
RESEARCH ARTICLE

Sodium bicarbonate cotransporter NBCe2

gene variants increase sodium and

bicarbonate transport in human renal

proximal tubule cells

John J. Gildea1, Peng Xu1, Brandon A. Kemp2, Julia M. Carlson1, Hanh T. Tran1,
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Abstract

Rationale

Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normo-

tensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2

gene, SLC4A5, are associated with increased blood pressure in several ethnic groups.

SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension.

However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2

regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5

rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule

cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure.

Objective

To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV)

of SLC4A5.

Methods and results

The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying

WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. How-

ever, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3
- exchanger activ-

ity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced

the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-

way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence

Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium

enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and
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protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal

salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly

voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive

and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster

NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by

SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte nuclear factor type 4A

(HNF4A) to DNA was increased in hRPTCs carrying HV SLC4A5 rs7571842 but not

rs10177833. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV

SCL4A5 was abolished by HNF4A antagonists.

Conclusion

NBCe2 activity is stimulated by an increase in intracellular sodium and is hyper-responsive in

hRPTCs carrying HV SLC4A5 rs7571842 through an aberrant HNF4A-mediated mechanism.

Introduction

Hypertension and salt sensitivity of blood pressure (BP) have genetic and environmental com-

ponents. Salt sensitivity is observed in 30–60% of hypertensive and 15–26% of normotensive

adults. Salt sensitivity, per se, independent of blood pressure has similar cardiovascular mor-

bidity and mortality to hypertension [1], yet is difficult to diagnose[2]. Over the past decade,

several candidate genes involved in the regulation of sodium homeostasis have been associated

with salt sensitivity. Two studies linked loci in chromosome 2 to a higher resting BP in Niger-

ians, as well as both African- and Caucasian-Americans[3, 4]. The locus was mapped to chro-

mosome 2p14-2p13.1 [5, 6] containing the SLC4A5 gene, encoding the electrogenic sodium-

bicarbonate cotransporter 4 (NBCe2, formerly known as NBC4)[7]. Barkley et al identified

SLC4A5 as the only gene in chromosome 2 that was significantly associated with hypertension

within a pool of 82 single nucleotide polymorphisms (SNPs) within eight genes of interest[8].

Several SNPs within SLC4A5, including rs10177833 and rs7571842, had been associated with

higher resting blood and pulse pressures in Caucasian- and African-Americans and Chinese

[9–13]. Recently, Carey et al reported that SLC4A5 rs10177833 and rs7571842 were highly

associated with salt sensitivity, independent of hypertension, in two independent cohorts[14].

However, little is known about the normal cellular expression and function of NBCe2 in the

kidney and if genetic variants of SLC4A5 contribute to renal pathophysiology[15].

The rat kidney expresses NBCe2 to a greater extent in the medullary thick ascending limb

(mTAL) and cortical thick ascending limb (cTAL) and to a lesser extent in the proximal straight

tubule and cortical collecting duct (CCD)[16]. Xu et al hypothesized that NBCe2 should be

located at the basolateral membrane of the mTAL and cTAL[16] because there was no measur-

able sodium-dependent bicarbonate transport activity in the lumens of these nephron segments.

However, those studies were performed under normal but not high sodium intake[16]. We

have previously reported that in kidney slices incubated with 120 mM NaCl, NBCe2 was local-

ized particularly in the subapical membrane and in highly compartmentalized perinuclear

Golgi bodies [17]. Increasing intracellular sodium by increasing extracellular sodium concentra-

tion (170 mM NaCl, in the short-term (30 min), increased the luminal expression of NBCe2,

observed by confocal microscopy [17]. Furthermore, electron microscopy revealed that NBCe2

was present in a subapical compartment in the hRPTC under 120 mM NaCl conditions and

Renal sodium bicarbonate cotransporter (NBCe2) in salt sensitivity of blood pressure

PLOS ONE | https://doi.org/10.1371/journal.pone.0189464 April 11, 2018 2 / 35

Abbreviations: Ang II, angiotensin II; Ang III,

angiotensin III; ChIP, chromatin

immunoprecipitation; cTAL, cortical thick

ascending limb; HV, homozygous variant; KD,

knockdown; mTAL, medullary thick ascending

limb; NHE3, sodium hydrogen exchanger type 3;

OE, overexpressed; hRPTC, human renal proximal

tubule cell; shRNA, short hairpin RNA; SR, salt-

resistant; SS, salt-sensitive; VC, vector control;

VEH, vehicle; WT, wild-type; HNF4A, hepatic

nuclear factor 4 alpha.

https://doi.org/10.1371/journal.pone.0189464


migrated into the microvilli under high sodium (170 mM) conditions[17]. However, in those

studies, we did not perform longer term experiments that examined transcriptional regulation

of NBCe2 via its gene SLC4A5.

