Table 1. The CONSORT diagram
for the analyses of cross-sectional and
longitudinal data in ECLIPSE is shown in
Figure E1 in the data supplement, and
comparison of characteristics of ECLIPSE
analyzed and excluded subjects is shown
in Table E1.

LR relating the absolute amount and
percentage of five cell types to FEV1 %
of predicted indicated that neutrophils,
lymphocytes, monocytes, and eosinophils
are strongly correlated with FEV1, and
there are differences in the pattern of
association between absolute counts and
cell proportions with COPD severity
(Table 2 and Table E2). Boxplots showing
the amount of each cell type by GOLD

stage for COPDGene and ECLIPSE are
shown in Figures E2 and E3.

Given the predominance of neutrophils
and lymphocytes in blood, we examined
the absolute counts and percentages of these
cell types across GOLD stages, and we
observed two phenomena. First, with
increasing COPD severity, the proportion
of neutrophils increases and lymphocytes
decreases. However, in terms of absolute cell
counts, the number of neutrophils increases
while the total number of lymphocytes
remains relatively stable (Figures 1A and
1C), suggesting that the observed changes
in neutrophil and lymphocyte proportions
associated with COPD severity are primarily
driven by an increase in the number of
circulating neutrophils. The same pattern
is present in ECLIPSE subjects (Figures 1B
and 1D).

We evaluated these relationships in a
series of models in COPDGene relating cell
count, cell proportion, and CS to FEV1 % of
predicted while adjusting for inhaled and
oral steroid use (Table 3). The models
explaining the largest proportion of
variance in FEV1, after adjusting for model
complexity, included both cell counts and
proportions, demonstrating that both
measures have independent association to
FEV1. Both lymphocyte and neutrophil
absolute counts and percentages were
significantly associated with FEV1 across
most models. The addition of monocyte
counts and proportions to the models
did not affect the association between
neutrophil quantifications and FEV1 (data
not shown).

Relating Circulating Immune Cells to
Prospective, 3-Year Change in Lung
Function
Because the CBC data in COPDGene were
obtained at visit 2, longitudinal FEV1

analysis measures for this cohort were not
available. We performed longitudinal
analysis for 3-year change in FEV1 % of
predicted in 1,741 smokers from the
ECLIPSE study who were not taking oral
steroids at baseline. In an analysis of single
cell type measures, lymphocyte, monocyte,
and eosinophil counts and proportions
were significantly associated with change in
FEV1 (Table 4). Higher monocyte levels at
baseline were associated with greater FEV1

decline, and the opposite pattern was
observed for eosinophils. Neutrophil
proportions, but not counts, were
significantly associated with lung function
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decline. Larger neutrophil proportions were
associated with more lung function decline,
with the opposite relationship observed for
lymphocyte proportion.

Table 5 demonstrates that, for
multivariate models, including counts and
proportions of these four cell types, cell
counts, but not proportions, showed
significant associations to change in FEV1.
Absolute counts of monocytes, eosinophils,
and lymphocytes were significantly
associated with FEV1 decline (P = 0.0003,
P = 0.0004, and P = 0.02, respectively).
Higher levels of monocytes were associated

with larger amounts of FEV1 decline, and
the opposite pattern was present for
lymphocytes and eosinophils.

Association of Inferred Lymphocyte
Subpopulations to COPD and COPD
Subtypes
In a subset of 221 subjects from ECLIPSE
with complete genome-wide blood gene
expression and covariate data (subject
characteristics shown in Table E3), we used
cell type deconvolution to estimate the
proportion of immune cell subpopulations

in each study subject, and we related these
proportions to COPD case–control status.

