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The ability to integrate information across multiple senses enhances the brain’s ability to detect, localize, and identify external events.
This process has been well documented in single neurons in the superior colliculus (SC), which synthesize concordant combinations of
visual, auditory, and/or somatosensory signals to enhance the vigor of their responses. This increases the physiological salience of
crossmodal events and, in turn, the speed and accuracy of SC-mediated behavioral responses to them. However, this capability is not an
innate feature of the circuit and only develops postnatally after the animal acquires sufficient experience with covariant crossmodal
events to form links between their modality-specific components. Of critical importance in this process are tectopetal influences from
association cortex. Recent findings suggest that, despite its intuitive appeal, a simple generic associative rule cannot explain how this
circuit develops its ability to integrate those crossmodal inputs to produce enhanced multisensory responses. The present neurocompu-
tational model explains how this development can be understood as a transition from a default state in which crossmodal SC inputs
interact competitively to one in which they interact cooperatively. Crucial to this transition is the operation of a learning rule requiring
coactivation among tectopetal afferents for engagement. The model successfully replicates findings of multisensory development in
normal cats and cats of either sex reared with special experience. In doing so, it explains how the cortico–SC projections can use crossmodal
experience to craft the multisensory integration capabilities of the SC and adapt them to the environment in which they will be used.

Key words: computational model; cortex; crossmodal; maturation; plasticity; superior colliculus

Introduction
The brain has evolved the ability to integrate signals from differ-
ent senses, thereby enhancing perception and behavior in ways
that would not otherwise be possible (Stein, 2012). The neural

machinery and computational principles underlying multisen-
sory integration have been subjects of considerable speculation,
much of which is based on studies of neurons in cat superior
colliculus (SC) (Anastasio et al., 2000; Patton and Anastasio,
2003; Knill and Pouget, 2004; Rowland et al., 2007; Alvarado et
al., 2008; Cuppini et al., 2010, 2011, 2012; Fetsch et al., 2011;
Ursino et al., 2014; Miller et al., 2017). These studies focused on
multisensory responses to spatiotemporally concordant cross-
modal stimulus pairs, which are significantly more robust than
those evoked by individual component stimuli (multisensory en-
hancement; Meredith and Stein, 1983). This increases the physi-
ological salience of the initiating events and their likelihood of
eliciting SC-mediated behaviors (Stein et al., 1989; Burnett et al.,
2004; Gingras et al., 2009).
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Significance Statement

The brain’s remarkable ability to integrate information across the senses is not present at birth, but typically develops in early life
as experience with crossmodal cues is acquired. Recent empirical findings suggest that the mechanisms supporting this develop-
ment must be more complex than previously believed. The present work integrates these data with what is already known about
the underlying circuit in the midbrain to create and test a mechanistic model of multisensory development. This model represents
a novel and comprehensive framework that explains how midbrain circuits acquire multisensory experience and reveals how
disruptions in this neurotypic developmental trajectory yield divergent outcomes that will affect the multisensory processing
capabilities of the mature brain.
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However, the capacity for SC multisensory enhancement is
not present at birth (Wallace and Stein, 1997, 2001). Its develop-
ment requires considerable postnatal experience with cross-
modal cues (Wallace et al., 2004; Yu et al., 2010; Xu et al., 2014)
and the formation of a functional synergy between convergent
unisensory inputs from subregions of association cortex (Jiang et
al., 2001, 2006; Alvarado et al., 2009; Rowland et al., 2014). In the
cat, these cortical inputs primarily come from the anterior ecto-
sylvian sulcus (AES) and serve as the substrate upon which cross-
modal experience operates (Jiang et al., 2006; Rowland et al.,
2014; Yu et al., 2016). In the absence of AES or multisensory
experience, responses to concordant crossmodal cues are no
more robust than those to the most effective modality-specific
component cue.

A simple, intuitive hypothesis regarding this development is
that the emergence of multisensory enhancement capabilities re-
sults from the strengthening of convergent, covariant crossmodal
(e.g., visual and auditory) AES projections by a generic associa-
tive learning rule such as the Hebbian learning rule (Hebb, 1949)
or Oja’s rule (Oja, 1982). However, recent empirical evidence
casts doubt on this hypothesis. First, convergent crossmodal
AES–SC inputs become functional even in the absence of cross-
modal experience and become stronger than normal even when
multisensory enhancement capabilities do not develop (Yu et al.,
2013). Second, development is specific: a neuron will only inte-

grate and enhance responses to crossmodal cues belonging to
modalities that have been paired in experience (Yu et al., 2010; Xu
et al., 2012, 2015, 2017). This is not surprising given that adapta-
tions are based on experience. However, implementation of this
specificity requires more complexity than afforded by the generic
associative rules, which predict that multisensory enhancement
capabilities would emerge whenever convergent crossmodal neu-
ral connections are strengthened regardless of the specific expe-
riences that produce this outcome.

The present effort reconciles these findings via a neurocom-
putational model that shows how multisensory SC enhancement
capabilities can emerge during postnatal maturation with prop-
erties that reflect its particular history of crossmodal experience.
The model was simulated under different rearing conditions with
documented physiological effects.

Materials and Methods
Model summary. Neurons in the biological circuit communicate with
each other and with other circuits in multiple ways. Several architectural
simplifications and abstractions were imposed here to focus the model
on the key dynamics believed to underlie the development of SC multi-
sensory enhancement (Fig. 1A).

The model contained artificial nodes (units) grouped into three topo-
graphically organized regions representing different circuit components:
(1) the SC, (2) its unisensory AES afferents (“AES”), and (3) its unisen-

Figure 1. Structure of the model. A, Reduced model is shown here to isolate the circuit components of interest. These include: (1) a region representing the SC, (2) a region representing
projections to the SC from the modality-specific visual, auditory, and somatosensory zones of AES (AEV, FAES, and SIV, respectively), and (3) a region representing all non-AES inputs (subcortical and
cortical) from these same modalities. For a better comprehension of the network, the two figures depict the connectivity among single units belonging to the different structures implemented in the
model. Subregions in each input region extend net inhibitory connections with each other that implement a WTA competition for control over SC responses (see text for more details). In addition,
the AES subregions project excitatory connections to the SC that do not participate in this competition (noncompetitive projection). The noncompetitive connections and the inhibitory connections
between AES and non-AES are modifiable by crossmodal experience (indicated by red lines). B, This architecture is further simplified for efficient simulation by collapsing all sources (AES and
non-AES) of competitive input for each modality (Cv, Ca, and Cs) into a single region because of their similar function, thereby separating them from the modifiable AES noncompetitive (NCv, NCa, and
NCs) projections.
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sory afferents from all regions outside of AES (i.e., “non-AES”). Each of
the two tectopetal regions was then functionally divided into three sub-
regions: visual (V), auditory (A), and somatosensory (S). The tectopetal
projections from these subregions were excitatory and topographic. The
output of each unit in an input region represented the net influence of
many neurons with similar sensitivities rather than an individual neuron.
Similarly, units in the SC region represented the net activity of a pool of
similar neurons.

Interactions between each of these modality-specific subregions im-
plemented a default computation that approximated a winner-take-all
(WTA) competition (Grossberg, 1973). Effectively, only the strongest
input signal survived this competition with attrition to influence the
target unit(s) in the SC. For simplicity, this competition to control the SC
was implemented via direct inhibitory connections between units in dif-
ferent input regions; however, these were an abstraction and not in-
tended to represent direct inhibitory synapses exchanged between
biological neurons. The excitatory tectopetal connections extended by
units influenced by this competition were collectively referred to as the
“competitive projections.” For a more detailed discussion of this abstrac-
tion of competitive dynamics, see Cuppini et al. (2011, 2012).

