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Abstract

Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 

steady- state single precursor hydrocarbon oxidation experiments after passing through a 

temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, 

with all experiments following linear relationships between natural log of concentration vs. 
temperature−1. Negatives of observed slopes are converted to effective enthalpies of vaporization 

(ΔHeff) which range from 6 to 67 kJ mol−1. These values depend upon the properties of the parent 

hydrocarbon (e.g. number of carbon atoms, number of internal or external double bonds, presence 

of aromatic or non-aromatic ring structures), as well as conditions of the experiment (relative 

humidity, oxidant system, oxidant concentrations) and the products of the complex reactions (e.g. 

aerosol loading). The observed response to change in temperature can be well predicted through a 

feedforward Artificial Neural Network. The most parsimonious model, as indicated by consensus 

of several Information Criteria, is comprised of 13 input variables, a single hidden layer of 3 tanh 

activation function nodes, and a single linear output function. This model predicts the thermal 

behavior of single precursor aerosols to less than +/− 5%, which is within the laboratory 

measurement uncertainty, while limiting the problem of overfitting. The selected model reveals 

that prediction of the thermal behavior of SOA can be performed by a concise number of 

molecular descriptors of the reactant hydrocarbon, and a general description of the conditions of 

laboratory oxidation, namely the oxidant in the experiment and the mass of SOA formed. The 

inclusion of detailed experimental conditions, such as reacted hydrocarbon concentration (Δ HC), 

chamber relative humidity, chamber volumetric residence time, and/or initial oxidant concentration 

lead to over-fitted models. Additional input variables are not necessary for an efficient, accurate 

predictive model of the thermal behavior of the SOA produced. This work indicates that similar 

predictive modelling methods may be advantageous over current descriptive techniques for 

assignment of input parameters into air quality models.

Graphical abstract

ǂJacobs Technology, Inc., Research Triangle Park, North Carolina 27709.

EPA Public Access
Author manuscript
Environ Sci Technol. Author manuscript; available in PMC 2018 September 05.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Environ Sci Technol. 2017 September 05; 51(17): 9911–9919. doi:10.1021/acs.est.7b01968.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



INTRODUCTION

In order to predict the temporal and spatial distribution of aerosols, particularly Secondary 

Organic Aerosols (SOA), it is important to understand the distribution of organic compounds 

between the gas and particle phases.1 Key thermodynamic properties describing the gas to 

particle partitioning of organic compounds include saturation vapor pressures and the 

enthalpies of vaporization.2–8 During the past several decades, several techniques have been 

developed to probe thermodynamic properties of low volatility organic molecules often 

found in atmospheric aerosols.9–13 Evaluating the thermodynamic behavior of these 

compounds can be challenging, in part due to the low concentrations that need to be 

measured. Given that the number of organic molecules in the atmosphere may be in the 

range of tens of thousands or more, experimentally determined thermodynamic properties of 

compounds of atmospheric relevance is alarmingly limited.

Bilde et al.14 recently reviewed the current state-of-science on saturation vapor pressure 

measurement and estimation techniques. The extensive review focused on what they termed 

“top down” evaluation of individual compounds, and concentrated on dicarboxylic acids. 

Confounding experimental evaluation of atmospheric aerosol through the lens of individual 

compounds is the potential for complex chemical interactions with resultant nonideal 

behaviors. The number of potential combinations of such interactions leads to a large 

experimental domain to be evaluated. Thus, explorations of the thermal behavior of 

atmospheric aerosol gas/particle partitioning should reasonably rely, at least in part, on 

evaluations of bulk aerosols comprised of many combinations of compounds encompassing 

a broad range of potential interactions.