To first assess the performance of cell
type deconvolution in blood gene expression
from smokers, we examined results from
applying twomethods that have been previously
validated for the detection of immune cell types:
CIBERSORT and the LR method of Abbas (20,
21). To benchmark these algorithms against
known cell type quantifications, we compared
their neutrophil, aggregated lymphocyte,
aggregated monocyte, eosinophil, and basophil
quantifications against concurrently drawn
CBCs (Figure 2). Both methods showed high
correlation to neutrophils and lymphocytes
(Spearman r ranges from 0.7 to 0.8, P,
0.001), with weaker correlations for eosinophils
and monocytes. Correlation with basophils
was low for both methods. For the inferred
proportions of neutrophils and lymphocytes,
the correlation between methods was high
(0.86 and 0.83, respectively).

We compared the inferred cell type
proportions by COPD case–control
status and observed that, relative to
smoker controls, subjects with COPD had
significantly lower levels of aggregated
lymphocytes, aggregated T cells, CD41

resting memory cells, and naive B cells, and
increased levels of monocytes (Table 6).

Inferred Cell Type Proportions Predict
COPD Blood Gene Expression
Subtypes
In a previous publication, the ECLIPSE
blood gene expression data had been used to
define COPD molecular subtypes that
differed in clinical characteristics and
blood gene expression patterns, and we
demonstrated that these subtypes could not
be recovered using CBC data alone (24).
To determine whether these molecular
subgroups can be accurately predicted from
inferred cell count proportions, we trained
SVM classifiers to predict NBS subtype and
COPD case–control status using CBC data,
clinical covariates, or inferred cell type
proportions. Figure 3 demonstrates that
predictive models for NBS subtypes using
inferred cell type proportions classified
subjects by COPD molecular subtype
with high accuracy (AUC = 0.95), and
demonstrated better performance than
models using only CBC cell type quantities
(AUC = 0.53) or clinical covariates (AUC =
0.65). Predictive models for COPD
case–control status using inferred cell type
proportions also showed statistically
significant, but less powerful, predictive

Table 1. Characteristics of Analyzed Subjects in COPDGene and Evaluation of COPD
Longitudinally to Identify Predictive Surrogate Endpoints Study

COPDGene ECLIPSE

N 4,558 1,741
Age, yr 65.5 (8.7) 61.9 (7.9)
Sex, % female 50 36
Race, % African American 27 0
FEV1 % of predicted 78.3 (24.9) 55.0 (26.1)
FEV1/FVC 0.67 (0.15) 0.66 (0.21)
COPD, % GOLD 2–4 35 84
Pack-years 44.0 (24.0) 45.4 (26.5)
Current smoking, % 37 39
BMI 28.9 (6.3) 26.6 (5.3)
Oral steroids, % 2 0
Inhaled steroids, % 24 59
Neutrophil, % 59.4 (10.0) 63.9 (8.2)
Neutrophil, 1,000 cells/ml 4.3 (1.6) 5.0 (1.6)
Lymphocyte, % 29.4 (9.4) 26.8 (7.6)
Lymphocyte, 1,000 cells/ml 2.0 (0.7) 2.0 (0.6)
Monocyte, % 8.1 (2.4) 6.2 (2.1)
Monocyte, 1,000 cells/ml 0.6 (0.2) 0.5 (0.2)
Eosinophil, % 2.6 (1.7) 2.8 (1.7)
Eosinophil, 1,000 cells/ml 0.2 (0.1) 0.2 (0.1)
Basophil, % 0.6 (0.5) 0.3 (0.2)
Basophil, 1,000 cells/ml 0.03 (0.04) 0.03 (0.02)

Definition of abbreviations: BMI = body mass index; COPD = chronic obstructive pulmonary disease;
ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; FEV1 =
forced expiratory volume in 1 second; FVC = forced vital capacity; GOLD = Global Initiative for
Obstructive Lung Disease.
Data are mean (SE) unless otherwise indicated.