In addition, subregions of AES extended a set of noncompetitive tec-
topetal projections that were excitatory, strictly topographic, modifiable
by crossmodal experience (detailed below), and not influenced by the
WTA competition. In these ways, they were functionally distinct from
the competitive projections. Changes in these noncompetitive projec-
tions, along with changes in the inhibitory balance between AES and
non-AES inputs, were hypothesized to account for the acquisition of
multisensory enhancement capabilities during normal development.

This basic model schematic (Fig. 1A) was further simplified by re-
grouping units and connections into functional categories to improve
simulation efficiency (Fig. 1B). In this simplified form, the sources of the
competitive projections from non-AES and AES were collapsed into a
single competitive region (C) and the sources of noncompetitive projec-
tions from AES were isolated as a separate noncompetitive region (NC).
Connections from and among units in the competitive subregions (Cv �
V, Ca � A, Cs � S) were fixed to implement the WTA. Excitatory con-
nections from the noncompetitive subregions (NCv, NCa, and NCs) tar-
geted the SC region topographically and were pooled across their
sensory-specific subregions in a pairwise fashion. The simplified model
was used to simulate the effect of experience on the functional capabili-
ties of the model and is described in detail below.

Simulated model. Each of the tectopetal input subregions and the SC
region were represented by arrays of 100 units. Each unit was referenced
with superscripts to indicate its array and with subscripts to indicate its
position within that array (indicating its spatial position/sensitivity).
Therefore, the net input to a unit at location i within array h at time t was
written ui

h�t�. The output of this unit, zi
h�t�, was determined by a first-

order differential equation as follows:

� �
d

dt
zi

h�t� � � zi
h�t� � ��ui

h�t�� (1)

Here, � was a fixed time constant (identical for all neurons) and �(. . . )
described a sigmoidal function with central point � and central slope p:

��uh�t�� �
1

1 � e��us�t����·p (2)

The strength (i.e., weight) of an excitatory projection from a unit at
position j in array k, to a unit at position i in array h, is written as Wi, j

h,k.
Inhibitory connection strengths used the same convention, but were
denoted by a capital L instead of W. Note that, for simplicity, we imple-
mented 1-to-1 connections.

The net input to a unit in input region C or NC was determined by
three components: an excitatory input representing an external stimulus
(Ii

h, zero by default), a noise input randomly selected from a zero-mean
Gaussian distribution with SD 2.5 (N(0,2.5)), and an inhibitory input
derived from other input subregions (li

h�t�):

ui
h�t� � Ii

h � N�0,2.5� � li
h�t� (3)

The inhibitory input for units in the noncompetitive subregions was
determined by the following:

li
h�t� � �

m

�
j

Lij
h,m � zj

m�t�; h � NCa, NCv, NCs m � Ca, Cv, Cs;

(4)

The inhibitory input for units in the competitive subregions was as
follows:

li
h�t� � �

m

�
j

Lij
h,m � zj

m�t� � �
r

Lmax � zi
r�t�;

h, r � Ca, Cv, Cs; m � NCa, NCv, NCs (5)

Where Lmax represents a fixed strength for the inhibitory connections
between competitive subregions. These connections implemented the
default WTA.

SC units pooled the output of units from all six input subregions. This
was arranged by constructing multiple compartments within each SC
unit that received input from specific subregions and not others (Fig.
1B). These compartments were computational abstractions to simplify
the operation of the learning rule and were not intended to simulate any
specific biological component of a neuron directly. Inputs from compet-
itive subregions targeted compartments visual (V), auditory (A), and S,
whereas noncompetitive inputs targeted compartments that pooled pair-
wise modality combinations: VA, VS, and AS. Therefore, the net input to
a competitive input compartment s (either V, A, or S) dedicated to a
competitive subregion r (either Cv, Ca, or Cs, respectively) was as follows:

Ii
s�t� � Wc � zi

r�t�; s � A, V, S r � Ca, Cv, Cs (6)

The net input to a noncompetitive input compartment p (VA, VS, or AS)
dedicated to a pair of noncompetitive subregions m and n (NCa and NCv,
NCv and NCs, NCa and NCs) was as follows:

Ii
p�t� � Wnc � zi

m�t� � Wnc � zi
n�t�;

p � AV, VS, AS m, n � NCa, NCv, NCs (7)

Input compartment activity levels were calculated by applying Equations
5– 6 to Equations 1–2 and then pooled, scaled by a weight, and combined
with zero-mean Gaussian noise to yield the net input to a central com-
partment as follows:

ui
Sm�t� � �

m

�
j

Wij
Sm,m � zj

m�t� � N�0,10�

m � A, V, S, AV, AS, VS; (8)

This value was converted to SC output using Equations 1–2. Both bisen-
sory (5 compartments: 4 input and 1 central) and trisensory (7 compart-
ments: 6 input and 1 central) units were simulated. To reduce the
number of free parameters, tectopetal weight matrices were selected so
that the total amount of input to the SC from all of the competitive
subregions was equal to the total amount of input from all of the non-
competitive subregions for a single point stimulus.

Learning rules. To highlight the important features of the model in the
present context, the only plastic (i.e., modifiable by sensory experience)
connections in the network were the excitatory projections from the
noncompetitive compartments (i.e., AV, VS, AS) to the SC unit and the
mutual inhibitory projections between the competitive and noncompet-
itive regions (Fig. 1B). All other connections were assumed to be mature
in the initial state of the model, which represented an early postnatal
period just before multisensory enhancement capabilities emerge. Devel-
opmental events preceding this starting point (including unisensory de-
velopment) were described previously (Cuppini et al., 2011, 2012).

In our model, plastic connections were modified by a Hebb-like learn-
ing rule augmented with two special constraints: (1) high activation
thresholds for engagement and (2) a saturating upper bound. These con-
straints provided the rule with additional complexity beyond that of a
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simple generic associative learning rule. Mathematically, the rule for
modifying the weight from a noncompetitive input compartment k (e.g.,
AV, VS, AS) indexed by j to the central compartment of the SC unit at
location i was as follows:

Wij
Sm,k�t � dt� � Wij

Sm,k�t� � �ij
Sm,k�t� � � zi

Sm � �N�� � � zj
k � �C��;

k � AV, VS, AS; note that i � j (9)

In this equation, [. . . ] � represents a rectification operation. Weights
were only modified if activation thresholds were met by the SC neuron
(� N) and the input compartment (� C), and this was obtained only in
case of multisensory stimulation, when both input regions targeting the
same input compartment were active. The learning factor �ij

Sm,k�t� imple-
mented a saturating upper bound:

�ij
Sm,k�t� � �0 � �Wmax � Wij

Sm,k�t�� (10)

In this equation, �0 was a scalar and Wmax was the maximum value for an
individual weight.