The work presented here describes what Bilde et al.14 term a “bottom up” laboratory effort 

focused on constraining bulk aerosol thermal behavior. Taken in light of their “top down” 

approach of exploring the behavior of individual aerosol constituents, the goal of this work 

is to begin to bridge the gap between expected behavior of single-components, through 

simple mixtures, toward complex, multiorigin atmospheric organic aerosols. To that end, 

effective enthalpies of vaporization of laboratory generated SOA are presented here from 

steady-state, individual precursor hydrocarbon oxidation experiments. Thermal behavior was 
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evaluated by passing laboratory generated aerosols through a heated inlet tube held at 

different temperatures. The natural logs of the resulting particle volumes are linearly related 

to inverse temperature. The slopes of these relationships can be succinctly predicted by an 

artificial neural network utilizing only 11 descriptors, including the volume of aerosol 

formed, and partial descriptions of the oxidation conditions and the parent hydrocarbon. 

Model selection and predicted thermal behavior of these aerosols, including insights from 

predictions thereof, are explored and discussed.

MATERIALS AND METHODS

Experimental Section

Steady-state SOA was generated through a set of controlled photochemical reactions in a 

14.5 m3 solid walled irradiation chamber.15 The TFE Teflon coated reaction chamber was 

operated as a continuous stirred tank reactor, producing a steady-state aerosol distribution 

that was repeatedly sampled. The residence time of gases in the chamber was typically 4 to 6 

h. The SOA precursor hydrocarbons used in this study, along with the conditions of the 

experiments, are listed in the Supporting Information (SI). Briefly, 18 experiments were 

performed with isoprene, 23 with a monoterpene, 17 with a sesquiterpene, 37 with an 

aromatic hydrocarbon (BETX compounds), 12 with an n-alkane, 16 with an oxygenated 

VOC (e.g., MBO, linalool) and 11 with naphthalene or a monomethyl substituted 

naphthalene. In all, 139 experiments are included in the results presented here. Individual 

hydrocarbons, as well as nitric oxide (NO), were injected through mass flow controllers 

from high pressure cylinders containing neat compound in air, by passing air through an 

impinger containing the neat liquid at a set temperature, or from a syringe pump containing 

the neat liquid. Ozone was generated photolytically and injected directly into the chamber; 

N2O5 was synthesized and cryogenically trapped prior to injection via a stream of air being 

passed through the cryo-trapped solid. A solution of 50% hydrogen peroxide was injected 

into a heated bulb prior to injection into the chamber. Two oxidant precursors, NO and 

H2O2, were used in conjunction with lights, while the other two, ozone and N2O5, were used 

in the dark.

Inlet and chamber concentrations of reactant hydrocarbons were measured by gas 

chromatography with flame ionization detection. Ammonium sulfate seed aerosol was 

generated by nebulizing a 10 mg L−1 aqueous solution (model 9032; TSI, Inc., Shoreville, 

MN). The seed aerosol stream then equilibrated to the dynamically controlled relative 

humidity (RH) in the chamber. In experiments conducted with NO or O3, RH was typically 

30% though select experiments ranged from < 2%).

Aerosol size distributions were measured after passing the aerosol through a heated inlet 

tube similar to the method of Rader and McMurry16 without the addition of dilution air. The 

heating apparatus is a 0.9 m, 0.64 cm i.d. stainless steel tube wrapped with heating tape. The 

temperature was controlled using an Omega 3000 Temperature Control Unit with a J-type 

thermocouple located in the center of the tube immediately upstream of the inertial impactor 

located at the inlet of the SMPS (model 3071A; TSI, Inc., Shoreville, MN). Measurements 

were performed at six temperatures over the range of 25 to 250 °C (25, 50, 100, 150, 200, 

and 250 °C). Average residence time in the heated tube was 25 s. Typically seven scans were 
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recorded for each temperature. The SMPS was operated as follows: 0.2 lpm sample flow; 2 

lpm sheath flow; scan from 16 to 982 nm. Number size distributions were measured by the 

SMPS, and have been transformed to volume distributions assuming spherical particle 

geometry.

