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Abstract

Gaussian Process (GP) models provide a very flexible nonparametric approach to modeling 

location-and-time indexed datasets. However, the storage and computational requirements for GP 

models are infeasible for large spatial datasets. Nearest Neighbor Gaussian Processes (Datta A, 

Banerjee S, Finley AO, Gelfand AE. Hierarchical nearest-neighbor gaussian process models for 

large geostatistical datasets. J Am Stat Assoc 2016., JASA) provide a scalable alternative by using 

local information from few nearest neighbors. Scalability is achieved by using the neighbor sets in 

a conditional specification of the model. We show how this is equivalent to sparse modeling of 

Cholesky factors of large covariance matrices. We also discuss a general approach to construct 

scalable Gaussian Processes using sparse local kriging. We present a multivariate data analysis 

which demonstrates how the nearest neighbor approach yields inference indistinguishable from the 

full rank GP despite being several times faster. Finally, we also propose a variant of the NNGP 

model for automating the selection of the neighbor set size.
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INTRODUCTION: GAUSSIAN PROCESSES

The growing capabilities of Geographical Information Systems (GIS) have resulted in a 

deluge of geo-indexed datasets observed over a very large number of locations. Gaussian 

Process-based models provide a very flexible non-parametric approach to capture the spatial 

patterns in such datasets. A Gaussian Process (e.g., Refs 1,2) over a spatial domain  ⊂ ℝd 

is a random surface w(s) over D with a well-defined probability law. It is customarily 
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specified as w(s) ~ GP(mθ(·), Cθ(·, ·)), where mθ(s) is a mean function and Cθ(s, t) is a 

covariance function. This can be extended to a multivariate setup, where w(s) = (w1(s), 

w2(s), …, wq(s))′ is a q × 1 vector and Cθ(·, ·) is a valid cross-covariance function (e.g., Ref 

3), that is, for any two locations s and t, Cθ(s, t) is a q × q cross-covariance matrix whose (i, 
j)th entry is cov {wi(s), wj(t)}. The advantage of a Gaussian Process is that its finite 

dimensional realizations follow a multivariate Gaussian distribution. Specifically, if w = 

(w(s1)′, w(s2)′, …, w(sn)′)′ is the nq × 1 vector of realizations of w(s) over a set of 

locations in S = {s1, s2, …, sn}, then

p(w ∣ θ) ∝ 1
det (Cθ)exp − 1

2(w − mθ)′Cθ
−1(w − mθ) (1)

where mθ = E[w | θ] is the nq × 1 mean vector and Cθ = cov (w| θ) is the nq × nq covariance 

matrix with (i, j)th block Cθ(si, sj).

The popularity of Gaussian Processes among non-parametric models is largely indebted to 

their unparalleled out-of-sample predictive performance and ability to produce a 

stochastically interpolated surface with uncertainty quantified predictions at new locations. 

The latter (known as kriging) can be simply achieved using properties of multivariate 

Gaussian distributions. For example, if mθ(·) is fixed and known over the entire domain, 

then, given the values of w(si) for locations in S, we can interpolate the value of the process 

at any arbitrary point s using

w(s) = mθ(s) + ∑
j = 1

n
Aθ j(s)(w(s j) − mθ(s j)) + η(s) (2)

where η(s) ∼ind N(0, Cθ(s, s) − Cθ(s, S) Cθ
−1Cθ(S, s)), Cθ(s, S) is the 1 × n block-matrix with Cθ(s, 

si) as the ith block, Cθ(S, s)) = Cθ(s, S)′ and the Aθj(s)s are q × q ‘kriging weights’ obtained 

by solving the linear system CθAθ(s) = Cθ(S, s) for Aθ(s) = [Aθ1(s): Aθ2(s): …: Aθn(s)]′. 

This results in mθ(si) + ∑ j = 1
n Aθ j(si)(w(s j) − mθ(s j)) = w(si) for each si in S. In fact, the right 

hand side of Eq. (2) is a deterministic interpolator since var (η(si)) = 0 for each si in S.