Mutually inhibitory connections between the competitive and non-
competitive subregions were modified by a similar rule, replacing W with
L, � with 	, and � C with � N as follows:

Lij
m,s�t � dt� � Lij

m,s�t� � 	ij
m,s�t�·� zi

m � �N��·� zj
s � �N��

(11)

	ij
m,s�t� � 	0 � �Lmax � Lij

m,s�t�� (12)

These equations described the rule for the projections both from com-
petitive regions (when m � NCv, NCa, or NCs) to noncompetitive re-
gions (when s � Cv, Ca, or Cs) and the projections in the reverse direction
(when m � Cv, Ca, or Cs and s � NCv, NCa, or NCs). The same activation
threshold was required for both the projecting and receiving unit (� N);
therefore, changes in Lij

m,s and Lij
s,m were identical.

To illustrate the crucial elements of the learning rule used here, we
compared the results of the model obtained when using the learning rule
above with those obtained when a generic Hebbian learning rule was
substituted in its place (Eq. 12). In the generic rule, the connection ( W)
between the j th neuron in the presynaptic region S and the i th neuron in
the postsynaptic area P was modified according to neurons’ activities (z)
at time t as follows:

Wij
P,S�t � dt� � Wij

P,S�t� � �·� zi
P � ���·� zj

S � ��� (13)

In this equation, � is a learning factor kept constant throughout the
training and � represents a low activation threshold.

Simulations of multisensory development. Exposure to a sensory cue was
simulated by setting the external network input I to a value representing
a point stimulus (Itraining; Table 1), which was kept constant during a
single training trial, updating the state of the network (Eqs. 1–7) until a
steady state was reached, and applying the learning rules (Eqs. 9 –12 or
13) to the plastic connections. Exposure to crossmodal cue combinations
was simulated by setting input patterns for multiple subregions in the C
and NC regions. External input patterns for each stimulus were identical
for the relevant competitive and noncompetitive regions. As described

above, a noise input randomly selected from a zero-mean Gaussian dis-
tribution with SD 2.5 (N(0,2.5)), was also added to the external input I.

Development was simulated by repeatedly exposing the network to
different combinations of highly effective cues (500,000 trials). Different
developmental circumstances were simulated by using different mixtures
of cue combinations (i.e., different training sets) for different networks.
In the normal-rearing training set, 40% of trials were VA, 30% VS, and
30% AS. In the dark-rearing training set (simulating rearing in a light-
tight environment that precludes the visual-nonvisual experiences nec-
essary for the development of SC visual-nonvisual multisensory
integration (Yu et al., 2010, 2013), 50% of trials were AS, 25% were A, and
25% were S. There were no visual or visual–nonvisual cues. In the noise-
rearing training set (simulating rearing in an omnidirectional sound en-
vironment that masks the transient auditory inputs necessary for the
development of SC auditory-nonauditory multisensory integration; Xu
et al., 2014, 2017), 50% of trials were VS, 25% were V, and 25% were S.
There were no auditory or auditory–nonauditory cues.

Evaluations of developmental outcomes. The end states of the model for
the different developmental circumstances were evaluated by comparing
the relationships between multisensory and unisensory responses pre-
dicted by the model with those that have been documented empirically
from cats of either sex (Yu et al., 2010, 2013, Xu et al., 2012, 2014, 2015,
2017). These evaluations involved recording the responses of individual
model units to simulated visual, auditory, and somatosensory cues pre-
sented alone or in different concordant crossmodal combinations (30
trials/test) and then calculating the proportionate difference (i.e., multi-
sensory enhancement, ME) between the unit’s mean response to each
crossmodal cue combination and its most robust response to one of its
modality-specific components. This value quantified how the unit inte-
grated a particular crossmodal stimulus combination. To assess patterns
of integration within the different simulated developmental circum-
stances, multiple units were tested with simulated cues having different
levels of efficacy randomly selected from a Gaussian distribution with
mean value I (Table 1).

Experimental design and statistical analysis. Mean levels of ME and the
relationship between ME and unisensory effectiveness were assessed for
each cue combination and each developmental circumstance and com-
pared with the same metrics obtained empirically. Individual model
units were selected with unisensory response magnitudes similar to those
of published biological exemplars for further illustration of similarities in
developmental outcomes. Model performance was evaluated statistically
by comparing the proportion of integrating neurons identified in differ-
ent rearing environments and crossmodal configurations produced by
the model to the distribution of empirically observed values described
previously (Xu et al., 2015) using binomial tests.

Parameter selection and weight matrices. Numerical parameter values
for the model stimulations (Table 1) were selected so that units would
respond rapidly to stimuli when present but otherwise maintain negligi-
ble levels of activity. The weights of all plastic connections were initialized
to zero. Two other important design choices not described above are
constraint 1 and constraint 2. For constraint 1, learning rate scalars for
the excitatory weights between the noncompetitive input compartments
and the central compartment of the SC unit were greater (faster) than
learning rates for the plastic inhibitory connections between competitive
and noncompetitive subregions. For constraint 2, the threshold value for
the learning rule applied to the noncompetitive input compartments
(� C) was set to require joint activation of afferents from both modalities
for the rule to be engaged.

Results
The different simulated rearing paradigms (normal, dark-rea-
ring, and noise-rearing) produced different developmental tra-
jectories, yielding adult neurons that responded to different pairs
of spatiotemporally concordant crossmodal cues in different
ways. In each case, the model’s end points were very similar to
those observed empirically in SC neurons after the corresponding
rearing condition (Yu et al., 2010, 2013, Xu et al., 2012, 2014,
2015, 2017). The model reproduced, with reasonable accuracy,

Table 1. Simulation parameters

Individual units Input

N � 100 Itraining � 30

 � 20 I � 19.5
s � 0.3 Training
� � 3 ms Wmax � 25
Connections �0 � 0.1
Wnc � 21 Lmax � 15
Wc � 42 	0 � 0.001
W Sm � 25 �N � 0.4
K � 15 �C � 0.7
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both the overall population trends in the biological data as well as
the behavior of individual exemplars. Essentially, whenever a
particular crossmodal pair was present in the simulated training
paradigm/rearing environment [e.g., an auditory–somatosen-
sory (AS) stimulus pair during dark rearing], adult SC neurons
would produce enhanced responses to that pair. However, when
experience with a particular pair was excluded during training/
development [e.g., visual–auditory (VA) pairs were precluded
during dark rearing and disrupted in noise rearing by masking
transient auditory cues] the response of the neuron to that pair
was not enhanced; it was either equivalent to, or less than, the
response to the most effective cue in the pair. These observations
were found in both simulated bisensory and trisensory neurons.
Therefore, both in the model and in the actual SC, neurons use
crossmodal sensory experiences to develop the ability to integrate
only those crossmodal combinations present in that environ-
ment to produce enhancement.

Initial state of the model
Tectopetal projections from the noncompetitive input region
were initially ineffective: in its native state, the SC behavior was
solely determined by the active and mature WTA competition
implemented among the competitive input subregions. There-
fore, when the network was tested with crossmodal cues at this
time, the more efficacious cue suppressed the influence of the
other and determined the SC response (after suffering some at-
trition). This occurred regardless of the relative positions of the
cues within the array (i.e., simulated to be concordant or dispa-
rate in space). It is conceptually important to note that, according
to the model, this experience-naive state is not one in which
multisensory processing rules are absent; rather, it is one in which
crossmodal cues interact competitively. The result, however, is
that, in the native state, there is no multisensory enhancement
evoked by crossmodal cues at any level of efficacy (Fig. 2).