Effective enthalpies of vaporization were estimated for the laboratory generated SOA 

produced. Details of the methods have been described earlier and are summarized here 

briefly.17 The natural log of the integrated aerosol volume is linearly correlated with inverse 

temperature (K−1). From these linear relationships, effective enthalpies of vaporization are 

calculated. Performance of these systems has been previously evaluated.17 Results from 

single component aerosols showed agreement with previously published values. Further tests 

evaluating the reduction of the volumetric residence time of aerosols in the heated zone by 

1/2 also showed no significant changes in the results, indicating that steady-state conditions 

had been achieved. Furthermore, analyses of single components that are known to be 

nonvolatile, such as sucrose, exhibited minimal changes with temperature. This 

demonstrates that transmission inefficiencies through the inlet tube are negligible and do not 

adversely impact the results shown.

Effective Enthalpies vs Volume Fraction Remaining

Calculation of the volume fraction remaining (VFR) has become common as a means to 

express the volume of SOA lost as temperature increase.18,19 The VFR is calculated by 

normalizing the aerosol volume at a given temperature by the greatest volume measured, 

such that resulting VFR values range from unity toward zero. Unfortunately, VFR suffers 

from several limitations. The fitting of experimental data to sigmoid fits restricts the 

subsequent application of such experimental values, as extrapolation to temperatures lower 

than the laboratory conditions is problematic. The upper limit of the sigmoid fit, (e.g., refs 
18 and 19) are typically unity at the lowest experimental temperature. Projection of sigmoid fit 

parameters (midpoint slopes and midpoint temperatures) for predicting thermal behavior of 

aerosols at atmospheric conditions that have temperatures lower than the lowest 

experimentally determined (typically where VFR = 1), will occur regularly in air quality 

models. The result would be a prediction of no increase in the particle volume (i.e., VFR still 

equal to 1), despite the physical likelihood of particle growth (e.g., condensation).

One solution might be to expand conditions of experimental data to span all potential 

conditions in the atmosphere. To date, no laboratory exists to conduct such experiments 

which span all atmospherically relevant conditions. Considering the costs and time required 

to expand current laboratory capabilities in order to allow for much greater coverage of 

physical conditions (e.g., chamber temperature range from −40 to +50 °C), with 

corresponding minimum temperature of thermal analysis of aerosols, the linearization in 

calculating the effective enthalpy of vaporization is preferable. This may allow, with some 

limitations, the potential to extend to temperatures below the lowest used in generating the 

data set (25 °C in the data presented here).

Finally, for the experimental values presented here, there was not convergence on unique 

solutions for a small number of sigmoid fits (7 of 139). Conversely, linear slopes were 

determined for every experiment, even for experiments with less than a complete number of 
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temperatures steps. As such, for the purposes of this study, calculation of effective enthalpies 

of vaporization is preferable to expressing response to temperature changes as volume 

fraction remaining (VFR) when attempting to predict thermal behavior of aerosols.

Predictive Statistical Modeling

Evaluations of thermal behavior of secondary organic aerosols has typically focused on 

explanatory and descriptive data analysis, with the goal of testing causal theory and 

developing a better understanding of the chemistry and physics driving the observed 

behaviors (e.g., refs 15,18–25). However, Breiman26 and Shmueli27 both contend that there is 

often conflation of the results of explanation and prediction, with additional, often 

complementary understanding being developed through predictive techniques. One such 

predictive approach frequently used across a broad range of disciplines is the use of 

Artificial Neural Networks (ANNs;28–32).