A related sodium-bicarbonate transporter, NBCe1, is located in human RPT,[18] TAL,[19]

and CD[20]. NBCe1 mediates the transport of sodium and bicarbonate from inside the cell

across the basolateral membrane to the basolateral space; mutations in this gene cause severe

metabolic acidosis[18, 21]. NaCl or NaHCO3 loading in normotensive rats decreases the renal

expression of both NBCe1 and sodium hydrogen exchanger 3 (NHE3)[22]. NBCe1 expression

is also decreased in hRPTCs isolated from spontaneously hypertensive rats (SHR) compared

with hRPTCs from normotensive Wistar-Kyoto rats[23]. However, in salt-sensitive (SS)

humans, sodium transport in the RPT is increased and not decreased by an increase in sodium

intake[24–26]. The increased sodium transport in the RPT of SHRs may be related to increased

angiotensin II activation or an impaired dopaminergic-inhibition of renal sodium transport

due to NHE3, Na+,K+/ATPase, and sodium bicarbonate [27–29] or changes in abundance of

NBCe1[30]. The fact that sodium transport through NHE3 and at least 60% of bicarbonate and

water transport are linked in the RPT suggest that luminal NHE3 and sodium bicarbonate

transport may be functionally associated [31]. RPT bicarbonate transport is increased in hyper-

tension [32–34]. We hypothesized that the sodium bicarbonate symporter involved in hyperten-

sion is NBCe2 because NBCe1 function in the RPT is decreased in a rat model of hypertension.

[(23)] Furthermore, we hypothesized that gene variants in NBCe2 would increase sodium bicar-

bonate transport contributing to salt sensitivity and eventually hypertension.

Dopamine (via D1-like receptors) decreases [2, 25, 28, 29, 35–38], while angiotensin II

(Ang II, via angiotensin type 1 receptor) increases [2, 24–26, 28, 30, 35, 39] sodium and bicar-

bonate transport in the RPT, especially under conditions of sodium loading and sodium deple-

tion, respectively. We therefore hypothesized that gene variants of SLC4A5 would cause it to

be differentially regulated by the dopaminergic or renin angiotensin systems.

Transcriptional gene regulation is important in normal and disease states [40]. Hepatocyte

nuclear factor 4A (HNF4A) is one of the members of the nuclear receptor family of ligand-

dependent transcription factors. HNF4A plays a key role in RPT development [41, 42], electrolyte

balance in osmotically-challenged killifish,[43] and survival of severely salt challenged C. elegans
[44]. HNF4A expression is increased in Dahl SS rats and is implicated in the expression of a large

number of genes found in hypertension-related quantitative trait loci studies in humans and rats

[45]. HNF4A has also been shown to regulate multiple components of the renin-angiotensin sys-

tem (RAS) [46]. HNF4A also regulates G protein-coupled receptor kinase type 4 (aka GPRK2L)

expression [47] which in turn regulates the activities of the natriuretic renal dopaminergic system

and antinatriuretic RAS, aberrant regulation of which may cause salt sensitivity [35].

Thus, the current study examined the regulation and function of NBCe2 and NBCe1, using

hRPTCs expressing wild-type (WT) or homozygous variants (HV) of SLC4A5 (rs1017783 and

rs757184). We tested the hypothesis that these SLC4A5 SNPs that are associated with salt sensi-

tivity of BP would increase the expression and activity of the gene product, NBCe2, resulting

in an increase in sodium transport in hRPTCs. We further tested the hypothesis that increased

expression and activity of NBCe2 caused by the presence of SLC4A5 SNPs results from an

aberrant interaction between HV SLC4A5 with the transcriptional regulator HNF4A.

Materials and methods

The human tissues used in our studies were obtained in accordance with a University of Vir-

ginia Institutional Review Board-approved protocol that adheres to the Declaration of Helsinki

and the most recent version of the USA Code of Federal Regulations Title 45, Part 46.
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hRPTC cultures and drug treatments

A. primary and immortalized hRPTC culture. Ten different hRPTC lines were isolated

from ten different kidney specimens from ten different subjects, as previously described[17,

36, 48, 49]. These cell lines have been extensively characterized using hRPTC-specific markers

[36, 49]. Primary (pre-immortalized) and immortalized hRPTC were used. All cell lines were

DNA fingerprinted to validate their origin and continuity. Four of the cell lines obtained from

four different subjects were genotyped by sequencing as having no rs10177833 and rs7571842

SLC4A5 SNPs; these were designated as wild-type (WT). The other six hRPTC lines were

obtained from six other subjects expressing SNPs at both rs10177833 and rs7571842 in the

SLC4A5 gene; these were designated homozygous variant (HV).