In practice, we often observe a q × 1 variate response y(s) along with a set of explanatory 

variables X(s) and the GP w(s) is used to capture the spatial patterns beyond the observed 

covariates. In a Bayesian setting, inference proceeds from the posterior distribution of all 

unknown parameters and spatial random effects, which is proportional to

p(θ, τ, β) × N(w ∣ 0, Cθ) × ∏
i = 1

n
N(y(si) ∣ X(si)β + w(si), D(τ)) (3)
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The noise covariance D(τ) represents measurement error or microscale variation and 

depends upon a set of variance parameters τ. The regression component X(si)β conveniently 

retains the nice interpretive properties, whereas w(s) represents effects from unknown or 

unobserved factors. Without loss of generality the mean function of the GP is now taken to 

be zero as it corresponds to the residual process after adjusting for the regression. 

Additionally, in a Bayesian setup, priors for β, θ, and τ are included to complete the joint 

model specification.

If the number of locations n is large, traditional GP models run into multiple computational 

issues. Evaluation of the Gaussian density for w in Eqs (1) or (3) involves storing Cθ and 

computing its inverse and determinant. Memory requirements for storing the nq × nq matrix 

Cθ is O(n2q2) and may exhaust storage resources for large n. Even if Cθ can be stored, 

computing the inverse and determinant are both very expensive operations. This is typically 

best achieved using the Cholesky decomposition Cθ = LΛL′, where L is lower triangular 

and Λ is diagonal. However, the Cholesky decomposition takes O(n3q3) floating point 

operations (flops), so even for an univariate response (q = 1) and modestly large n (≈ 
50,000) the computational demands cannot be met by a modern computer. This is often 

termed the ‘big-N’ problem in spatial statistics. This has necessitated computationally 

efficient alternatives to the traditional GP models.

In the next section, we provide a brief overview of the existing, and still growing, literature 

on modeling spatial and spatiotemporal datasets. Subsequently, we focus upon a class of 

highly scalable sparsity-inducing Gaussian process models for massive space-time data. This 

approach has recently been explored in Refs 4,5, called Nearest-Neighbor Gaussian 

Processes (NNGP) using sparse Gaussian distributions on directed acyclic graphs. In this 

article, we offer an alternate development of how to construct a welldefined NNGP using 

essentially the kriging equation. This construction ensures a legitimate spatial process and 

one does not need to prove Kolmogorov’s existence or consistency conditions as described 

in Ref 4.

The remainder of this article evolves as follows. In Section Modeling Large Spatial Data we 

present a brief survey of approaches for modeling large spatial data, Section Nearest-
Neighbor Gaussian Processes presents the construction of the NNGP, Section Multivariate 
Data Analysis presents a synthetic application of the NNGP to bivariate spatial outcomes 

and Section Choosing m extends the NNGP to learn about the number of neighbors (as 

opposed to fixing them). Finally, Section Conclusion concludes the article with some 

remarks.

MODELING LARGE SPATIAL DATA

There is a burgeoning literature on statistical modeling of large spatial and spatiotemporal 

datasets. Some approaches try to approximate the likelihood in Eq. (1) to obtain a 

computationally tractable pseudo-likelihood. Subsequently the covariance parameters θ are 

estimated using maximum composite likelihood approaches. The likelihood simplifications 

include pairwise differences composite likelihoods,6,7 block composite likelihood,8 small 

conditioning sets9,10 among others. Subsequently, kriging at a new location s0 proceeds by 
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imputing these estimates in Eq. (2). If n is large this can present a computational roadblock 

as one now needs to store the estimated covariance matrix Cθ̂ to calculate the kriging 

weights C
θ

(s0, S)C
θ
−1. For kriging at N new locations, the total flop count post estimation is 

still O(n3 + Nn2). So for large n and N these requirements remain prohibitive.

Compactly supported covariances (CSC)11–15 are also popularly used to reduce the 

computational burden. CSC yields sparse correlation and precision structures to expedite 

calculations. Despite the sparsity, computing det(Cθ) may still remain problematic. Also, 

empirical studies revealed that tapered covariance-based approaches may sometimes 

perform worse than simple alternatives like block diagonal covariance matrices16 or nearest-

neighbor type local approximations.17 Yet another approach embeds the irregular locations 

in a larger regular lattice to construct computationally tractable covariance matrices utilizing 

spectral properties18 or Gaussian Markov Random Fields.19 Inferences from these methods 

are limited to the resolution of the embedding lattice and cannot interpolate at finer 

resolutions.

In machine learning, Gaussian Process regression is used to facilitate uncertainty-quantified 

interpolation and smoothing of an outcome observed at a large number of inputs (locations). 