ANNs are a family of statistical models which can be used to estimate functions that depend 

on a number of inputs.33–36 While conventional statistical techniques can have limiting 

assumptions (e.g., variable independence, linearity), ANNs are able to capture 

multidimensional complexity which otherwise may be very difficult or impossible to 

explain. Indeed, an important theoretical underpinning of ANNs is that a single hidden layer 

composed of sigmoid functions can approximate any continuous function of real variables.
37–39

ANNs are an interconnected pattern of neurons. Each connection has an activation function 

that converts a neuron’s weighted input to its output activation. The weights of the 

interconnections are optimized during the training process. For the commonly used 

feedforward network, these fitting parameters are often optimized using a gradient descent 

method to produce the smallest difference between measured and predicted output. This 

process can involve a large number of iterations and adjustments. In some cases, the solution 

space can be irregular where numerous contours cause the network to stagnate in local 

minima. One common approach to this problem is to “seed” the initial weights many times 

with random values to help ensure finding the global minimum. More detailed descriptions 

of ANNs are available elsewhere.28–32

For the work described here, single hidden layer, feedforward neural networks were fit to the 

experimental data, utilizing SAS/Enterprise Miner v14.1 (PROC HPNEURAL) and 

associated techniques described by Sarle40 and by Bishop.28 Eighteen input variables listed 

in SI Table S1 were chosen based upon availability of laboratory data, as well as chemical 

understanding of precursors, oxidants, and experimental conditions of the reactions 

performed. Many potential input variables were integer valued, such as number of carbon 

atoms in the precursor and number of oxygen atoms in the precursor. Several potential input 

variables were real numbers, such as relative humidity of the reaction, the volumetric 

residence time of the chamber, reacted hydrocarbon concentration (ΔHC), molecular weight 

of the precursor hydrocarbon, and initial NOx concentration. Four potential input variables 

were binary, indicating the introduction of that oxidant, or oxidant precursor, to the reaction 

chamber for the experiment (NO, H2O2, O3, or N2O5). The first two of these also indirectly 

indicate the presence of UV light during the experiment, while the latter two indicate that the 
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experiment was conducted in the dark. Collectively, the efficacy of these four binary input 

variables were explored together (all present or all absent), effectively reducing the number 

of input variables to 15. Furthermore, the number of methyl and ethyl functional groups 

were evaluated in unison (both inputs present, or both absent) thereby resulting in a smaller 

effective number of input variables14 to be explored. The single output variable was the 

effective enthalpy of vaporization, having units of kJ mol−1 .

Networks were trained using the limited memory Broyden-Fletcher-Goldfarb-Shanno-

LBFGS-algorithm (to determine the descent direction along the error surface41) and the 

More-´Thuente line search algorithm (to find a new minimum of the error function along 

that line.28,42 While these algorithms are often quite good at not getting stuck in local 

optima, the nature of the input data, with multiple binary and integer values, was such that 

multiple random seeds were needed for each set of predictor variables and the models were 

trained for up to 10 000 iterations. Calculations were terminated when the average error 

gradient was ≤1 ×10−8.

Across the effective number of total combinations of input variables (214), there were clear 

indications of poor model performance (e.g., degradation of predictive accuracy, lack of 

convergence during fitting, etc.) as seen in Figure 1. The number of hidden nodes is 

practically limited by the degrees of freedom due to the relatively small number of 

laboratory measurements available for training (n = 139). As such, candidate networks were 

numerically evaluated by exhaustive search (100 random seeds × up to 44 hidden nodes × 

16384 combinations of input variables ~7.2 × 107). The 50 best candidate models, as 

described below, were evaluated by initializing with 10,000 random seeds. Model selection 

was performed as follows.

Model Selection

Calculation of a large number of potential predictive models leaves the difficult issue of 

choosing the “best” model, weighing the accuracy of the prediction relative to the potential 

for overfitting the model to the exiting data. Information criterion43 have been developed 

and refined to help address this problem. There are advantages and disadvantages for each 

information criterion and debate exists over which is most appropriate and should be used to 

select the “best” model.44,45 There exist several model assessment, selection, and 

comparison tools such as Akaike’s Information Criterion,46,47 Akaike’s information 