Table 2. Relationship of Cell Type Counts and Proportions to Forced Expiratory
Volume in 1 Second % of Predicted in 4,558 Smokers in COPDGene

Cell Type Count (1,000 Cells/ml) Cell Type Proportion

b P value b P value

Neutrophils 23.53 (0.22) ,0.001 20.48 (0.04) ,0.001
Lymphocytes 2.34 (0.51) ,0.001 0.58 (0.04) ,0.001
Monocytes 221.84 (1.88) ,0.001 20.29 (0.16) 0.06
Eosinophils 221.25 (3.06) ,0.001 20.54 (0.22) 0.02
Basophils 233.28 (9.81) 0.001 0.09 (0.7) 0.89

Definition of abbreviations: b = change in forced expiratory volume in 1 second per unit change in cell
count or proportion; COPD= chronic obstructive pulmonary disease.
Each row corresponds to a separate univariate model.
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performance (AUC = 0.71), with the
cell type subpopulation models still
outperforming the models using CBC data
(Table E4).

We compared levels of the inferred
cell type proportions between the more-
impaired lung function and less-impaired
lung function COPD molecular
subtypes, and observed that the list of

immune cell types that were significantly
different between COPD molecular
subtypes was more extensive than between
COPD cases and controls. This list included
T-regulatory cells, CD4 resting and
activated memory T cells, memory B cells,
aggregated T cells, aggregated B cells,
dendritic cells, and monocytes (Table E5,
Figures E4 and E5).

Discussion

Using two large cohorts enriched for
subjects with COPD, we characterized
alterations in circulating immune cell types
associated with cross-sectional FEV1 and
longitudinal FEV1 decline. The main
findings are: 1) the predominant peripheral
immune cell type alteration associated with
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increasing COPD severity is an increase
in the absolute count of neutrophils; 2)
monocytes and eosinophils have strong
multivariate associations to prospective
change in FEV1; and 3) cell type estimates
from gene expression deconvolution
methods show good accuracy for some cell
types.

Prior immunologic studies of COPD
have identified important associations
with increased innate immune activation
and progression of COPD, including
neutrophil stimulation (31, 32), alveolar
macrophage immune surveillance (33),
protease/matrikine activation (34), and
activation of the dendritic cell/macrophage
axis (35). Most of these studies have been
performed in murine models or small-to-
moderate-sized study samples with limited
ability to control for the effects of CS. Our
findings complement and extend previous
results by demonstrating that: 1) the
decrease in overall lymphocyte proportion
in COPD is primarily driven by an increase
in absolute neutrophil counts; 2) absolute

counts and proportions of immune cell
types have independent, statistically
significant associations to lung function;
and 3) absolute monocyte and eosinophil
counts are predictive of COPD progression.
This point extends previous observations
relating total peripheral leukocyte count
to cross-sectional and longitudinal lung
function (16–18) by implicating specific
myeloid cell types. The fact that monocytes
were associated with cross-sectional FEV1

and prospective FEV1 decline, whereas
neutrophils only showed multivariate
association to cross-section FEV1, is
an interesting finding. Previous work
has demonstrated an M2 predominant
transcriptomic signature in airway
macrophages from subjects with COPD,
but it is not clear if these disease-related
alterations in lung-resident macrophages
are supported by replenishment from
systemic monocytes or, rather, expansion of
lung-resident populations (36). Although
our findings do not directly address this
question, the association of circulating

monocytes with FEV1 decline suggests that
systemic monocyte populations do play a
role in COPD-related pathobiology.
Although circulating neutrophils are clearly
associated with COPD severity, they were
not an independent predictor of decline
after accounting for other cell types and
covariates. However, precise mechanistic
hypotheses are beyond the scope of this
epidemiologic study, and would require
detailed assessment of both the lung and
systemic compartments.

To study immune cell subpopulations
not quantified by CBC, we explored the use
of cell type deconvolution to quantify
22 distinct cell subpopulations in a subset of
ECLIPSE subjects with blood genome-wide
gene expression data. These methods are a
promising alternative for estimating cell
type proportions in large study samples with
available expression data. However, these
approaches have not been widely applied
in smokers with COPD. Our findings
demonstrate that, in smokers enriched for
COPD, the deconvolution approaches
studied yielded consistent and reasonably
reliable estimates of neutrophil and
lymphocyte cell proportions with mixed
performance for other cell types. Inferred cell
type proportions enabled significantly better
prediction of externally defined COPD
molecular subtypes than CBC and clinical
data alone, providing indirect evidence that
these inferred proportions capture
meaningful information on the cell type
composition of bulk blood expression
samples. These data provide proof of concept
of the feasibility of using cell type
deconvolution to study immune cell
subpopulations in large cohorts of smokers
with available blood gene expression data.