When the input-dimension d is large, Ref 20 exploits dimension-wise additive or 

multiplicative structure in the covariance functions to reduce computation using a multitude 

of fast algorithms and optimizations. The computational complexity of their algorithms 

decrease with increasing dimensionality and becomes asymptotically scalable (O(n)) at d = 

∞. However, for large spatial data (d = 2), there is little computational gain accrued. Very 

recently, the study of Ref 21 demonstrated that exact kriging can be performed in a scalable 

fashion using a suitable sparse grid design for the locations. While it is feasible to control 

the input locations for computer experiments, most spatial datasets commonly found in 

forestry or ecology are observed at a very large number of irregular locations and any 

computationally scalable exact kriging method remains elusive.

For irregularly located large datasets, there is a considerable amount of literature on low-

rank approaches for large spatial data.2,22–33 Low-rank models approximate the covariance 

matrix Cθ as the sum of low rank and sparse (diagonal) matrices, that is, Cθ≈BKB′ +Δ 

where B is n × r, K is r × r and Δ is diagonal. Likelihood computations now only involve 

inversion of the r × r matrix K and, as r ≪ n, the flop count is limited to O(nr2 + r3). Some 

low rank approaches23,26 can be formulated as well-defined Gaussian Processes over the 

domain. This is very convenient as it provides an unified platform for parameter estimation 

and kriging at arbitrary resolutions. Furthermore, a full rank GP prior for the spatial random 

effects can be simply replaced with a low-rank GP prior in any hierarchical setup like Eq. 

(3). However, as demonstrated in,4,34 low rank processes struggle to emulate the inference 

from the expensive full-rank GPs. The gain in computational efficiency is often offset by 

oversmoothed estimates of the spatial surface.

Localized GP regression based on few nearest neighbors has also been used to obtain fast 

kriging estimates. Ref 35 provides fast updates of kriging equations after adding a new 

location to the input set. Iterative application of their algorithm yields a localized kriging 

estimate based on a small set of locations (including few nearest neighbors). The local 
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estimate often provides an excellent approximation to the global kriging estimate which uses 

data observed at all the locations to predict at a new location. However, this assumes that the 

parameters associated with the mean and covariance of the GP are known or already 

estimated. Local Approximation GPs (LAGP)17 extend this further to estimate the 

parameters at each new location. LAGP thus essentially provides a non-stationary local 

approximation to a Gaussian Process at every predictive location and can be used to 

interpolate or smooth the observed data.

Recently, Ref 4 proposed a NNGP for modeling large spatial data. NNGP is a well-defined 

Gaussian Process over a domain D ⊂ ℝd and yields finite dimensional Gaussian densities 

with sparse precision matrices. This has been also extended to a dynamic NNGP for massive 

spatiotemporal data.5 Like the Gaussian Predictive Process, NNGP enjoys all the benefits of 

being a proper GP. It delivers massive scalability both in terms of parameter estimation and 

kriging. Most importantly it does not oversmooth like low-rank processes and accurately 

emulates the inference from the full-rank GPs. In the next section, we provide a general 

method to construct scalable Gaussian processes and demonstrate how particular choices 

lead to the NNGP and dynamic NNGP models.

NEAREST-NEIGHBOR GAUSSIAN PROCESSES

The computational bottleneck in evaluating Eq. (1) lies in computing the Cholesky 

decomposition of Cθ. We show here how the NNGP models proposed by Refs 4,5 can be 

constructed within an alternative framework by appropriately choosing the kriging weights 

in Eq. (2). Assume, without loss of generality, that mθ = 0. We will construct the process in 

two steps. First, we specify a multivariate Gaussian distribution for the realizations of the 

process over a fixed finite set S = {s1, s2, …, sn}. Subsequently we extend it to a process 

over the domain through kriging equations based on the locations in S. These two steps are 

described below:

wS = (w(s1)′, w(s2)′, …w(sn)′)′ N(0, Kθ)

w(s) = ∑
j = 1

n
A j(s)w(s j) + η(s)

η(s) ∼ind N(0, Γθ(s)) for any s ∉ S

(4)

where Kθ is a nq × nq positive definite matrix, each Aθj(s) is a q × q matrix and each Γθ(s) is 

a q × q positive definite matrix.