Criterion, corrected for small sample sizes (AIC,C;48), Schwarzs’ Bayesian Criterion (SBC;
49), Mallow’s Cp statistic (Cp;50,51), and the Deviance Information Criterion.52 Simply, 

these provide a quantitative means for selection of a model that predicts well, but does not 

overfit the existing data. Burnham and Anderson53–55 describe this information-theoretic 

approach of using Kullback–Leibler information56 for model selection, to include testing, 

for the available data, a series of plausible models, and indicating a measure of the strength 

of evidence for which model is the best among those considered. As Symonds and 

Moussalli,57 and Burnham et al.58 explain, the relative likelihood of each model, given the 

data, provides a means for evaluating which model is best supported by the data. Using 

AIC,C as the InformationTheoretic criterion upon which this judgment is based results in a 

difference between models with the lowest and next lowest values of the selection criterion,
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59 commonly referred to as ΔAIC,C, of 5.19. The model with the lowest value of AIC,C has 

an Akaike weight of 0.822, or an 82.2% chance that it is the best approximating model out 

of all 50 models using 10 000 initial seeds. The corresponding ratio of likelihoods, or model 

probabilities (also known as the evidence ratio58), between the “best fit” (i.e., model with the 

lowest AIC,C) and the “next best” is 0.822/0.061 = 13.4 and indicates 13.4 times greater 

empirical support for the “best fit” model relative to the ‘next best fit.’

MODEL EVALUATION

Exhaustive cross validation is a technique to assess how a fitted model will generalize to an 

independent data set.60–63 It can be used to estimate the accuracy of a predictive model. 

Generally, the data set is divided, removing p samples for use as a test set upon completion 

of training using only the remaining n–p samples. This is repeated for all possible 

combinations, making Leave-p-Out Cross Validation (LpO CV) computationally expensive, 

and most often infeasible even for small data sets. However, the particular case where p = 1 

is known as LeaveOne-Out Cross Validation (LOOCV), and requires refitting of the model 

to the available data only n times. The process is similar to the Jackknife,64,65 where 

measures of fit are computed on the remaining samples, however with LOOCV, the measure 

of fit is computed only on the sample left out of training the model. For the data presented 

here, LOOCV was performed after model selection using absolute error as the test metric, as 

the units remain kJ mol−1 and are most directly comparable to measurements and 

corresponding measurement uncertainties. LOOCV absolute errors range from 9.66 ×10−8 

up to 1.63, with errors of less than 1 × 10−5 in 120 cases of the LOOCV, while in only one 

instance the absolute error that was greater than 10% of the respective measurement error. 

That one case, (Cedrene/NO ; Exp’t 649) the LOOCV absolute error 1.63 kJ mol−1 was 

smaller than the corresponding measurement error of 3.4 kJ mol−1 and is reasonably small 

relative to the measured value (41.2 kJ mol−1). Furthermore, this largest LOOCV absolute 

error was still reasonable when compared with all measurement uncertainties, which ranged 

from 0.28 to 10.9 kJ mol−1 and averaged 3.6 (±2.9) kJ mol−1 . The LOOCV indicates only 

one case of modest predictive accuracy under the broad range of experimental conditions, 

including relative humidities, volumetric residence times, oxidants, and precursor 

hydrocarbons. Thus, LOOCV shows that the selected model provides a robust, accurate 

prediction of the effective enthalpy of vaporization of the SOA.

RESULTS & DISCUSSION

Measured Size Distributions

Chamber generated SOA in this work typically had a volume mode diameter of between 100 

and 400 nm. In all measurements, particle volume decreased at higher temperature. The 

natural log of the integrated volume is linearly related to one over temperature. The slope of 

this relationship, when multiplied by R, the gas constant, equals the effective Enthalpy of 

phase change for the aerosol.17 Volume size distributions at each temperature and the 

resulting relationship between total volume and inverse temperature for SOA generated from 

one representative isoprene/NOx photo-oxidation are shown in SI Figure SI 1.
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Values of Effective Enthalpy of Vaporization