Changes during training:
Crossmodal cue pairs presented during simulated development
evoked activity in SC units via the influence of the competitive

input subregions (as noted above, this
activity pattern was determined by the
WTA). The noncompetitive input com-
partments also became activated by the
simulated cues, although they did not yet
influence the SC due to the ineffective
state of their connections with the central
SC compartment. However, the activity-
dependent engagement criteria of the
learning rule were met. This resulted in
changes to the two sets of plastic connec-
tions (Fig. 3). In the first set, coactivation
of the SC unit and the noncompetitive in-
put compartment for a given crossmodal
pair caused the learning rule to strengthen
the connections between the input com-
partment and the central compartment
(Fig. 1B, Eqs. 8 –9). Because joint activa-
tion of both (crossmodal) inputs to the
noncompetitive input compartment was
required (constraint 2), these connections
were not strengthened by modality-specific
cues, only crossmodal cues. In the second
set, coactivation of the competitive and
noncompetitive input subregions also
caused the mutual inhibitory connections

between them to be strengthened (Eqs. 10 –11). In this way, com-
petitive input subregions and noncompetitive input subregions
that were coactivated during training came to inhibit one an-
other. However, like the excitatory projections described above,
these changes were specific to the modalities presented together
in the training set: a general inhibition did not form between all
competitive and noncompetitive subregions (Fig. 3).

By design, the excitatory connections from the noncompeti-
tive input compartments to the central compartment of the SC
unit were more sensitive to the training paradigm (constraint 1)
and, thus, were trained much faster than the inhibitory connec-
tions between the noncompetitive and competitive input subre-
gions. This ensured that the noncompetitive subregions did not
begin to suppress competitive inputs until their excitatory influ-
ences on the SC were mature, which was essential because their
maturation required that SC activity be initially driven by the
competitive input region. However, over the course of training,
the noncompetitive input subregions eventually came to be the
major determinants of the SC response. This was because a single
stimulus saturated the net competitive input to the SC, but mul-
tiple (i.e., two) stimuli were needed to saturate the noncompeti-
tive input. The effective impact was that the noncompetitive
projection had reserved capacity to provide a more robust net
input when multiple crossmodal cues were present.

Model end states and developmental outcomes
The most informative comparisons between the results of the
simulations in the model and the empirical data were obtained by
examining the response patterns of model trisensory units and
biological trisensory neurons after different rearing conditions.
Simulated development in bisensory neurons revealed equivalent
results for their particular convergence pattern.

Exemplar comparisons
Figure 4 illustrates the unisensory and multisensory responses of
three trisensory exemplar neurons recorded from the SC of nor-
mal (Fig. 4A), dark-reared (Fig. 4B), and noise-reared animals

Figure 2. The native state. In the model’s initial state, the responses of individual SC units are not enhanced by crossmodal cues
at any level of stimulus efficacy. Plotted here is the amount of ME ( y-axis) observed in response to crossmodal (VA, VS, and AS) cue
pairs at multiple efficacy levels (x-axis) for a network before any simulated development. Each point represents the multisensory
enhancement index of a single unit. All points, regardless of specific crossmodal convergence pattern, cluster around zero.
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(Fig. 4C), and of three exemplar SC units of the model trained to
simulate each of these conditions. Each real neuron and model
unit was tested with visual, auditory, and somatosensory cues
placed alone and together in different concordant pairwise com-
binations within overlapping regions of their respective receptive
fields. The responses to different pairs and their unisensory com-
ponents were collected in different experimental blocks (there
was some small variation in the unisensory response magnitudes
across blocks). In each case, there was a match between the pat-
terns observed in the actual physiological responses (middle) and
the model results (right). Whereas the normal-reared neuron
evidenced robust response enhancement to each crossmodal

combination, the responses of dark-reared neurons were en-
hanced only by the AS combination, and the noise-reared neu-
rons were enhanced only by visual–somatosensory combination.
The responses of the neurons to all other crossmodal combina-
tions (i.e., those to which they were not exposed during rearing)
were approximated by the more robust modality-specific com-
ponent response or an average of the two comparator unisensory
responses.

The model explains how each of these patterns can result
from differential development of the plastic noncompetitive pro-
jections. In the normal-reared paradigm, all noncompetitive pro-
jections are strengthened. But only the A-S noncompetitive

Figure 3. Training changes connection strength (“weights”) during development. A, Plotted for the three different training paradigms/simulated rearing conditions (normal, dark-rearing, and
noise-rearing) is the strength of the projection from each noncompetitive compartment ( y-axis) as a function of training epoch (x-axis). Noncompetitive channels are identified by the modalities
they pool (VA, AS, etc.). The normal training paradigm leads to a strengthening of all channels because all modality pairings are presented, whereas the dark-reared and noise-reared paradigms
produce strengthening only in the crossmodal pair represented in the training set. B, Similar experience-specific effects are seen for the inhibitory projections from the noncompetitive subregions
to the competitive subregions in each of the training paradigms (larger value � more inhibition). Reverse inhibitory projections from competitive subregions to noncompetitive subregions are
symmetric and show equivalent development. Robust inhibition develops for each modality present in the training set and in proportion to its amount of representation. The consequence of this
result is that inhibitory interactions are only formed between inputs that were coactivated during training, not all input subregions.
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Figure 4. Empirical model parallels in multisensory and unisensory responses after different rearing conditions. A–C, Illustrations of the results obtained for three different rearing conditions/
training paradigms: normal-rearing (A), dark-rearing (B), and noise-rearing (C). Illustrated for each condition is a schematic of the sensory convergence pattern (left), physiological recordings (Xu
et al., 2015) of responses from an SC trisensory neuron tested with different cues (middle), and the model results for those responses (right). Bar graphs indicate the magnitude of the responses to
V, A, and S stimuli presented alone or in different pairwise combinations (i.e., VA, VS, and AS), as well as the ME generated by each multisensory response. Note the striking parallels between the
physiological response magnitudes (in units of mean impulses/trial) and the model responses (in normalized units). In both cases, the sum of the responses to the unisensory components are
reported for comparison. (Adapted with permission from Xu et al., 2015). **p 	 0.001.
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projections are strengthened in the dark-reared paradigm and
only the V-S noncompetitive projections are strengthened in the
noise-reared paradigm. Whenever a noncompetitive projection
representing a particular pairing was not strengthened, the re-
sponse of the neuron to crossmodal cues belonging to that pair-
ing was dictated by the competitive pathway. Therefore, these
responses reflected the outcome of the WTA competition and
were not enhanced.

Population comparisons
Figure 5 illustrates physiological results obtained from SC neural
(left panels) and model populations (right column). In both
model and biology, larger proportionate multisensory enhance-
ments were more commonly associated with weaker modality-
specific components, a common observation in normal-reared
animals referred to as “inverse effectiveness” (Meredith and
Stein, 1983). This feature varied in predictable ways across the
different groups. For the normal-reared population (Fig. 5A),
similar inverse trends were observed for each modality pairing in
the model and the empirical dataset (Xu et al., 2015). For dark-
reared and noise-reared populations (Fig. 5B,C, respectively),
significant inverse trends only existed for modality pairings that
were present in the rearing environment/training paradigm. The
nonexperienced/untrained modality pairs showed no significant
enhancement (and even multisensory depression) at all levels of
unisensory effectiveness. In each case, the model provided a good
match to the empirical trends.

