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Polyploidy, the acquisition of extra sets of chromosomes, is a re-
current evolutionary process across the plant tree of life (Wendel, 
2015). New genomic data have revealed previously undetected an-
cient polyploidy events (Jiao et  al., 2011; Smith et  al., 2018), and 
new mathematical models offer the promise of studying large-scale 
macroevolutionary patterns of polyploidy (Mayrose et  al., 2010; 
Glick and Mayrose, 2014; Zenil-Ferguson et al., 2017; Freyman and 
Höhna, 2018) by leveraging new data sets of chromosome numbers 
(Rice et al., 2015) and ploidy values (Bennett and Leicht, 2012), as 
well as large phylogenies (Smith et al., 2011; Zanne et al., 2014).

Rates of polyploidy in plants may be associated with many phe-
notypic or life history traits, including sexual system, growth habit, 
or length of life cycle (see Zenil-Ferguson et al., 2017). Inferring the 
rate of polyploidy, and testing its possible links to plant traits, at a 

macroevolutionary scale requires the development of new phyloge-
netic comparative methods and software. ChromEvol first addressed 
rates of chromosome doubling in phylogenies using stochastic mod-
els (Mayrose et al., 2010; Glick and Mayrose, 2014). Although rates 
of chromosome doubling may be used as a proxy for polyploidy, it 
is not necessarily the same as rates of polyploidy (see Mayrose et al., 
2010; Zenil-Ferguson et al., 2017). ChromEvol, which was developed 
in a C++ environment, has enabled the estimation of chromosome-
doubling rates in phylogenies with up to 150 taxa (Escudero et al., 
2014). More recently, a binary trait and chromosome number evolu-
tion model (BiChroM; Zenil-Ferguson et al., 2017) linked the evolu-
tion of chromosome number with the evolution of binary phenotypic 
traits. The BiChroM implementation, which could evaluate patterns 
of chromosome evolution in a tree with 4700 taxa, addressed both 
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PREMISE OF THE STUDY: Polyploidy has profound evolutionary consequences for land plants. 
Despite the availability of large phylogenetic and chromosomal data sets, estimating the 
rates of polyploidy and chromosomal evolution across the tree of life remains a challenging, 
computationally complex problem. We introduce the R package chromploid, which allows 
scientists to perform inference of chromosomal evolution rates across large phylogenetic trees.

METHODS AND RESULTS: chromploid is an open-source package in the R environment that 
calculates the likelihood function of models of chromosome evolution. Models of discrete 
character evolution can be customized using chromploid. We demonstrate the performance 
of the BiChroM model, testing for associations between rates of chromosome doubling (as a 
proxy for polyploidy) and a binary phenotypic character, within chromploid using simulations 
and empirical data from Solanum. In simulations, estimated chromosome-doubling rates 
were unbiased and the variance decreased with larger trees, but distinguishing small 
differences in rates of chromosome doubling, even from large data sets, remains challenging. 
In the Solanum data set, a custom model of chromosome number evolution demonstrated 
higher rates of chromosome doubling in herbaceous species compared to woody.

CONCLUSIONS: chromploid enables researchers to perform robust likelihood-based inferences 
using complex models of chromosome number evolution across large phylogenies.
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the computational complexity associated with comparative analyses 
across phylogenies with thousands of taxa and the need for expo-
nentiation of large and sparse matrices that numerically define the 
probabilities of chromosome change in discrete trait evolution mod-
els (Felsenstein, 1981). In chromosome number transition models, 
matrices likely have at least a dimension of 25 × 25 (representing at 
least 25 haploid chromosomes), and their exponential is calculated 
for every set of parameter values defined in the model. Furthermore, 
for each set of parameter values, the exponentials have to be calcu-
lated for every branch length of the phylogeny. The complexity of the 
many matrix exponential calculations in large phylogenies is compu-
tationally time consuming and numerically unstable (Moler and Van 
Loan, 2003).