It is straightforward to see that the process defined by Eq. (4) is a well-defined Gaussian 

Process on the domain D. In fact, as demonstrated in,5 Eq. (4) subsumes a large class of 

Gaussian Processes. For example, if we choose Kθ = Cθ (the covariance of wS assuming 

they are the realizations of the full GP), Aθ(s) to be the kriging weights Cθ(s, S)Cθ
−1 (as 

defined in Eq. (2)) and Γθ(s) to be the corresponding kriging variance 
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Cθ(s, s) − Cθ(s, S)Cθ
−1Cθ(S, s), then w(s) has the same distribution as the full GP with 

covariance function Cθ(·, ·). If S is chosen to be a small set of ‘knots,’ w(s) becomes a low-

rank Gaussian Process. Instead of opting for low-rank specifications, we will use Eq. (4) to 

construct a class of sparsity-inducing NNGP. This construction of the NNGP is different 

from and perhaps more intuitive than Ref 4 and clearly reveals the NNGP as a fully model-

based extension of alternative nearest neighbor approaches such as Refs 9,10.

The construction in Eq. (4) yields a legitimate process for any finite collection of spatial 

locations S. One convenient choice is to let S be the set of observed locations. Then the 

choice of Kθ determines the scalability of parameter estimation whereas choices for the 

matrices Aθ(s) and Γ(s) determine the scalability for kriging. Let U = {u1, u2, …, uN} be any 

finite set of locations outside S. Then, from Eq. (4) we have

P(wS ∪ U) = N(wS ∣ 0, Kθ) × N(wU ∣ AUwS, ΓU) (5)

where AU = (Aθ(u1)′, Aθ(u2)′, …, Aθ(uN)′)′ and ΓU = diag(Γθ(u1), Γθ(u2), …, Γθ(uN)) In 

a full GP, the conditional variance is C(wU ∣ wS) = Cθ(u, u) − Cθ(u, S)Cθ
−1Cθ(S, u). So, if two 

predictive locations ui and uj are nearby, their correlation is preserved in the conditional 

distribution. However, in practice, if the number of predictive locations is large, such joint 

kriging is rarely used as C(wU |wS) is large and generating predictive samples becomes 

computationally prohibitive. Instead, for large datasets it is customary to carry out 

predictions independently at each new location. Then the predictive variance becomes 

Cθ(u, u) − Cθ(u, S)Cθ
−1Cθ(S, u). Independent kriging circumvents large matrix calculations and 

can also leverage embarrassingly parallel computing if available. Since, our scalable 

Gaussian Process is designed for large datasets, we build the predictive distribution by 

incorporating this conditional independence in the second equation of Eq. (4). If two 

predictive locations are sufficiently close, their neighbor sets will be same and, hence, 

although conditionally independent, marginally they will exhibit strong correlation. Also, a 

simulation study comparing the performance of full GP independent kriging, full GP joint 

kriging and NNGP kriging provided in (Appendix G)4 reveals that joint kriging hardly 

yields any noticeable benefits.

The Gaussian Process defined in Eq. (4) will be scalable if, for any finite U the storage and 

computation requirements for evaluating the joint likelihood P(wS ∪ U) are both O(n + N), 

that is, linear in the total number of locations. A prerequisite for this is to construct Kθ
−1 with 

O(n) non-zero entries. How can we achieve this?

One approach would be to avoid computing the Cholesky factorization and directly model 
Kθ = LΛL′, where L is unit lower-triangular (i.e., has Iq’s or q × q identity matrices along 

the diagonal) and Λ is block-diagonal with q × q positive-definite submatrices along the 

diagonal. In other words, we model the elements of L and Λ to construct Kθ. Note that 

det(Kθ) is the product of the diagonal entries of Λ. Since wS ~ N(0, LΛL′), we have L−1wS 
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~ N(0, Λ). Letting L−1 = I − A we have wS = AwS + N(0, Λ). Since, L is lower triangular, so 

is A with q × q blocks Ai,j. If Λi denotes the ith diagonal block of Λ, we have

w(si) N ∑
j = 1

i − 1
Ai, jw(s j), Λi (6)

Let Si = {s1, s2, …, si − 1}. If {Ai,j | j = 1, 2, …, i − 1} are chosen to be the kriging weights 

of w(si) based on wSi (analogous to Eq. (2)), and Λi the corresponding kriging variance, we 

obtain Kθ = Cθ. However, this involves inverting (i − 1)q × (i − 1)q matrices Cθ(Si, Si) 

which will be computationally cumbersome for larger i.