The growth conditions for renal tissue-derived hRPTCs and urine-derived hRPTCs and

drugs to block transporters, receptors, and second messengers are as follows.

The hRPTCs were grown at 37˚C in full humidity with 95% air and 5% CO2. The cells were

fed DMEM-F12 media (Invitrogen) supplemented with 2% fetal calf serum (FCS), 5 μg/mL

plasmocin (InvivoGen), 10 ng/mL epidermal growth factor (Sigma), 36 ng/mL dexamethasone

(Sigma), 2 ng/mL triiodothyronine (Sigma), 1x insulin/transferrin/selenium (Invitrogen), 1x

penicillin/streptomycin (Invitrogen), and 0.2 mg/mL G418 sulfate (EMD Chemicals).

Exfoliated hRPTCs obtained from freshly voided urine. hRPTCs isolated from freshly

voided urine from three SS subjects from our clinical study who carried SLC4A5 variants were

compared with three salt-resistant (SR) subjects who carried WT SLC4A5. hRPTCs were iso-

lated by magnetic immuno-affinity purification, but using CD-15 instead of CD-13 (Miltenyi).

The collected cells were plated onto poly-l-lysine (Sigma, 150-300k MW)-coated glass bottom

96-well plates.

The hRPTCs were plated onto 6-well plates for experiments measuring mRNA and protein

expression. When the cells reached approximately 70% confluence, they were serum-starved

for 24 h before sodium or drug treatment; each experiment was performed in triplicate in all

ten cell lines from ten different individuals. Intracellular sodium was elevated by increasing

the sodium concentration in the incubation buffer or by adding the ionophore monensin, as

previously described in various model systems[17, 50–56]. All drugs tested are listed below,

but the only one that elicited changes in NBCe2 expression and function was the ionophore

monensin (or 170 mmol/L, extracellular NaCl). The concentrations used (1–10 μmol/L) were

based on monensin titration and intracellular sodium calibration [57].

Drug treatments. The response to dopaminergic stimulation (24 h) of hRPTCs was

studied using the D1-like (D1R/D5R) dopamine receptor agonists fenoldopam (FEN, fenol-

dopam mesylate, Corlopam, Hospira, Inc, 1 μmol/L) and SKF38393 (Sigma, 10 μmol/L),

and the D1R/D5R antagonist LE300 (Tocris, 10 μmol/L)[36, 37].

Either an increase in extracellular sodium or the addition of the ionophore monensin [50–56]

(1–10 μmol/L) was used to probe the effect of increased intracellular sodium on NBCe2 expres-

sion and activity. Monensin was used at several time points, from 1 to 24 h.

The response to angiotensin II (Ang II) and des-aspartyl Ang III stimulation (24 h) was

tested in hRPTCs using 10 nmol/L Ang II (Sigma) and 10 nmol/L Ang III (Sigma). EC-33

(3-amino-4-thio-butyl sulfonate, Ki = 0.29 μM), and PC-18 (2-amino, 4-methylsulfonyl-

butane-thiol, Ki = 8.0 nM) were used to block the conversion of Ang II to Ang III by amino-

peptidase A and from Ang III to Ang IV by aminopeptidase N, respectively. Both EC-33 and

PC-18 were generous gifts from Drs. Fournie-Zaluski and Roques (Universite Rene Descartes,

Sciences Pharmaceutiques et Biologiques). 5-(N-ethyl-N-isopropyl-amiloride, (EIPA, Sigma,

10 μmol/L) was used to inhibit NHE3 activity1. 2,2’-(1,2-ethenediyl)bis[5-isothiocyanato-ben-

zenesulfonic acid] (DIDS, Cayman Chemical, 500 μM) was used to inhibit the activity of anion
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exchangers, including NBCe1 and NBCe2 (17, 23). 1-[(2-chloro-5-nitrophenyl)sulfonyl]-

2-methyl-1H-benzimidazole, BIM5078, and 2-methyl-1-[(2-methyl-5-nitrophenyl)sulfonyl]-

1H-benzimidazole, BI6015 (Cayman Chemical, both at 10 μmol/L) were used to inhibit

HNF4A activity[58].