Our challenge was to create a software implementation that 
would allow for fast and numerically stable probability calcula-
tions, resulting in consistent likelihood-based inferences of rates 
of chromosome number evolution. The R package chromploid 
robustly calculates the likelihood function, the probability of 
observing the chromosome number changes given the phyloge-
netic tree and a model of chromosome number evolution. The 
likelihood function contains all the probabilities of chromosome 
number change along the branches of the phylogeny that are de-
fined via the exponential of large and sparse matrices calculated 
within chromploid. Furthermore, the likelihood function is key 
for statistical inferences in both likelihood and Bayesian inference 
frameworks. The central piece of our software is an R function 
(chromploid_nloglike), which returns this likelihood function (in 
negative and logarithmic form for optimization purposes) for pa-
rameters that define evolutionary rates of chromosome number or 
ploidy change. The implementation of the likelihood function in 
chromploid makes it possible to infer the rate of polyploidy via 
maximum likelihood estimates (MLEs), likelihood-confidence 
intervals, likelihood ratio tests, and profile likelihoods. These sta-
tistics allow researchers to assess the evidence and uncertainty of 
rates of polyploidy across a clade of interest. Currently, chromploid 
includes three different models of chromosome number evolution: 
ChromEvolM3 (Mayrose et al., 2010), BiChroM (Zenil-Ferguson 
et al., 2017), and a custom model for chromosome number change 
in Solanum L. However, users can easily implement their own dis-
crete character change models, and chromploid can perform the 
necessary likelihood calculations.

In this study, we demonstrate the performance of chromploid 
based on three difficult simulation scenarios for BiChroM and we also 
show one custom application of a model for Solanum chromosome 
number evolution linking chromosome number change to growth 
form. We performed power analysis simulation for a likelihood ratio 
test to assess the differences between chromosome-doubling rates 
that are linked to a binary trait on trees of different size. The simu-
lations show how different parameter values and numbers of taxa in 
the phylogeny affect the hypothesis testing framework.

METHODS AND RESULTS

We evaluated the performance of the chromploid R package (avail-
able at https://github.com/roszenil/chromploid) using simulation 
experiments and an empirical data set. In the simulations, we 
performed a statistical power analysis of the equal chromosome-
doubling rates hypothesis under the BiChroM model (Zenil-
Ferguson et al., 2017). In the empirical example, we used a custom 

model to test the link between polyploidy and the woody/herba-
ceous growth form in Solanum.

For the simulations, we used the BiChroM model that estimates 
the rates of chromosome change associated with two different char-
acter states. BiChroM includes 10 parameters that describe the rates 
of change for gaining one chromosome (λ0, λ1), losing one chromo-
some (μ0, μ1), doubling the number of chromosomes (ρ0, ρ1), chang-
ing the binary character state (q01, q10), and changing the binary trait 
when there are a large number (e.g., >25) of chromosomes (ε0, ε1). 
The numbers 0 or 1 indicate the binary character trait for each 
taxon in the tree (e.g., 0 = woody; 1 = herbaceous). In the simula-
tion, we fixed the maximum haploid chromosome number to 25, 
but in chromploid, this value is user defined.

We tested the null hypothesis H0: ρ0 = ρ1 using simulations of 
three scenarios that were designed to measure type I error and 
power of the hypothesis H0. We simulated 300 phylogenetic trees 
for each scenario with a pure birth process using the R package gei-
ger’s function sim.bdtree (Pennell et al., 2014). We generated 100 
phylogenetic trees in each scenario with 250 tips (i.e., taxa), 500 
tips, and 1000 tips. For each tree, we simulated the chromosome 
numbers and the value of the binary trait. In the first simulation sce-
nario (S1), we simulated the BiChroM model using S1: ρ0 = ρ1 = 0.01, 
meaning that the chromosome-doubling rates are equal for each bi-
nary character state and independent of the binary character trait 
(i.e., H0 is true). For the second simulation scenario, we assumed 
S2: 0.01 = ρ0 ≠ ρ1 = 0.002, meaning that the rates of chromosome 
doubling are different and depend on the binary trait, and H0 was 
false. In the third scenario, S3: 0.01 = ρ0 ≠ ρ1 = 0.008. This last sce-
nario also assumed that H0 was false, but there was less difference 
in the value of the rates associated with each binary state. For all 
three scenarios, the other eight parameters of BiChroM model 
were fixed at all times in the simulations (λ0  =  0.01,  λ1  =  0.005,  
μ0  =  0.01, μ1  =  0.005,  q01  =  0.01,  q10  =  0.005,  ɛ0  =  1  ×  10-6,  
ɛ1 = 1 × 10-6), but they were all estimated in the optimizations. The 
values fixed for the rest of the parameters were similar in scale to es-
timates from eudicots (Zenil-Ferguson et al., 2017). Also, we chose 
total tree height sizes that yielded zero to four chromosome number 
changes on average for a single lineage from root to tip (average tree 
height for simulations is listed in Figs. 1–3).