Computational efficiency can be achieved by limiting the number of non-zero Ai,j blocks in 

each row of A to at most m where m ≪ n. Let N(si) denote {sj |Ai,j ≠ O}. The non-zero Ai,js 

can then be obtained as the kriging weights of w(si) based on wN(si). The kriging variance Λi 

becomes Λi = Cθ(si, si) − Cθ(si, N(Si)) Cθ(N(si), N(Si))−1 Cθ(N(Si), si). So, calculating Ai,js, 

Λis now only require inverting mq × mq matrices. The determinant of Kθ can now be easily 

calculated as det (Kθ) = ∏i = 1
n det (Λi). Hence, the total flop count for evaluating the density 

N(wS | 0, Kθ) can be shown to be O(nm3q3).

The size of the neighbor sets control the sparsity of Kθ
−1 whereas the choice of the neighbor 

sets plays a vital role in determining how accurately Kθ can approximate Cθ. Refs 4,10 used 

m nearest neighbors of si among Si to construct N(si). As nearest neighbors corresponds to 

points with highest spatial correlation, this choice produced excellent approximations. In a 

spatiotemporal domain without any definition of distance, Ref 5 selected adaptive neighbor 

sets Nθ(si) based on the strength of the correlation function Cθ(·, ·).

NNGP uses nearest neighbors to create the small conditioning sets. Nearest neighbors have 

been shown to be sub-optimal for predicting at a new location—theoretically, for some 

special designs, in Ref 9 and empirically in Refs 17,35 However, the alternatives proposed 

do not guarantee better performance. For example, Ref 9 proposes using few nearest 

neighbors and few distant ones. This often performs worse than nearest neighbors (Ref 4 

Appendix I). The study of Ref 17 chooses the neighbor set sequentially by maximizing the 

reduction in predictive variance at each step of expanding the neighbor set. Ref 35 

demonstrated that the optimal neighbor sets are not necessarily nested as their size increases. 

Hence, a greedy forward selection procedure like the one proposed in Ref 17 is not 

guaranteed to yield the optimal subset of size m. The construction of scalable Gaussian 

Processes does not require the neighbor sets to be nearest neighbors. Any subset of size m—

including the choices used by Ref 9 can be used to construct valid sparse Gaussian 

Processes. However, through extensive simulations over a very wide range of scenarios 

documented in Ref 4, the simple choice of nearest neighbors is vindicated by the 

consistently accurate approximations of the full GP by NNGP.
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Finally, we turn to define Aθ(s) = [Aθ1(s) : Aθ2(s) : … : Aθn(s)] and Λθ(s) for every s ∉ S. 

Once again sparsity is achieved by defining a small neighbor set N(s) ⊂ S and choosing the 

q × q blocks Aθj(s) = O if sj ∉ N(s). The non-zero Aθj(s)s are simply obtained as the kriging 

weights for w(s) on wN(s). Choosing Λθ(s) as the kriging variance var (w(s) |wN(s)) 

completes the process specification. Evaluating the likelihood N(w(s) |Aθ(s)wS, ΛS) only 

requires inverting an mq × mq matrix. So for inference over S and N locations outside S, the 

total storage and computational requirements are O((N + n)m2q2) and O((n + N)m3q3), 

respectively. As these requirements are linear in N + n and m is typically very small (≈ 20) 

this ensures that the resulting GP is scalable to massive datasets.

As NNGP is a proper Gaussian process, we can use it as a prior for the spatial random 

effects in any hierarchical model formulation. For example, the Bayesian model in Eq. (3) 

now becomes:

p(θ, τ, β) × N(w ∣ 0, Kθ) × ∏
i = 1

n
N(y(si) ∣ X(si)β + w(si), D(τ))

An efficient Markov chain Monte Carlo (MCMC) sampler using Gibbs steps and random-

walk Metropolis steps described in Ref 4 can now be used for updating w(s), β and the 

covariance parameters θ. Predictions at arbitrary locations in U = {u1, u2, …, uN} are 

performed by sampling from the posterior predictive distribution

∫ N(yU ∣ XUβ + wU, DU(τ)) × N(wU ∣ Aθ(U)wS, Γθ(U)) × p(wS, β, τ, θ ∣ yS)

where yU = (y(u1)′, y(u2)′, …, y(uN)′)′, XU is the corresponding covariance matrix, DU(τ) 

= diag(D(τ), D(τ), …, D(τ)), Aθ(U) = (Aθ(u1)′, Aθ(u2)′, …, Aθ(uN)′)′ is the sparse kriging 

weights matrix and Γθ(U) = diag(Γθ(u1), Γθ(u2), …, Γθ(uN))′. We refer the reader to Refs 

4,5 for details on these sampling methods.