Localization of proteins of interest in cultured immortalized hRPTCs using

confocal microscopy

The hRPTCs were prepared for immunofluorescence confocal microscopy after treatment

with 120 to 170 mmol/L sodium chloride, as well as monensin (10 μmol/L) which is used by

many investigators to increase intracellular sodium [17, 50–57]. Monensin, at this concentra-

tion, has been reported to increase intracellular sodium by about 20 mmol/L in opossum kid-

ney cells [57].

Preparation of the hRPTCs for confocal microscopy. hRPTCs were grown on colla-

gen IV-coated glass-bottom 96-well plates to 50% confluence and serum-starved overnight.

They were incubated with monensin (1 or 10 μmol/L) or vehicle for 24 h and washed twice

in PBS. They were then fixed for 5 min in PBS containing 4% paraformaldehyde and 1%

Triton-X 100 and washed three times for 5 min with TBS. Immunofluorescence staining

was performed as previously reported[49]. The fixed cells were blocked in Odyssey Blocking

Buffer (LI-COR Biosciences) for 1 h. Primary antibodies used were polyclonal NBCe2

(1:250 dilution for Sigma HPA036621 and 1:400 dilution for Santa Cruz sc-168713) and

mouse monoclonal NBCe1 (1:500 dilution, Sigma WH0008671M1). All cells were incubated

for 1 h with gentle rocking at room temperature (RT), followed by washing (three times, 5

min/wash) in PBS-T (PBS plus 0.02% Tween-20). The cells were incubated in Odyssey

Blocking Buffer (LI-COR Biosciences) with Alexa 488- (NBCe2) and Alexa 594- (NBCe1)

conjugated secondary antibodies (2 μg/mL, Invitrogen) for 1 h at RT. The cells were washed

three times in PBS-T and imaged using an Olympus IX81 automated multi-well spinning

disk confocal microscope. CD-13-PE antibody (1:50, BD Biosciences 347837) was used to

identify RPTCs. Hoechst 33342 (1:2000, Invitrogen 735969) was used to stain nuclei.

Confocal microscopy. The confocal microscope is an IX81, 6D (linear encoded X, and Y

axis, piezo Z axis, time, wavelength, positions) spinning disk confocal with both mercury and

xenon light sources and Semrock hard-coated filters in a Sedat configuration. Images were

acquired using a 100x UPlanSApo oil immersion objective with NA 1.4 for cell imaging. The

microscope is controlled by Olympus Slidebook 5.5 software. Colocalization analysis was per-

formed using the colocalization threshold add-on for ImageJ.

Cell surface NBCe2 using total internal reflection fluorescence microscopy (TIRFM).

In order to focus on apical membrane-expressed NBCe2 we used TIRFM which allows for

selective excitation of the surface-bound fluorophores while having highly suppressed back-

ground fluorescence from intracellular and non-bound NBCe2. TIRFM has sub-micron (~70

nm resolution) validating apical presentation of NBCe2. The effect of monensin (10 μmol/L,

24 hr) on NBCe2 apical expression was measured in polarized hRPTCs grown on GEM™ 3D

microcarriers, as described previously [49]. Two-color immunofluorescence TIRFM with an

imaging depth set at 70 nm from the coverslip surface was used as the imaging depth chosen

based on previous work done on α-Na/K/ATPase, that showed a decrease in TIRF when this

transporter underwent endocytosis inside the cell and our previous work on NBCe2 in

hRPTCs[17].
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Antibodies and their specificities

NBCe1 and NBCe2 antibodies. The antibody to NBCe1 (Sigma WH0008671M1) has

been well validated in human renal tissue in our previous studies in the RPT [17]. The NBCe2

antibody (Sigma HPA036621) used previously [17] and in the current studies was character-

ized in the Human Protein Atlas (http://www.proteinatlas.org/ENSG00000188687-SLC4A5/

tissue/kidney#imid_20081509). We further verified its specificity using confocal imaging with

dual staining for hRPTC-specific marker CD-13 (BD 347837, 1:500 dilution) or HNF4A (goat

polyclonal anti-HNF4A, Santa Cruz sc-6556, 1:500). This was performed in cultured primary

and immortalized hRPTCs, including overexpressed cell lines or those stably transfected with

NBCe2-specific siRNA to knockdown SLC4A5, the NBCe2 gene.