The simulated phylogenetic trees and corresponding chromo-
some number and binary character data sets served as input for 
the calculation of the negative log-likelihood of the full BiChroM 
model (defined via Q_bichrom function), where the maximum like-
lihood of parameters ρ0 and ρ1 were optimized freely, and the re-
duced BiChroM model (defined via Q_reducedbichrom function), 
where only the maximum likelihood of one parameter of chromo-
some doubling ρ  =  ρ0  =  ρ1 is optimized while the other parame-
ters are optimized freely. The negative log-likelihood values at the 
MLEs of the full and reduced BiChroM models (denoted by –l) were 
used to calculate the likelihood ratio test statistic D = –2l(reduced 
BiChroM) + 2l(full BiChroM) needed to compare two nested mod-
els. This statistic is asymptotically distributed as a chi-squared distri-
bution with degrees of freedom equal to the difference in the number 
of estimated parameters (here a �2

(1)
, see Kalbfleisch, 2012). Fixing 

the significance value of the likelihood ratio test at α = 0.05, we esti-
mated type I error in S1 by calculating the percentage of times that H0 
is (incorrectly) rejected (Fig. 1) and showing the distribution of the 
MLEs under the full and reduced BiChroM models as violin plots. 
In S2 and S3, we estimated the power of the test by calculating the 
percentage of times that H0 is (correctly) rejected (Figs. 2 and 3) and 
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showing the differences of MLEs from the sim-
ulation. The original code and results for this 
example are available at https://github.com/
roszenil/bichromRandRB. The R code tutorial 
for one simulation and likelihood ratio tests in 
chromploid is described in Appendix S1.

We performed the simulations using 20 
processors in the high-performance computing 
cluster at the University of Florida; each pro-
cessor required ≤350 Mb of memory. On aver-
age, obtaining the MLEs for trees with 250 tips 
took 40 min, trees with 500 tips took 90 min, 
and trees with 1000 tips took <240 min. The 
simulations in S1 produced unbiased MLEs, 
with variance decreasing as the number of taxa 
in the phylogenetic trees increased (Fig. 1). For 
these same simulations, the type I error de-
creased with taxonomic sampling (from 10% 
to 5%; Fig. 1), showing a 50% decrease in false 
positives even with a four-fold increase in the 
size of the tree. In S2, the MLEs again were un-
biased with decreasing variance as the number 
of taxa increased (Fig.  2). Furthermore, the 
violin plots in Fig.  2 showed less overlap as 
the number of taxa increased. The rate of false 
negatives (failure to reject H0; power) with the 
likelihood ratio test decreased by 24% when 
increasing from 250 to 500 taxa in the phylog-
eny (Fig. 2). The results in S3 again showed that 
the variance of estimates decreased with an in-
crease in sample size (Fig. 3), but the power of 
the likelihood ratio test remained small despite 
the size of the phylogeny (Fig. 3).