Analysis of the cell type deconvolution
data supports previous observations of an
overall decrease in lymphocytes and

Table 4. Relationship of Cell Type Counts and Proportions at Baseline to 3-Year
Change in Forced Expiratory Volume in 1 Second % of Predicted in 1,741 Smokers in
the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study

Cell Type Count (1,000 Cells/ml) Cell Type Proportion

b P Value b P Value

Neutrophils 20.09 (0.12) 0.48 20.05 (0.02) 0.031
Lymphocytes 0.63 (0.32) 0.05 0.07 (0.03) 0.008
Monocytes 23.41 (1.08) 0.002 20.32 (0.09) 0.001
Eosinophils 4.16 (1.43) 0.004 0.34 (0.11) 0.003
Basophils 28.65 (12.8) 0.50 20.50 (1.00) 0.62

Definition of abbreviations: b = change in forced expiratory volume in 1 second (FEV1) over 3 years per
unit change in cell count or proportion; COPD = chronic obstructive pulmonary disease.
Change in FEV1, calculated as: last visit value2 first visit value (i.e., negative values indicate decline in
FEV1). Models analyze one cell type at a time. All models are adjusted for FEV1 % of predicted at
baseline, number of days of follow-up, inhaled corticosteroid use at baseline, and smoking status at
baseline and at last study visit.

Table 5. Multivariate Models Relating Cell Type Counts and Proportions at Baseline to 3-Year Change in Forced Expiratory Volume
in 1 Second % of Predicted in 1,741 Smokers in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints
Study

Neutrophil
Count

Neutrophil
%

Lymphocyte
Count

Lymphocyte
%

Monocyte
Count

Monocyte
%

Eosinophil
Count

Eosinophil
%

Cell proportions — 1.03 (1.03) — 1.11 (1.03) — 0.69 (1.04) — 1.43 (1.05)
Cell counts 0 (0.13) — 0.76 (0.32)* — 24.64 (1.18)* — 4.98 (1.46)* —

Definition of abbreviation: COPD = chronic obstructive pulmonary disease.
*P, 0.05.
Cell counts are in units of 1,000 cells/ml. Each row corresponds to a separate multivariate regression model. Models adjusted for baseline forced
expiratory volume in 1 second % of predicted, number of days of follow-up, inhaled corticosteroid use at baseline, and current smoking status at baseline
and last measurement.

ORIGINAL RESEARCH

506 American Journal of Respiratory Cell and Molecular Biology Volume 58 Number 4 | April 2018



T cells in the COPD state, coupled with an
increase in monocytes. When we studied
deconvolved cell types in previously defined
COPD molecular subtypes, differences

in cell type proportions were more
pronounced, with the more severely affected
subtype characterized by increased
monocytes, T-regulatory cells, memory

T cells, and memory B cells, as well as
decreased total lymphocytes. This pattern is
consistent with the expected behavior of
T-regulatory cells, which play a critical
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Figure 2. Correlation between inferred cell subpopulation proportions and complete blood count (CBC) cell type proportions. Spearman correlation
between estimated cell subpopulation proportions from two deconvolution methods and CBC proportions. Basos = basophils; CI = CIBERSORT; Eos =
eosinophils; LR = linear regression; Mons = monocytes; Neuts = neutrophils; Lymph = lymphocytes.