MULTIVARIATE DATA ANALYSIS

We present the results of a multivariate simulation study to demonstrate the accuracy of 

scalable Gaussian Processes. The synthetic data comprises of q = 2 responses at each of n = 

1000 locations within a unit square domain. The bivariate responses were generated as:

y(s) =
y1(s)
y2(s) = N

β10 + x1(s)β11 + w1(s)
β20 + x1(s)β21 + w2(s),

τ1
2 0

0 τ2
2 (7)

The spatial random effects w(s) = (w1(s), w2(s))′ are generated from a bivariate Gaussian 

process with a isotropic cross-covariance specification C(si, sj | θ) = AΔA′, where A is 2 × 2 

lower-triangular with positive diagonal elements, Δ is 2 × 2 diagonal with ρ(si, sj; ϕb, νb) as 
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the bth diagonal entry, b = 1, 2 (e.g., Ref 36). Here ρ(si, sj; ϕb, νb) denote the Matérn 

correlation function, that is,

ρ(si, s j; ϕ, ν) = 1
2ν − 1Γ(ν)

(‖si − s j‖ϕ)νKν(‖si − s j‖ϕ); ϕ > 0, ν > 0 (8)

where ||si − sj|| is the Euclidean distance between locations si and sj with ϕ controlling the 

decay in spatial correlation and ν controlling the process smoothness.

The true parameter values used to generate the data are shown in the first column of Table 1. 

The non-intercept predictor columns x1 and x2 were drawn from N(0, 1). In Table 1, the first 

subscript on the regression coefficients index the response variable, for example, β1,0 and 

β1,1 are the intercept and slope associated with the first response variable. Here too, 

response-specific subscripts index the elements of the cross-covariance matrix AA′, nuggets 

τ1
2 and τ2

2, and correlation parameters {(ϕb, νb) | b = 1, 2}. Candidate models included the 

full Gaussian Process (Full GP) and NNGP with m = 5 and m = 10. The models were 

assessed using model fit and out-of-sample prediction. Metrics used were Deviance 

Information Criterion (DIC),37 GPD score38 or Root Mean Square Predictive Error 

(RMSPE).39

For all models, the intercept and slope regression parameters were given flat prior 

distributions. The variance components τ1
2 and τ2

2 were assigned inverse-Gamma IG(2, 1) 

priors, AA′ followed an inverse-Wishart IW(3, 0.1), and the Matérn spatial decay and 

smoothness parameters received uniform prior supports U(3, 30) and U(0.1, 1), respectively. 

These prior distributions on ϕ and ν correspond to support between approximately 0.05 and 

1.3 domain distance units.

Candidate model parameter estimates and performance metrics based on 25,000 iterations 

are provided in Table 1. We discarded the first 5000 iterations as burn-in samples.

All model specifications produce similar posterior median estimates and 95% credible 

intervals that contain the true parameter values. DIC and GPD scores suggest the NNGP 

models have improved fit over the Full GP model. Figure 1 provides scatter plots of the 

response specific true random effects versus posterior estimates from the Full GP and NNGP 

models. These plots show that both models closely approximate the true multivariate 

process. Further, both models produce ~99% coverage rates for the random effects 

associated with the first and second response variables. However, the NNGP model provides 

marginally narrower credible interval widths, that is, NNGP mean widths of 1.66 and 1.77 

for the first and second response, respectively, versus 1.8 and 2.6 from the Full GP model. 

The narrowing of the credible intervals is particularly apparent when comparing Figures 1a 

and 1b.

Datta et al. Page 9

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2018 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Turning to the out-of-sample prediction results, the NNGP and Full GP models produced 

comparable RMSPE and mean 95% credible interval widths as shown in Table 1. All models 

showed appropriate 95% credible interval coverage rates.

The last row in Table 1 provides model computing times for one chain of 25,000 iterations. 

Clearly the reduced dimensionality and computational complexity of the NNGP models 

provide enormous reductions in computing time over the conventional GP sampler.