Figure 6 summarizes the empirical and model results at a
population level. One of the interesting features of the empirical
data (Fig. 6A) was that, when a modality pairing was present in
the environment, the average enhancement (ME) observed for
that pair at the developmental end point (Fig. 6A, left) was ap-
proximately the same (
90%) regardless of the specific modali-
ties involved. When a pairing was excluded from the rearing
environment, ME only averaged 
20% in each case regardless of
the specifics of the excluding environment. A similar result was
seen in the probability that an adult trisensory neuron would
exhibit significant multisensory enhancement in response to each
crossmodal pairing. If the crossmodal pairing was included in the
rearing environment, then the vast majority of these neurons
(
70%) generated enhanced responses to those cues when ma-
ture. Only a minority of neurons generated significantly en-
hanced responses to an excluded pairing. The model replicated all
of these findings with a high level of accuracy (Fig. 6B). In each
case, the model’s proportion of integrating neurons are not sta-
tistically different from the empirically observed values with an
evaluation criteria of (� � 0.01); in other words, the model’s
behavior is within the expected variation of the empirical results
(Table 2).

Importance of model constraints revealed by a sensitivity analysis
The present model was reduced and simulated in a simple form to
highlight the computational features of the circuit believed to be
most crucial in accounting for the development of multisensory
enhancement capabilities. One way to demonstrate the crucial
nature of these particular features on the model’s effectiveness is
to remove them, “breaking” the model in specific ways, and then
examining the impact on the model’s developmental trajectories
and endpoints.

One crucial feature of the model in the present context is that
the SC receives input from both competitive and noncompetitive
projections. The dominance of competitive projections in early
life was a necessary constraint to explain how neonatal multisen-

sory neurons can be responsive to multiple sensory modalities,
yet not generate enhanced responses to their concordant stimu-
lation. The importance of the noncompetitive projections in ac-
curately explaining development was demonstrated by removing
them from the model (Fig. 7). Because the model assumes that
AES is the only source of the noncompetitive projections (and
other sources exist for competitive projections), this manipula-
tion can be thought of as equivalent to removing AES in early life
(Jiang et al., 2006, 2007; Rowland et al., 2014). The consequence
for the model was the same as that observed in those empirical
studies: the SC never developed multisensory enhancement ca-
pabilities because it lacked the substrate that allows crossmodal
signals to bypass the default competition (Fig. 7).

A second crucial feature of the model is that a joint activation
between the presynaptic inputs is required to engage the learning
rule operating on the noncompetitive projections. This augmen-
tation elevates the complexity of the learning rule above that of a
standard generic associative learning rule, requiring the whole
triad of (multiple) presynaptic and (singular) postsynaptic ele-
ments to be activated in order for the connection to be strength-
ened. This requirement of a triad restricts the development of
multisensory enhancement capabilities to those specific pairs
that have been experienced. To illustrate the importance of this
feature, a generic Hebbian learning rule (Eq. 12) was substituted
in place of our modified learning rule and applied to the noncom-
petitive projection. Figure 8 illustrates the results obtained from
the model for dark-reared simulations using the generic learning
rule: the model SC units develop the ability to integrate all pairs of
cues rather than only the AS pairs. This occurs because input
from only a single modality is sufficient to strengthen the con-
nection from any noncompetitive input compartment to which it
connects because it meets the presynaptic requirement of the
generic association rule. Therefore, if the training set/rearing en-
vironment includes even a single crossmodal pair (e.g., AS in dark
rearing), then the connections from all noncompetitive input
compartments become strengthened because each noncompeti-
tive input compartment receives input from at least one of the
modalities in the included pair. Therefore, by implementing a
generic associative learning rule, multisensory enhancement ca-
pabilities develop for all modality pairings, patterns not actually
seen in dark-reared or noise-reared animals (Yu et al., 2010, 2013;
Xu et al., 2014). With a generic associative learning rule, the
network would generalize any crossmodal experience and extend
integrative abilities to crossmodal pairs never experienced during
training.

Discussion
In the present model, the AES–SC projection is assumed to be
active, efficacious, and composed of crossmodal convergent af-
ferents in the absence of crossmodal experience; however, with-
out such experience the crossmodal signals it relays interact
competitively. With appropriate experience, a noncompetitive
set of AES–SC inputs emerges and relays crossmodal signals
that interact cooperatively. The present model replicates the
specificity of the experience-dependent development of this mul-
tisensory integrative process as SC multisensory integration ca-
pabilities emerge and override the default state of crossmodal
competition. The insights offered by the model in explaining why
multisensory development proceeds in the way that it does and
the predictions it makes for future evaluation are detailed below.

One of the theoretical insights of the model is that the initial
default state of the circuit is one in which sensory inputs interact
competitively regardless of their modality or the concordance of

3460 • J. Neurosci., April 4, 2018 • 38(14):3453–3465 Cuppini et al. • Development of Midbrain Multisensory Integration



Figure 5. Empirical model parallels in ME and inverse effectiveness. Plotted are individual data points and trend lines relating proportionate ME (%) to the magnitude of the response to the most
effective component stimulus (i.e., unisensory response) for the normal-reared (top), dark-reared (middle), and noise-reared (bottom) populations. The left panel for each population shows the
empirical result from Figure 3 of Xu et al. (2015). The right plot shows the model results (each data point was derived from the mean responses of each model’s unit computed over 30 trials/stimulus
condition). In each case, modality pairings that were present in the rearing environment/training paradigm showed an inverse relationship between ME and the magnitude of the best unisensory
response, a trend termed inverse effectiveness (Meredith and Stein, 1983). Pairings that were excluded from the rearing environment/training paradigm showed marginal, nonsignificant trends and
no significant enhancement on average anywhere in the range. All fitted curves are exponential. (Insets adapted with permission from Xu et al., 2015).
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information they relay. This concept represents an evolution in
our understanding of multisensory development, which previ-
ously viewed enhancement capabilities and integration capabili-
ties more generally, as being built on a neutral or “unformed”
substrate (Wallace and Stein, 1997, 2000; Wallace et al., 1997,
2004; Stein, 2005; Stein and Rowland, 2011), much as the emer-

gence of other functional capabilities have been viewed (e.g., lan-
guage, object recognition). However, this new perspective has
intuitive appeal given the functional role of the SC in detecting
and localizing external cues as a precondition for programming
orientation responses. Because orientation can be directed at only
one target at a time, a basic constraint imposed on multiple cues
simultaneously seeking access to the sensorimotor circuitry of the
SC is that they compete. In the adults, this is readily observable
when within-modal or crossmodal cues are presented in different
spatial locations: responses to either individual cue are often de-
graded (Alvarado et al., 2007; Gingras et al., 2009). The present
model suggests that, in the absence of experiences that provide
evidence for a common origin of a particular crossmodal config-
uration (i.e., spatially concordant; Kayser and Shams, 2015), the
circuit extends its internal logic to process any two crossmodal
cues as competitive.

The second model insight is that the internal structure of the
multisensory circuit allows for the computational segregation of
pairs of sensory modalities. This recognizes that neurons do not
develop a generic integrative process that is then applied to all cross-
modal pairs. Rather, specific processing capabilities develop so that a
neuron can deal differently with different crossmodal pairs and
perhaps different spatiotemporal configurations, depending on its
experience with those particular stimulus conditions. This is accom-
plished via the noncompetitive input compartments (an architec-

Figure 6. Overall model and neuronal parallels. A, Empirical findings from Xu et al. (2015) indicate that multisensory enhancement is elicited by crossmodal pairings that were encountered in the
rearing environment. Left, ME elicited by each crossmodal pairing (VA, black; VS, red; AS, blue) in populations of trisensory neurons recorded from animals reared under different conditions (normal,
dark-rearing, or noise-rearing). Data are grouped on the x-axis according to whether each pairing would be encountered in the rearing environment (“with crossmodal experience”) or not. Right,
Proportion of trisensory neurons in each population that generated significantly enhanced responses to each of the modality-pairings (see Fig. 3 in Xu et al., 2015). B, Model predictions for each of
the data points in A obtained by the mean responses, as reported in Figure 5, of the simulated population of SC neurons in the model to different crossmodal pairs. There is a match between the trends
in A and the model predictions in B. (Figures in A adapted with permission from Xu et al., 2015).