Table 6. Inferred Immune Cell Types Significantly Associated with Chronic Obstructive Pulmonary Disease status

Linear Regression CIBERSORT

Controls Cases P Value Controls Cases P Value

Aggregated monocytes 20.41 (0.93) 0.25 (0.96) 5.4E-07 20.35 (0.98) 0.20 (0.94) 6.3E-05
Monocytes 20.33 (0.99) 0.21 (0.95) 4.9E-05 20.32 (0.97) 0.19 (0.94) 2.1E-04
Naive B cells 0.21 (0.89) 20.13 (1.06) 2.4E-03 0.15 (0.92) 20.11 (1.04) 1.5E-03
Aggregated T cells 0.24 (0.99) 20.15 (0.99) 5.1E-03 0.40 (0.98) 20.22 (0.94) 3.7E-05
CD4 memory resting T cells 0.25 (1.05) 20.16 (0.95) 6.4E-03 0.23 (1.25) 20.15 (0.79) 0.01
Aggregated lymphocytes 0.24 (0.94) 20.13 (1.01) 0.02 0.25 (0.97) 20.13 (0.98) 0.02

Cell count values correspond to the estimated cell proportions normalized to a mean of 0 and SE of 1. See Figures E4 and E5 for boxplot distributions. Values are
mean (SD) unless otherwise indicated. P values calculated using Wilcoxon rank sum test. The following cell types were not analyzed because they were detected
in less than 10% of samples: M1 macrophages; activated dendritic cells; activated mast cells; g-d T cells; and T follicular helper cells.
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immunomodulatory role by suppressing
other lymphocyte populations in part
through IL-10 and transforming growth
factor-b signaling (37). Overall, these
findings provide additional support for the
model that the circulating immune
response to CS and COPD is characterized
by distinct aspects of suppression of the
adaptive immune response and a chronic
increase in myeloid cell types, and suggest
that, within smokers, there are patterns of
coordinated immune response that can be
used to identify clinically distinct subgroups
of subjects.

The main strength of this study is that
peripheral cell type quantifications were
available from a large number of smokers

with a broad range of lung function from
two independent studies. The study design
also enabled the study of immune cell
alterations adjusting for CS, a major
confounder of the relationship between
immune cell alterations and COPD severity.
The use of cell type deconvolution to study
the immune response in COPD is novel, and
enabled the simultaneous study of a large
number of lymphocyte subpopulations.
Because CBC quantifications and blood
gene expression were available in the same
ECLIPSE subjects from the same time point,
we could benchmark our deconvolution
approaches against a known standard.

This study also has important
limitations. Our analyses were based on a

single CBC measurement, and do not
explicitly account for measurement error
in the CBC. We adjusted for the most
common medications in this cohort that
could affect cell counts (oral and inhaled
corticosteroids), but we did not adjust for
other less commonly used medications
that can alter CBC measures. We did not
have access to immune cells in the lung or
specific lung compartments in our study
subjects, thus we could not relate the blood
observations to the lung compartment. We
also were not able to characterize immune
cell functional states through cytokine
profiling or quantification of response to
antigenic stimulation. Although we
observed significant associations between
circulating immune cell subpopulations
and COPD, further study is required
to determine the pathophysiological
significance of these observations. We did
not have flow cytometry values against
which we could benchmark our cell type
deconvolution estimates, but we did have
Coulter counter data available, and our
deconvolution results were generated using
methods that have been previously validated
against flow cytometry for immune cell
populations (20, 21).

In conclusion, analysis of CBCs and
proportions in over 6,000 subjects from
the COPDGene and ECLIPSE studies
demonstrated that cross-sectional FEV1

is associated with alterations in multiple
circulating immune cell types, including
total neutrophil count. COPD disease
progression, as quantified by decline in
FEV1, is associated with increased absolute
monocyte counts and decreased lymphocyte
and eosinophil counts at baseline. Cell type
deconvolution is a viable approach to
simultaneously study multiple immune cell
populations in smokers with COPD. Future
studies to characterize COPD-related
alterations in more fine-grained immune
cell types will benefit from quantification of
both cell type proportions and absolute
counts. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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