CHOOSING m

The size of the neighbor sets m has direct impact on the storage and computation of a NNGP 

model. Simulation experiments detailed in Ref 4 demonstrates how one can run NNGP 

models for different choices of m (possibly in parallel) and choose m which minimizes some 

model evaluation metrics like RMSPE. Nevertheless, for large datasets or in absence of 

parallel resources, running the MCMC for multiple values of m may remain a computational 

challenge. We propose an alternative method that bypasses the need for multiple runs. We 

consider m as a parameter and update it dynamically in the Gibbs’ sampler. The neighbor 

sets and consequently the NNGP covariance Kθ now change with m. We denote them by 

Nm(s) and Kθ(m) respectively. If π(m) denotes a prior for the discrete parameter m, we can 

generate samples using the full conditional

p(m ∣ · ) ∝ π(m)N(w ∣ 0, Kθ(m)) (9)

The support of π(m) is chosen to be [1, m0] where m0 can be determined from the available 

computational resources, that is, choose m0 for which O(nm0
2) storage is available and O(nm0

3)

time is reasonable. Since, Eq. (9) does not correspond to any standard distribution, m can be 

updated using a Metropolis random walk step within the Gibbs’ sampler.

We illustrate the performance of this variable-m NNGP in a small simulation experiment. 

We generated data at 2000 locations within the unit square from the univariate model y(s) = 

β1x1(s) + β2x2(s) + w(s) + ε(s), where x1 and x2 were generated from N (0, 1), 

ε(s) ∼iid N(0, τ2) and w(s) ~ a GP with exponential covariance structure (Matern covariance 

with ν = 0.5) with decay ϕ. For model fitting, we used a NNGP prior for w(s), improper 

prior (∝ 1) for β1 and β2, uniform prior for ϕ and inversegamma prior for σ2 and τ2.

We used 10,000 MCMC iterations and discarded the first 5000 as burnins. For the variable-

m NNGP we used a discrete uniform prior for m with support {1, 2, …, 20}. We also fit 

regular NNGP models with m = 10 and m = 20 as benchmarks. The true and fitted values of 

the parameters are shown in Table 2. We observe that the coefficient estimates for β1, β2, 

and τ2 were similar for all three models, whereas the estimate of σ2 was much better for the 

variable-m NNGP. Also the posterior 95% credible intervals for σ2 and ϕ were significantly 

narrower than those for the regular NNGPs. This observation is slightly surprising as the 

possible range of values of m includes both 10 and 20—the size of the neighbor sets for the 

regular NNGPs. Nevertheless, we observed that varying the size of the neighbor sets can 
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yield improved confidence intervals in addition to saving additional computations for 

running multiple NNGPs.

Computationally, the variable-m NNGP adds little to the storage and memory requirements 

of the standard NNGP. If m0 denotes the upper bound for the support of m, then the storage 

requirements are O(nm0
2) and the computational complexity for evaluating the NNGP 

likelihood at the lth MCMC iteration will be O(nm(l)3) where m(l) denotes the updated 

value of m at the lth iteration.

Figure 2 shows the posterior frequency distribution of m in the variable m NNGP. While the 

distribution of m is not interesting for any inferential purposes, the figure shows that 

although the prior is discrete uniform {1, 2, …, 20}, the posterior shows heavy left skewness 

with higher mass for larger values of m. This is expected as the data are generated from a 

full-rank GP which essentially corresponds to m = n. However, if computational resources 

demand that more mass towards smaller values of m is desirable, one can add a suitable 

prior penalizing large m.

CONCLUSIONS

Fully model-based Bayesian inference for large spatial and spatiotemporal datasets is 

challenging because of expensive computations involving matrices without apparent 

exploitable structure. Recently Ref 4 proposed a NNGP which is a GP whose realizations 

over any finite collection of locations will have a sparse precision matrix. In this expository 

article, we have provided some further insight into the NNGP models and how they can be 

easily constructed as linear transformations of the process realizations over a fixed set of 

locations. We not only illustrate their use in Bayesian hierarchical modeling but also add 

some additional insight by modeling (rather than fixing) the number of neighbors.

The construction of NNGP requires a preo-rdering of the spatial locations. While the choice 

of ordering has been empirically shown to have little impact on the performance of the 

NNGP4 or other nearest neighbor based approaches,9,10 it remains an annoyance from a 

purely theoretical perspective as spatial locations do not have any natural ordering.

Also, NNGP, in its current form is only constructed using stationary (or isotropic) 

covariance functions. Extending NNGP to create sparse Gaussian Processes for modeling 

non-stationary spatial surfaces also remains challenging. Kriging based on few Euclidean 

nearest neighbors may no longer remain accurate if the stationarity assumption is not valid. 