Details of the initial conditions and the resulting thermal behavior of SOA for 139 

hydrocarbon oxidations measured are listed in SI Table SI 1. For the range of experimental 

conditions considered here, negatives of measured values of effective enthalpies of 

vaporization, ΔHeff range from 6 to 67 kJ mol−1 (34 ± 14 kJ mol−1 ; avg ± std dev) and 

depend largely on reactant hydrocarbon family. Broadly speaking, aromatic hydrocarbon 

precursors produce aerosols with effective enthalpies closest to zero, whereas n-alkanes 

produce aerosols that exhibit the greatest change in aerosol volume with a change in 

temperature. For aromatic hydrocarbons, photo-oxidation in the presence of NOx produces 

values closer to zero (more muted response to change in temperature) than do the other 

oxidants. Falling between aromatic hydrocarbons and n-alkanes are aerosols produced from 

the oxidation of biogenic precursors, such as isoprene, α-pinene, and many others. For 

example, particles formed in the photochemical reaction of toluene/NO exhibit an average 

ΔHeff of ~15 kJ mol−1, while those formed from isoprene/NO average ~40 kJ mol−1 and 

those formed from the oxidation of n-alkanes range from 55 to 67 kJ mol−1, depending 

largely upon carbon backbone chain length, and/or molecular weight. For similar 

photochemical systems, these values are consistent with values reported earlier using this 

technique.17 In general, the addition of functional groups, such as methyl- functionalities, 

moves the effective enthalpy away from zero by about 8 kJ mol−1 per methyl group. Similar 

responses are observed for ethyl moieties or oxygen atoms. Measurement errors are 

estimated as the standard error of the slope of the linear fits and range from 0.28 to 10.9 kJ 

mol−1 and average 3.6 (±2.9) kJ mol−1 (std dev). This translates to average measurement 

errors of 10.2% (±3.2% std dev).

Additional relationships can also be seen, such as a greater change in particle volume per 

unit change in temperature for SOA formed in the presence of H2O2 as the oxidant 

precursor, relative to that formed in the presence of NO, across the series of homologous 

aromatic hydrocarbons. Due to the large number of experiments and range of conditions 

across the experiments, the complexities and subtleties of multiple, possibly compound or 

nonlinear relationships can be difficult to reveal, isolate and understand. For example, Figure 

2 shows linear relationships between ΔHeff and four variables often considered to be 

important in understanding the thermal behavior of SOA: the molecular weight of the 

precursor hydrocarbon, the reacted hydrocarbon concentration, initial NOx concentration, 

and the volume of aerosol formed during the reaction. Linear relationships are poor, at best, 

with R2 values being below 0.25, and multiple linear relationships do not greatly improving 

the descriptive relationships. So, for work aimed at building a predictive model of effective 

enthalpies from measured values, the use of standard feed forward neural networks is 

advantageous over explanatory data analysis, as ANNs are capable of arbitrarily accurate 

approximation to a function and its derivatives.66,67

Model Description and Parameters

This selected model has 11 input parameters, one hidden layer consisting of 4 tanh activation 

functions, and a single linear output function (Figure 3).
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There are 54 degrees of freedom in the model and 85 degrees of freedom for error. The 

resulting network architecture is

Heff = ∑ (Hi × zi) + C

for i = 1 to 4, where

Hi = tanh(∑ input j × w1, j + input2 × w2, j + input3 × w3, j + … + b j)

for j = 1 to 11, includes C and bj, which are intercepts, whereas zi and wi are weights. The 

mean squared error was 6.2 (Figure 4). The combinations of input variables utilized in the 

selected model are listed in SI Table S2, and model weights and biases are listed in SI 

Attachment S1.