Table 2. Comparisons of model and empirical results for the probability of a
multisensory neuron (expressed as a percentage) producing an enhanced versus
nonenhanced response in different stimulus conditions in different simulated
rearing conditions

Probability of integrating (%)

Empirical Model p-value

Normal-reared
VA 84 82 0.56
AS 82 89 0.2
VS 77 86 0.07

Dark-reared
VA 17 18 0.81
AS 77 83 0.25
VS 11 13 0.51

Noise-reared
VA 22 10 0.04
AS 25 13 0.03
VS 75 83 0.16

p-values were obtained using the empirical data as the null hypothesis model in a binomial test. Empirical results
were obtained from Xu et al. (2015).
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ture that extends previous proposals; cf. Rowland et al., 2007). There
are many different biological mechanisms that could accomplish
such functional compartmentalization; for example, by connec-
tions targeting adjacent dendritic locations (Poirazi et al., 2003);
by interacting through NMDA-gated channels (Binns and Salt,
1996; Truszkowski et al., 2017); or by aligning inputs/EPSPs in
temporal proximity or within a phase of an ongoing background
oscillation (Lakatos et al., 2007; Senkowski et al., 2008; Engel et

al., 2012). Equally likely is the possibility
that the same endpoint is achieved through
more indirect means; for example, by rebal-
ancing contacts from or between interneu-
ron populations which receive specific
patterns of input [i.e., interneurons driven
by AEV might reduce their inhibition of ex-
citatory input from one region (e.g., FAES),
but not from another (e.g., SIV)]. Until rel-
evant physiological studies examine these
possibilities, there is no compelling reason
to favor one alternative over another.

A third insight of the model is that, al-
though an associative learning rule can
drive development in this circuit, it must
be sensitive to the covariance among mul-
tiple presynaptic elements in addition to
their common postsynaptic target. There
is substantial evidence for the operation of
Hebbian rules in multiple areas of the
brain, including the SC (Bi and Poo, 2001),
and there are several variants of the basic
Hebbian learning rule that can implement
such an idea. One of the most basic is a “slid-
ing threshold” model (Bienenstock et al.,
1982), in which the threshold required for
the engagement of the learning rule is always
just above the magnitude of the input from
the most effective presynaptic element (e.g.,
unisensory input). In this way, both presyn-
aptic elements must be active to engage the
learning rule, which in turn causes strength-
ening of both, but in doing so, the threshold
is also pushed higher so that it is always out
of reach of a single element. In the present
context, such a rule could apply to the devel-
opment of both the competitive and non-
competitive projections, with only variation
of a single parameter (the threshold) being
sufficient to explain their developmental
asymmetries.Itshouldbenotedthat,although
the simulated model applies changes to the
strength of connections between compart-
ments, this operation is equivalent to individ-
ually strengthening individual connections.
Biophysical components such as the voltage-
sensitive NMDA receptor may play a crucial
role in implementing the proposed learning
rule because “clusters” of AES contacts on
target SC neurons that use NMDA receptors
could conceivably implement the triadic co-
variance rule. NMDA receptors have previ-
ously been implicated as playing a crucial
role in the expression of multisensory inte-
gration in the SC/tectum (Binns and Salt,

1996; Truszkowski et al., 2017) and it is possible that they are likewise
important in its development.

The present model represents a focused attempt to describe
this development at higher resolution in a well studied circuit.
How these insights might extend to other multisensory circuits in
the brain is unknown. One possibility is that the cooperative/
competitive dynamics described here represent a general neural
plan for signal filtering (i.e., figure/ground separation) that is

Figure 7. Effect of removing the noncompetitive projections from the model. Shown are the model results trained with normal
crossmodal experience without the noncompetitive projections. Because only the competitive projections remain intact, multi-
sensory responses are not enhanced for any crossmodal combination at any level of efficacy. Conventions are the same as previous
figures.

Figure 8. Effect of removing the constraint requiring the activation of two presynaptic elements. The adult expression of ME
capabilities in a network trained in the dark-reared paradigm in which a generic associative learning rule was implemented (i.e.,
the training thresholds for the noncompetitive pathways have been lowered) so that activation of only one of the presynaptic
elements was required. “Breaking” the network in this way produced results that no longer accurately reproduced the biological
results. This network integrated all sensory combinations instead of only the AS combination. Conventions are the same as in
previous figures.
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engaged throughout the brain. A distinct alternative, however, is
that the crucial multisensory computations engaged by each cir-
cuit depend on its unique computational goals. For example, a
circuit computing an “optimal estimate” of a property of an ex-
ternal event might default to competitive dynamics, whereas one
designed to enhance the simultaneous processing of multiple fea-
tures would not. If the latter hypothesis is correct, then this di-
versity in the multisensory transform might reflect very different
developmental dynamics.

The model makes several key predictions. First, in the absence
of crossmodal experience, the default SC multisensory computa-
tion will be one of competition, not one of nonintegration (in
which the less efficacious input would be discarded or ignored).
Second, the SC multisensory products in SC neurons of animals
lacking experience with a set of crossmodal cues will be equiva-
lent regardless of whether those cues are spatiotemporally con-
cordant or disparate. Third, as a consequence of averaging,
multisensory responses will be depressed below the best compo-
nent unisensory response when those crossmodal cues differ sig-
nificantly in efficacy. Fourth, if NMDA receptors play a crucial
role in this development, it should be possible to preclude this
development by deactivating them during early life when multi-
sensory experience is typically first acquired.

The model also suggests that the AES–SC projection has
greater functionality than has been fully appreciated; in particu-
lar, that some of the competitive interactions observed in the SC
reflect operations that take place within cortex itself and are then
relayed to the SC. There is some tangential empirical evidence
consistent with this idea. For example, AES deactivation has been
noted to have a partial effect on the incidence and magnitude of
multisensory depression in the SC evoked by spatially disparate
crossmodal cues (Jiang and Stein, 2003). The present model pro-
vides the first explanation for this dependency and why it is only
partial: it reflects the action of only a subset of the competitive
crossmodal projections to the SC. However, to our knowledge,
this prediction has not yet been examined systematically.

In addition, the model predicts that multisensory enhance-
ment capabilities will not have a transitive inference property.
Separately formed VA and AS associations will not automatically
form a visual–somatosensory association; this requires visual–
somatosensory experience. There are presently no empirical data
that address this prediction. However, it could be tested in either
dark-reared animals in which enhancement capabilities to AS
inputs develop naturally and VA enhancement capabilities are
later “trained” or in noise-reared animals in which two compa-
rable pairs of effective crossmodal configurations are created (Yu
et al., 2010, 2013; Xu et al., 2017). In both cases, the empirical test
would be whether the untrained pair would now produce multi-
sensory enhancement. The results of this empirical evaluation,
and those described above, will further refine our conceptual
frameworks for multisensory development and our understand-
ing of its key mechanics.