LAGP17 possess advantage in this aspect as the covariance parameters are estimated at each 

predictive location thereby incorporating non-stationarity. The implementation of LAGP in 

the R-package laGP is also extremely efficient.

The storage and computational requirements of NNGP are linear in size of the dataset and 

the dimension of the locations. Hence, it can easily scale to datasets with hundreds of 

thousands or possibly millions of high-dimensional locations. One potential area of concern 

is that, the spatial random effects are updated sequentially in the MCMC algorithm for 

NNGP described in.4 While empirical observations reveal that convergence is achieved very 
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fast, a block update of the spatial random effects may speed up the MCMC significantly. 

Two possible algorithms were described in Ref 4 but their performances were not evaluated. 

More research is being undertaken to fully explore these possibilities. We also plan to 

migrate our lower level C++ code into an R package for wider accessibility.
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FIGURE 1. 
Multivariate synthetic data analysis true versus fitted spatial random effects w for the full 

Gaussian Process (Full GP) and nearest neighbor Gaussian process (NNGP) for m = 5. 

Superscripts on w(1) and w(2) correspond to the random effects associated with the first and 

second response variables. (a) Full GP w(1), NNGP w(1), (c) Full GP w(2) and (d) NNGP 

w(2)
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FIGURE 2. 
Posterior distribution of m for variable-m NNGP.
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TABLE 1

Multivariate Synthetic Data Analysis Parameter Estimates and Computing Time in Minutes for Candidate 

Models. Parameter Posterior Summary 50 (2.5, 97.5) Percentiles

True

NNGP

Full Gaussian Processm = 5 m = 10

β1,0 1 0.81 (0.22, 1.43) 0.64 (−0.05, 1.45) 0.82 (−0.11, 1.71)

β1,1 −5 −4.94 (−5.02, −4.85) −4.95 (−5.04, −4.86) −4.95 (−5.04, −4.86)

β2,0 1 1.03 (0.15, 2.02) 1.31 (0.26, 2.37) 0.95 (−0.27, 2.18)

β2,1 5 5.03 (4.91, 5.15) 5.02 (4.89, 5.14) 5.01 (4.89, 5.13)

AA1, 1′ 4 3.88 (3.14, 5.13) 4.06 (3.20, 5.80) 4.20 (3.21, 5.47)

AA2, 1′ −4 −3.58 (−4.80, −2.87) −3.66 (−5.50, −2.86) −3.79 (−4.96, −2.87)

AA2, 2′ 8 7.31 (6.02, 9.15) 7.43 (6.07, 9.70) 7.18 (5.74, 9.15)

τ1
2 0.1 0.07 (0.02, 0.25) 0.06 (0.02, 0.25) 0.07 (0.02, 0.24)

τ2
2 0.1 0.10 (0.02, 0.87) 0.08 (0.02, 0.70) 0.09 (0.03, 1.33)

ϕ1 6 6.98 (4.05, 15.33) 7.09 (3.21, 14.61) 6.95 (3.79, 12.19)

ϕ2 6 4.14 (3.20, 8.07) 4.80 (3.14, 9.87) 5.47 (3.41, 12.07)

ν1 0.25 0.25 (0.19, 0.38) 0.27 (0.20, 0.37) 0.27 (0.21, 0.37)

ν2 0.25 0.22 (0.16, 0.42) 0.22 (0.15, 0.37) 0.23 (0.16, 0.68)

DIC – 845.47 747.82 934.73

GPD – 30,666.13 30,782.05 36,182.24

RMSPE – 1.68 1.67 1.67

% CI coverage – 94.7 94.7 94.1

Mean 95% CI width – 6.31 6.24 6.14

Time (in minutes) – 18.82 75.62 369.10
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TABLE 2

Parameter Estimates (50% [2.5%, 97.5%] percentiles) for Fixed and Variable m NNGP Models

True NNGP m = 10 NNGP m = 20 NNGP Variable-m

β1 1 0.98 (0.95 1.02) 0.99 (0.95 1.02) 0.99 (0.95 1.02)

β2 5 4.98 (4.95 5.02) 4.98 (4.95 5.02) 4.98 (4.95 5.02)

σ2 1 1.64 (0.78 6.39) 1.36 (0.65 5.72) 1.17 (0.71 2.17)

τ2 0.5 0.47 (0.43 0.5) 0.47 (0.44 0.51) 0.47 (0.44 0.51)

ϕ 1 1.01 (0.26 2.55) 1.13 (0.26 2.87) 1.36 (0.66 2.21)
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