Western blots. Western blots were performed as previously published [17]. Briefly,

detergent-free apical plasma membranes were isolated using sulfo-NHS-SS-biotin as

reported previously [59, 60] with the following exceptions: hRPTCs were grown to conflu-

ence in normal hRPTC culture media, then EGF was removed, FBS reduced to 0.5%, and

rocked at a rate of 1/sec for 3 d to induce polarization. The biotinylated-attached mem-

branes were eluted off the magnetic beads with 100 μL of 70˚C 2x sample buffer for 10 min.

A sample of cell homogenate was isolated before the biotinylation procedure and repre-

sented whole cell homogenate. The whole cell homogenate was prepared by loading equal

volumes of sample and 2x sample buffer. Both whole cell and biotinylated samples were sep-

arated by SDS-PAGE (10% Tris�HCl polyacrylamide gel) and transferred onto a nitrocellu-

lose membrane by electroblotting. The membrane was blocked in 5% milk in TBS with 0.1%

tween-20 (TBS-T) for 2 h at RT and then incubated overnight at 4˚C with NBCe2 in Odys-

sey blocking buffer: NBCe2 (Sigma; 1:500) in 5% milk TBS-T. A second gel was run and

transferred, as stated previously. The blot was blocked in Odyssey blocking buffer for 2 h at

RT then incubated overnight at 4˚C with CD-13 (APN; Santa Cruz; 1:500) and NBCe1

(Sigma; 1:500) in Odyssey blocking buffer. The membrane was subsequently incubated with

infrared secondary antibodies (anti-rabbit IR dye 800 and anti-mouse IR dye 680 respec-

tively; both 1:15,000). Immunoreactivity was quantified using the Odyssey Infrared Imaging

System. The blot was then stripped using LI-COR nitrocellulose stripping buffer, reprobed

with Na+,K+/ATPase (Epitomics; 1:10,000) primary antibody, and processed as stated

previously.

We performed western blot analysis of total whole cell homogenates (WC) and apical mem-

brane fractions from two immortalized hRPTC lines that were grown on Transwell™ mem-

branes. The blot was probed with NBCe2 [17], CD-13 (APN), Na+,K+/ATPase, PAT-1, and

NBCe1 antibodies. CD-13 (APN) was used as an hRPTC microvilli marker and Na+,K+/

ATPase and NBCe1 were used as hRPTC basolateral membrane markers.

NBCe2 overexpressed and knock-down hRPTCs

Overexpressed (OE): A Lentiviral construct (CCSB-Broad Lentiviral Expression Human

SLC4A5 Clone; CloneId: ccsbBroad304_12409) was purchased from Thermo Scientific. The

plasmid was packaged into virus with compatible packaging plasmids using HEK-293T cells

(Clontech Laboratories). The lentivirus was added to hRTPCs at 30–40% confluence for 18–20

h, then removed and replaced with regular growth medium. After 48 h, the medium was

changed to selection medium containing Blasticidin S (InvivoGen; 5 μg/ml).

Knocked-down (KD): Validated Mission shRNAi Lentiviral constructs for knocking

down the SLC4A4 gene (Clone ID:NM_003759.1-598s1c1; NM_003759.1-1955s1c1 and

NM_003759.1-3183s1c1) or SLC4A5 gene (Clone ID:NM_021196.3-676s21c1;

NM_021196.3-1161s21c1 and NM_021196.2-1989s1c1), as well as a negative shRNA control
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(Mission Non-Target shRNA control vector; SHC002), were purchased from Sigma-Aldrich

and packaged into virus with compatible packaging plasmids using HEK-293T cells (Clon-

tech Laboratories). hRPTCs were transduced, as mentioned above. After 48 h, the selection

agent puromycin (Sigma-Aldrich, P7255; 2μg/ml) was added to the media. KD of protein

expression was confirmed by western blotting using an anti-NBCe2 antibody (Sigma

HPA036621, polyclonal rabbit; 1:500 dilution). The western blots were analyzed using

Odyssey software.

RT-PCR. Following drug incubation, total RNA was collected using an RNeasy kit (Qia-

gen). The samples were stored at -80˚C prior to RT-PCR. Total RNA was quantified using a

NanoDrop Spectrophotometer (Thermo Scientific). The samples were normalized to 100 ng

RNA/well on a plastic 96-well plate (Qiagen). The samples were mixed with iScript One-Step

RT-PCR kit with SYBR Green (Bio-Rad) using NBCe1, NBCe2, or β-actin Primer Assays

(Qiagen).