References
Alvarado JC, Stanford TR, Vaughan JW, Stein BE (2007) Cortex mediates

multisensory but not unisensory integration in superior colliculus. J Neu-
rosci 27:12775–12786. CrossRef Medline

Alvarado JC, Rowland BA, Stanford TR, Stein BE (2008) A neural network
model of multisensory integration also accounts for unisensory integra-
tion in superior colliculus. Brain Res 1242:13–23. CrossRef Medline

Alvarado JC, Stanford TR, Rowland BA, Vaughan JW, Stein BE (2009) Mul-
tisensory integration in the superior colliculus requires synergy among
corticocollicular inputs. J Neurosci 29:6580 – 6592. CrossRef Medline

Anastasio TJ, Patton PE, Belkacem-Boussaid K (2000) Using Bayes’ rule to

model multisensory enhancement in the superior colliculus. Neural
Comput 12:1165–1187. CrossRef Medline

Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annu Rev Neurosci 24:139 –166. CrossRef Medline

Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the develop-
ment of neuron selectivity: orientation specificity and binocular interac-
tion in visual cortex. J Neurosci 2:32– 48. Medline

Binns KE, Salt TE (1996) Importance of NMDA receptors for multimodal
integration in the deep layers of the cat superior colliculus. J Neurophysiol
75:920 –930. CrossRef Medline

Burnett LR, Stein BE, Chaponis D, Wallace MT (2004) Superior colliculus
lesions preferentially disrupt multisensory orientation. Neuroscience 124:
535–547. CrossRef Medline

Cuppini C, Ursino M, Magosso E, Rowland BA, Stein BE (2010) An emer-
gent model of multisensory integration in superior colliculus neurons.
Front Integr Neurosci 4:6. CrossRef Medline

Cuppini C, Stein BE, Rowland BA, Magosso E, Ursino M (2011) A compu-
tational study of multisensory maturation in the superior colliculus (SC).
Exp Brain Res 213:341–349. CrossRef Medline

Cuppini C, Magosso E, Rowland B, Stein B, Ursino M (2012) Hebbian
mechanisms help explain development of multisensory integration in the
superior colliculus: a neural network model. Biol Cybern 106:691–713.
CrossRef Medline

Engel AK, Senkowski D, Schneider TR (2012) Multisensory integration
through neural coherence. In: The neural bases of multisensory processes
(Murray MM, Wallace MT, eds). Available from: http://www.ncbi.nlm.
nih.gov/books/NBK92855/ Accessed 31 August 2017.

Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2011) Neural correlates
of reliability-based cue weighting during multisensory integration. Nat
Neurosci 15:146 –154. CrossRef Medline

Gingras G, Rowland BA, Stein BE (2009) The differing impact of multisen-
sory and unisensory integration on behavior. J Neurosci 29:4897– 4902.
CrossRef Medline

Grossberg S (1973) Contour enhancement, short term memory, and con-
stancies in reverberating neural networks. Studies in Applied Mathemat-
ics 52:213–257. CrossRef

Hebb DO (1949) The organization of behavior: A neuropsychological theory.
New York: John Wiley & Sons.

Jiang W, Stein BE (2003) Cortex controls multisensory depression in supe-
rior colliculus. J Neurophysiol 90:2123–2135. CrossRef Medline

Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical
areas mediate multisensory integration in superior colliculus neurons.
J Neurophysiol 85:506 –522. CrossRef Medline

Jiang W, Jiang H, Stein BE (2006) Neonatal cortical ablation disrupts mul-
tisensory development in superior colliculus. J Neurophysiol 95:1380 –
1396. CrossRef Medline

Jiang W, Jiang H, Rowland BA, Stein BE (2007) Multisensory orientation
behavior is disrupted by neonatal cortical ablation. J Neurophysiol 97:
557–562. CrossRef Medline

Kayser C, Shams L (2015) Multisensory causal inference in the brain. PLoS
Biol 13:e1002075. CrossRef Medline

Knill DC, Pouget A (2004) The bayesian brain: the role of uncertainty in
neural coding and computation. Trends Neurosci 27:712–719. CrossRef
Medline

Lakatos P, Chen CM, O’Connell MN, Mills A, Schroeder CE (2007) Neuro-
nal oscillations and multisensory interaction in primary auditory cortex.
Neuron 53:279 –292. CrossRef Medline

Meredith MA, Stein BE (1983) Interactions among converging sensory in-
puts in the superior colliculus. Science 221:389 –391. CrossRef Medline

Miller RL, Stein BE, Rowland BA (2017) Multisensory integration uses a
real-time unisensory-multisensory transform. J Neurosci 37:5183–5194.
CrossRef Medline

Oja E (1982) A simplified neuron model as a principal component analyzer.
J Math Biol 15:267–273. CrossRef Medline

Patton PE, Anastasio TJ (2003) Modeling crossmodal enhancement and
modality-specific suppression in multisensory neurons. Neural Comput
15:783– 810. CrossRef Medline

Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural
network. Neuron 37:989 –999. CrossRef Medline

Rowland BA, Stanford TR, Stein BE (2007) A model of the neural mecha-
nisms underlying multisensory integration in the superior colliculus. Per-
ception 36:1431–1443. CrossRef Medline

3464 • J. Neurosci., April 4, 2018 • 38(14):3453–3465 Cuppini et al. • Development of Midbrain Multisensory Integration

http://dx.doi.org/10.1523/JNEUROSCI.3524-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18032649
http://dx.doi.org/10.1016/j.brainres.2008.03.074
http://www.ncbi.nlm.nih.gov/pubmed/18486113
http://dx.doi.org/10.1523/JNEUROSCI.0525-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19458228
http://dx.doi.org/10.1162/089976600300015547
http://www.ncbi.nlm.nih.gov/pubmed/10905812
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://www.ncbi.nlm.nih.gov/pubmed/11283308
http://www.ncbi.nlm.nih.gov/pubmed/7054394
http://dx.doi.org/10.1152/jn.1996.75.2.920
http://www.ncbi.nlm.nih.gov/pubmed/8714664
http://dx.doi.org/10.1016/j.neuroscience.2003.12.026
http://www.ncbi.nlm.nih.gov/pubmed/14980725
http://dx.doi.org/10.3389/fnint.2010.00006
http://www.ncbi.nlm.nih.gov/pubmed/20431725
http://dx.doi.org/10.1007/s00221-011-2714-z
http://www.ncbi.nlm.nih.gov/pubmed/21556818
http://dx.doi.org/10.1007/s00422-012-0511-9
http://www.ncbi.nlm.nih.gov/pubmed/23011260
http://dx.doi.org/10.1038/nn.2983
http://www.ncbi.nlm.nih.gov/pubmed/22101645
http://dx.doi.org/10.1523/JNEUROSCI.4120-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19369558
http://dx.doi.org/10.1002/sapm1973523213
http://dx.doi.org/10.1152/jn.00369.2003
http://www.ncbi.nlm.nih.gov/pubmed/14534263
http://dx.doi.org/10.1152/jn.2001.85.2.506
http://www.ncbi.nlm.nih.gov/pubmed/11160489
http://dx.doi.org/10.1152/jn.00880.2005
http://www.ncbi.nlm.nih.gov/pubmed/16267111
http://dx.doi.org/10.1152/jn.00591.2006
http://www.ncbi.nlm.nih.gov/pubmed/16971678
http://dx.doi.org/10.1371/journal.pbio.1002075
http://www.ncbi.nlm.nih.gov/pubmed/25710476
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://dx.doi.org/10.1016/j.neuron.2006.12.011
http://www.ncbi.nlm.nih.gov/pubmed/17224408
http://dx.doi.org/10.1126/science.6867718
http://www.ncbi.nlm.nih.gov/pubmed/6867718
http://dx.doi.org/10.1523/JNEUROSCI.2767-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28450539
http://dx.doi.org/10.1007/BF00275687
http://www.ncbi.nlm.nih.gov/pubmed/7153672
http://dx.doi.org/10.1162/08997660360581903
http://www.ncbi.nlm.nih.gov/pubmed/12689387
http://dx.doi.org/10.1016/S0896-6273(03)00149-1
http://www.ncbi.nlm.nih.gov/pubmed/12670427
http://dx.doi.org/10.1068/p5842
http://www.ncbi.nlm.nih.gov/pubmed/18265826