We also used chromploid to test if the rates 
of chromosome number change were linked 
to the woody (W) or herbaceous (H) growth 
form in Solanum using a custom model. We 
assembled the input data by first matching the 
chromosome numbers of the Chromosome 
Counts Database database (Rice et al., 2015), 
the growth form data from the Tree of Sex da-
tabase (Tree of Sex Consortium, 2014), and the 
Solanaceae-dated phylogeny from Särkinen 
et al. (2013). If a taxon could be woody or her-
baceous, we coded it as woody, and if there 
were multiple chromosome numbers recorded 
for a taxon, we used the largest. The data set 
included 171 taxa that all had either 12, 18, 
24, 36, or 48 chromosomes. We proposed a 
custom model of chromosome number evolu-
tion (defined in a custom Q-matrix function 
called Q_solanum) by defining six parame-
ters: (ρH, ρW) the chromosome-doubling rates 
for herbaceous and woody taxa, respectively; 
(ɛH,  ɛW) the 1.5× chromosome increase (i.e., 
demiploidy) rate for herbaceous and woody 
taxa, respectively; and (qHW, qWH) the rates of 
transition between woody and herbaceous 
states (see graphical model description and Q-
matrix code for chromploid in Appendix S2). 

FIGURE 1.  Results of simulations for Scenario 1 using chromploid with the BiChroM model. In 
Scenario 1, the null hypothesis is true, and it was simulated for trees with 250, 500, and 1000 
taxa (shown vertically). An increase in the number of taxa decreases type I error when increas-
ing from 500 to 1000 taxa, and violin plots show a decrease in the variance of the maximum 
likelihood estimates that are centered at the true value of simulation 0.01 (dotted gray line).

FIGURE 2.  Results of simulations for Scenario 2, where the null hypothesis is false. Simulations 
show a large power increase by increasing the number of taxa. An increase in the number of 
taxa also reduces the variance of maximum likelihood estimates, and the difference between 
the chromosome-doubling rate estimates becomes larger and closer to the true rate values 
used in simulations (dotted gray line).
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We tested the null hypothesis H0: ρH = ρW by estimating the reduced 
model with ρ = ρH = ρW on the same data set and calculating the 
likelihood ratio test statistic D as defined above. We performed the 
estimations using the same 20 processors in the high-performance 
computing cluster at the University of Florida.

On average, obtaining the MLEs for full and reduced mod-
els in the Solanum data set took 30 min. The likelihood ratio 
test results in rejection of the null hypothesis H0 (D  =  15.655,  
P value = 7.59 × 10-5) that the chromosome-doubling rate for her-
baceous taxa ρH is equal to that of woody taxa ρW. Instead, as in 
Zenil-Ferguson et  al. (2017), the rates of chromosome doubling 
are much higher in herbaceous than woody lineages. Based on the 
amount of difference (~0.13) shown by the MLEs of chromosome-
doubling rates shown in Table 1, the difference in rates of transition 
between growth forms (qHW and qWH), and the number of taxa in 
the matching Solanum phylogeny, our confidence in the difference 
in chromosome-doubling rates appears to be comparable to the 
simulations shown in S2 (Fig. 2).

CONCLUSIONS

Our simulations demonstrate that chromploid provides unbiased 
estimates of rates of chromosome doubling based on the BiChroM 

model (Figs.  1–3), and it easily enables in-
ferences regarding the rates and patterns of 
chromosomal number evolution on large phy-
logenetic trees. Variance in the parameter esti-
mates can decrease greatly with increased taxon 
sampling (Fig. 1), suggesting that chromploid 
analyses will be most reliable with large data 
sets, as shown in other comparative models 
(Davis et  al., 2013). In simulations with only 
75 taxa, the type I error is 23%, but the power 
of detecting true differences can be as small 
as 37% (see Appendix S3). Thus, chromploid 
likely will only be effective on analyses with at 
least a few hundred taxa. The simulations also 
provide reasons to be cautious when interpret-
ing results of chromploid analyses. In Scenario 
3 (Fig. 3), there is little power when the differ-
ence in chromosome-doubling rates is small, 
even when using extremely large phylogenies. 
Several factors can diminish the power of de-
tecting rate differences. First, when the rates of 
binary state transitions are unbalanced, it can 
be especially difficult to estimate parameters 
linked to binary state with the faster transition 
rate. This can be observed in Figs. 1, 2, and 3, 
where violin plots show greater uncertainty for 
chromosome-doubling rate associated to state 
0 (ρ0) than to state 1 (ρ1). Second, the shape 
of the phylogenetic tree might result in little 