This equation can be used to predict the effective enthalpy of any precursor/oxidant system 

under conditions spanned by these 139 experiments. That is, the predictive equation is 

applicable in any case where values for all input variables fall within the ranges of the 

variables in this series of 139 experiments, such as a precursor hydrocarbon with a molecular 

weight between 54.09 and 282.46, number of internal double bonds between 0 and 5, 

number of external double bonds between 0 and 2, number of ring structures between 0 and 

3, number of methyl substituent groups between 0 and 4, number of ethyl substituent groups 

between 0 and 1, and a steady-state volume concentration of aerosol (or mass concentration 

in units of μg m−3 assuming unit density) produced between 2.21 and 382 nL m−3 . Use of 

this equation with even a single predictor variable outside those used to train the ANN 

should be expected to produce poor or erratic performance, and the results should not be 

considered reliable.

Application of the Neural Network

These results indicate that some potential input parameters, such as changes in the predicted 

mass dependence of effective enthalpies can readily be seen. This impact of predicting 

thermal behavior at a different aerosol loading is shown in Figure 5. Note that values close 

to zero indicate no change in descriptors of the experimental conditions, relative humidity, 

volumetric residence time, precursor carbon number, and number of oxygen atoms, are 

unnecessary for adequate prediction of the effective enthalpies of vaporization presented 

here. Implicit in this are some trade-offs that arise from parameter selection. For example, 

these results indicate that, all else being equal, the real number valued molecular weight of a 

precursor hydrocarbon is a better predictor variable than the integer valued number of 

carbon atoms in that same precursor. Additionally, while a binary indicator of which oxidant 

was used in the reaction is a good predictor variable, neither the concentration of nitrogen 

oxides, nor the amount of the precursor hydrocarbon that is consumed are not. However, 

efficient and parsimonious predication of the ΔHeff uses the amount of aerosol formed, 

which is already known to depend upon several of the potential input parameters that are not 

in the final, selected “best” model. Thus, all of the previously known complexities of aerosol 

formation, such as dependence of yield on amount of aerosol formed (e.g., ref 68), and 
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dependence of effective enthalpy on the [NOx] for α-pinene and toluene,17 are indirectly 

contained in several elements of the parametrization.

Exclusion from the statistical model does not imply that these are mechanistically (i.e., 

chemically) unimportant, but rather that over the range of conditions in the experiments 

presented here, such inclusion of potential input variables does not improve the prediction 

over what is already captured, directly or indirectly, through other variables. While this may 

be seen as a limitation from some perspectives, it presents new opportunities for exploring 

the physical and chemical relationships. For example, we can examine the impact of 

lowering the amount of aerosol formed during a hypothetical reaction on the effective 

enthalpies of vaporization across precursor hydrocarbon and oxidant systems described 

herein. By predicting the effective enthalpies at a more atmospherically relevant level, such 

as 5 nL m−3, (or 5 μg m−3, assuming unit density), aerosol volume per unit change in 

temperature. Overall, ΔHeff values do not change greatly when projecting to this lower 

aerosol loading, with both modest increases and decreases from the values measured at the 

experimental conditions. Greatest increases occur for m- and p-cresol/NO photo-oxidations 

which indicate up to 16 kJ mol−1 increase in ΔHeff upon decreasing the aerosol loading to 5 

nL m−3 . Greatest decreases occur for decane, undecane and dodecane in the absence of 

NOx, with up to 18 kJ mol−1 decrease in ΔHeff. Overall, predicted values of ΔHeff shift 

slightly to a tighter range, from 14.1 to 53.6 kJ mol−1 at this more atmospherically relevant 

aerosol loading, while the overall average value remains unchanged (33.8 ± 10.9 kJ mol−1) 

relative to the measured values at the conditions of the experiments.