Rowland BA, Jiang W, Stein BE (2014) Brief cortical deactivation early in
life has long-lasting effects on multisensory behavior. J Neurosci 34:
7198 –7202. CrossRef Medline

Senkowski D, Schneider TR, Foxe JJ, Engel AK (2008) Crossmodal binding
through neural coherence: implications for multisensory processing.
Trends Neurosci 31:401– 409. CrossRef Medline

Stein BE (2005) The development of a dialogue between cortex and mid-
brain to integrate multisensory information. Exp Brain Res 166:305–315.
CrossRef Medline

Stein BE ed (2012) The new handbook of multisensory processing. Cam-
bridge, MA: MIT.

Stein BE, Rowland BA (2011) Organization and plasticity in multisensory
integration: early and late experience affects its governing principles. Prog
Brain Res 191:145–163. CrossRef Medline

Stein BE, Meredith MA, Huneycutt WS, McDade L (1989) Behavioral indices of
multisensoryintegration:orientationtovisualcues isaffectedbyauditorystimuli.
Journal of Cognitive Neuroscience 1:12–24. CrossRef Medline

Truszkowski TL, Carrillo OA, Bleier J, Ramirez-Vizcarrondo CM, Felch DL,
McQuillan M, Truszkowski CP, Khakhalin AS, Aizenman CD (2017) A
cellular mechanism for inverse effectiveness in multisensory integration.
Elife 6. pii: e25392. CrossRef Medline

Ursino M, Cuppini C, Magosso E (2014) Neurocomputational approaches
to modelling multisensory integration in the brain: a review. Neural Netw
60:141–165. CrossRef Medline

Wallace MT, Stein BE (1997) Development of multisensory neurons and
multisensory integration in cat superior colliculus. J Neurosci 17:2429 –
2444. Medline

Wallace MT, Stein BE (2000) Onset of crossmodal synthesis in the neonatal
superior colliculus is gated by the development of cortical influences.
J Neurophysiol 83:3578 –3582. CrossRef Medline

Wallace MT, Stein BE (2001) Sensory and multisensory responses in the
newborn monkey superior colliculus. J Neurosci 21:8886 – 8894. Medline

Wallace MT, McHaffie JG, Stein BE (1997) Visual response properties and
visuotopic representation in the newborn monkey superior colliculus.
J Neurophysiol 78:2732–2741. CrossRef Medline

Wallace MT, Perrault TJ Jr, Hairston WD, Stein BE (2004) Visual experi-
ence is necessary for the development of multisensory integration. J Neu-
rosci 24:9580 –9584. CrossRef Medline

Xu J, Yu L, Rowland BA, Stanford TR, Stein BE (2012) Incorporating cross-
modal statistics in the development and maintenance of multisensory
integration. J Neurosci 32:2287–2298. CrossRef Medline

Xu J, Yu L, Rowland BA, Stanford TR, Stein BE (2014) Noise-rearing dis-
rupts the maturation of multisensory integration. Eur J Neurosci 39:602–
613. CrossRef Medline

Xu J, Yu L, Stanford TR, Rowland BA, Stein BE (2015) What does a neuron
learn from multisensory experience? J Neurophysiol 113:883– 889.
CrossRef Medline

Xu J, Yu L, Rowland BA, Stein BE (2017) The normal environment delays
the development of multisensory integration. Sci Rep 7:4772. CrossRef
Medline

Yu L, Rowland BA, Stein BE (2010) Initiating the development of multisen-
sory integration by manipulating sensory experience. J Neurosci 30:
4904 – 4913. CrossRef Medline

Yu L, Xu J, Rowland BA, Stein BE (2013) Development of cortical influences
on superior colliculus multisensory neurons: effects of dark-rearing. Eur
J Neurosci 37:1594 –1601. CrossRef Medline

Yu L, Xu J, Rowland BA, Stein BE (2016) Multisensory plasticity in superior
colliculus neurons is mediated by association cortex. Cereb Cortex 26:
1130 –1137. Medline

Cuppini et al. • Development of Midbrain Multisensory Integration J. Neurosci., April 4, 2018 • 38(14):3453–3465 • 3465

http://dx.doi.org/10.1523/JNEUROSCI.3782-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24849354
http://dx.doi.org/10.1016/j.tins.2008.05.002
http://www.ncbi.nlm.nih.gov/pubmed/18602171
http://dx.doi.org/10.1007/s00221-005-2372-0
http://www.ncbi.nlm.nih.gov/pubmed/15988596
http://dx.doi.org/10.1016/B978-0-444-53752-2.00007-2
http://www.ncbi.nlm.nih.gov/pubmed/21741550
http://dx.doi.org/10.1162/jocn.1989.1.1.12
http://www.ncbi.nlm.nih.gov/pubmed/23968407
http://dx.doi.org/10.7554/eLife.25392
http://www.ncbi.nlm.nih.gov/pubmed/28315524
http://dx.doi.org/10.1016/j.neunet.2014.08.003
http://www.ncbi.nlm.nih.gov/pubmed/25218929
http://www.ncbi.nlm.nih.gov/pubmed/9065504
http://dx.doi.org/10.1152/jn.2000.83.6.3578
http://www.ncbi.nlm.nih.gov/pubmed/10848574
http://www.ncbi.nlm.nih.gov/pubmed/11698600
http://dx.doi.org/10.1152/jn.1997.78.5.2732
http://www.ncbi.nlm.nih.gov/pubmed/9356422
http://dx.doi.org/10.1523/JNEUROSCI.2535-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15509745
http://dx.doi.org/10.1523/JNEUROSCI.4304-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22396404
http://dx.doi.org/10.1111/ejn.12423
http://www.ncbi.nlm.nih.gov/pubmed/24251451
http://dx.doi.org/10.1152/jn.00284.2014
http://www.ncbi.nlm.nih.gov/pubmed/25392160
http://dx.doi.org/10.1038/s41598-017-05118-1
http://www.ncbi.nlm.nih.gov/pubmed/28684852
http://dx.doi.org/10.1523/JNEUROSCI.5575-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20371810
http://dx.doi.org/10.1111/ejn.12182
http://www.ncbi.nlm.nih.gov/pubmed/23534923
http://www.ncbi.nlm.nih.gov/pubmed/25552270

	Development of the Mechanisms Governing Midbrain Multisensory Integration
	Introduction
	Materials and Methods
	Results
	Discussion
	References