change in type I or type II error rates when adding additional taxa. 
Because taxa in the phylogeny do not represent an independent 
sample, power analyses like the ones implemented here can reveal 
the importance and effect of the phylogenetic structure on the anal-
yses. A similar idea regarding effective sample size was discussed by 
Ané (2008) in the context of continuous trait evolution. Third, when 
chromosome-doubling rates are very close in value and either the 
unbalanced binary trait transitions and/or the small effective sample 
size problems appear, the variances of estimates may not decrease 
fast enough to result in a significant likelihood ratio test (Fig. 3).

An effective tool for examining patterns of chromosome num-
ber evolution across large phylogenies ideally will enable the user 
to create custom models and then allow for the calculation and 
optimization of the likelihood function. As we demonstrated with 
our Solanum example, scientists can use chromploid to customize 
models of chromosome evolution and perform robust statistical 
inferences using the models in the R environment. The likelihood 
function requires a calculation of probabilities from large and sparse 
matrices where a set of parameter values has to be evaluated for 
every single branch of the phylogenetic tree, greatly increasing the 
complexity in the calculation of the likelihood function (Felsenstein, 
1981). Therefore, chromploid’s main numerical challenge was to 
obtain quick calculations of the likelihood function in phylogenetic 
trees with hundreds, if not thousands, of taxa and with many possible 

TABLE 1.  Maximum likelihood estimates and likelihood value for full and reduced BiChroM models.a

Model/ MLE ɛH ɛW ρH ρW qHW qWH Negative log-likelihood

Full 0.084 1.14 × 10−19 0.139 0.0024 0.835 0.453 283.575

Reduced 0.072 2.20 × 10−17 0.047 1.12 0.717 291.402
aThe likelihood ratio test (D =  15.655) rejects the null hypothesis (P value = 7.59 × 10−5) that the chromosome-doubling rates ρH and ρW are equal.

FIGURE 3.  Results of simulations for Scenario 3. Estimates show that the likelihood ratio test 
has low power, and the power does not increase with more taxa. Increasing taxa reduces the 
variance of estimates, but not sufficiently for the violin plots to distinguish between the two 
parameters.
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chromosome numbers (or discrete character states). The fast calcu-
lation of likelihood functions for chromosome number evolution 
models in chromploid allows users to perform four key statistical in-
ferential tasks: (1) power analyses for detection of minimum sample 
sizes and hypothesis testing robustness, (2) exploration of difficult 
likelihood surfaces common to phylogenetic context (Chor et  al., 
2000), (3) calculation of confidence intervals and relative profile 
likelihoods for parameters of interest (Zenil-Ferguson et al., 2017), 
and (4) assessment of parameter estimability (Ponciano et al., 2012).

Implementing chromosomal and ploidy evolution models in the 
R environment in chromploid allows users to leverage other tools 
for phylogenetic analyses, like ancestral state reconstruction using 
diversitree (FitzJohn, 2012) or phylomap (Irvahn and Minin, 2014), 
and to visualize character evolution across the tree using phytools 
(Revell, 2012). In the future, it will be straightforward to implement 
more sophisticated or user-customized models in chromploid. 
Future models can include heterogeneity in the patterns of chromo-
somal evolution across the tree or uncertainty in the chromosome 
numbers at the tips. Also, Bayesian inferences using these models 
may be implemented in other platforms like RevBayes (Höhna 
et al., 2016). A first implementation for ChromEvol and BiChroM 
models that can be used on small phylogenies has been made in 
RevBayes (Freyman and Höhna, 2018).
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tion, and code used for this article can be found at https://github.
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