Similarly, the influence of reaction pathways on the predicted values of ΔHeff can be 

explored. Earlier work revealed moderate, apparently linear relationships between initial 

NOx concentration and effective enthalpy values of SOA from α- pinene and toluene, 

respectively.17 In both cases increasing NOx resulted in decreases in the observed effective 

enthalpy for both of the systems evaluated experimentally. Those relationships, in 

conjunction with several other reports of precursor and oxidant influences on the thermal 

behavior of secondary organic aerosols, have indicated that variations in the chemical 

mechanisms could result in changes in bulk thermal properties of the SOA formed.16 By 

changing only the input variables related to the oxidant pathway, that is, which oxidant 

precursor was used to initiate the reactions, the influence of reaction pathways can be 

explored. One complication in such exploration is that, for a given precursor, reactions 

utilizing differing oxidants or initial NOx concentrations are not likely to produce the same 

aerosol loadings. This impact can be minimized by predicting to a common aerosol 

concentration, such as the value used in the earlier example (5 nL m−3).

In utilizing such a predictive model, care must be taken in order to select conditions which 

are realistic. For example, values of ΔHeff can only be measured in experiments where the 

hydrocarbon reacted, and SOA was formed. An example of this hazard would be predicting 

an effective enthalpy for the reaction of n-alkanes with ozone. The selected ANN will 

readily predict effective enthalpies. However, the actual chemical system is highly unlikely 

to react and form SOA, either in the laboratory or in the atmosphere due to the slow kinetics 

of such reactions.69,70
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In addition, experimental bias is inherent in the nature of laboratory work with apparatus 

such as photochemical reaction chambers. One such example is the limit posed by the 

volumetric residence times over which such reactions can be performed. Additional issues 

include the operational constraints of the laboratory systems used, such as minimum and 

maximum relative humidities that are reasonably obtainable. Those constraints are not 

unique to these experiments or results, but rather are inherent in exploring atmospheric 

chemistry in a laboratory setting. Briefly, experimental feasibility imposes these and other 

unspecified constrains onto the exploration of the systems being studied. Such limitations 

are encapsulated in the bounded range over which this model can be used to efficiently and 

accurately predict ΔHeff. As the goal of this work is efficient prediction, while balancing 

parsimony and accuracy, there are chemically important factors that do not rise to the level 

of predictive variables in the selected model. Experimental uncertainties (e.g., noise) makes 

such potential input variables comparatively less optimal than other model inputs which 

subsume the subtler, often more complex, “chemically relevant” parameters in the selected 

statistical model. Whether this predictive modeling approach can hold for more complex 

systems, such as mixtures of precursor hydrocarbons, or time-varying oxidation pathways, is 

not yet known and will be explored in subsequent work.
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Figure 1. 
Plot of minimum value of Akaike’s Information Criteria, Corrected (AIC,C) for each 

architecture versus number of input variables (100 random seeds). Overall Minimum shown 

inside diamond. Minimum AIC,C values truncated at 2000. Lowest 50 values were re-

evaluated with 10 000 random seeds for final model selection.
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Figure 2. 
Measured effective enthalpies (kJ mol−1) plotted against four experimental variables: 

precursor hydrocarbon molecular weight (g mol−1), reacted concentration of precursor 

hydrocarbon (ppmC), initial NOx concentration (ppb), and aerosol volume produced (nL m
−3, or μg m−3 assuming unit density). Data labels indicate the oxidant precursor used in the 

reaction. Linear regression through all data is shown by the solid black line.
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Figure 3. 
Architecture of Selected Neural Network.
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Figure 4. 
Predicted effective enthalpies (ΔĤeff) versus measured values (ΔHeff), both in units of kJ 

mol−1 . Horizontal error bars are measurement errors and vertical error bars are LOOCV 

absolute errors. See SI Figure SI-3 for a plot of residuals
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Figure 5. 
Predicted effective enthalpy (ΔĤeff) at minimum aerosol loadings (5 nL m3) plotted versus 

values measured at experimental conditions (ΔHeff). Data labels indicate experiment number. 

Details of experimental conditions (precursor hydrocarbon and precursor oxidant) are listed 

in Supporting Information.
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