Chromatin immunoprecipitation (ChIP) assay. We performed a ChIP assay to determine

whether or not HNF4A bound to or was localized to the region in the human DNA where poly-

morphisms in SLC4A5 are located. Approximately 15 million hRPTCs per sample were fixed

with formaldehyde (final concentration 1%) and quenched with glycine (final concentration, 125

mmol/L). The hRPTCs were lysed and DNA sheared per manufacturer’s instructions (Thermo

Scientific Magnetic ChIP Kit). Protein concentrations were measured by BCA assay (Thermo

Scientific). Anti-HNF4A goat polyclonal primary antibody (2 μg, Santa Cruz sc-6556) was used

per 100 μg of protein. Protein A/G beads were added to capture the primary antibody and subse-

quently the samples were washed three times. Following elution, the DNA was purified using

Qiagen DNeasy Kit. RT-PCR was performed using primers flanking the SNP site rs7571842 (for-

ward 5’ CCCTTTCCTCTCTCCCTTGT, reverse 5’ ATTTGCAGCAGGTGACTGTG).

HNF4A DNA binding assay. 100 ng WT or HV SLC4A5 double-stranded DNA were

generated using oligonucleotides matching either the WT G allele or variant A allele, and then

annealed and incubated with 10 ng purified V5 myc epitope-tagged HNF4A protein (Origene).

ChIP-grade streptavidin magnetic particles were incubated with 100 ng polyclonal mouse

anti-myc antibody (Santa Cruz, clone 9E10) for 30 min and washed 3 times with PBS. They

were incubated for another 30 min with Alexa647 anti mouse secondary antibody (Invitro-

gen), washed three times, and the fluorescence measured by microplate fluorometry (Pheras-

tarFS). The WT SLC4A5 oligonucleotides at rs7571842 were 5’ biotinylated-GTCTGTA
AAACTAAGGAGGTAATTTGCTGCAACAG and the non-biotinylated complement. The variant

SLC4A5 rs7571842 A allele oligonucleotides were 5’ biotinylated -GTCTGTAAAACTA
AGAAGGTAATTTGCTGCAACAG and its non-biotinylated complement. The second WT oligo-

nucleotides at rs10177833 were 5’ biotinylated-ACCCTGGCAATGTGGACACACACCCC
ATTCAG and the non-biotinylated complement. The 2nd variant (A allele) oligonucleotides at

SLC4A5 rs10177833 were 5’ biotinylated -ACCCTGGCAATGTGGAAACACACCCCAT
TCAG and the non-biotinylated complement. The positive control consensus HNF4A binding

site oligonucleotide was 5’ biotinylated -AGTTCAAAGGTCA.

Sodium accumulation assay. The hRPTCs were cultured onto 96-well glass bottom colla-

gen-coated Matrical™ plates (Spokane, WA) at 37˚C until they reached 50% confluence. The

cells were serum-starved overnight prior to loading with a sodium ion indicator, sodium-bind-

ing benzofuran isophthalate (SBFI, 5 μmol/L, Molecular Probes) with 0.04% Pluronic F-127

for 2 h in PBS with calcium and magnesium. The cells were washed twice and allowed to

recover at 37˚C in serum-free media for 30 min. They were washed two more times with PBS

and incubated at room RT with ouabain (100 μmol/L, 10 min) to inhibit Na+,K+/ATPase activ-

ity. The hRPTCs were then placed in a fluorescent plate reader (PherastarFS) and ratiometric

readings (340 nm excitation and 510 nm emission/ 380 nm excitation and 510 nm emission)
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were recorded every 30 sec for 30 min. A 5-min baseline reading was acquired prior to auto-

matic injection of monensin (10 μmol/L). Sodium accumulation was measured as the change

in 340/380 ratio at the 30-min time point minus the 5-min average reading prior to monensin

injection.

Apical to basolateral trans-epithelial hRPTC sodium transport assay. We measured

the total sodium transported from the apical to basolateral side of a polarized layer of hRPTCs

on a Transwell membrane. The hRPTCs were grown in the polarized state on collagen-coated

Transwell inserts in growth media with 5% serum in the lower compartment and 0.5% serum

in the upper compartment for 5 days with the media changed daily, and Transwells rocked at a

rate of one-half oscillation per sec. After the trans-epithelial electrical resistance (TEER)

increased above background at day 5, the plates were switched to serum-free media without

growth factors in the upper compartment and 0.5% serum without growth factors in the lower

compartment. After the TEER stabilized at 10 days, sodium transport was measured. The solu-

tion in the upper compartment was changed to Krebs-Henseleit buffer and the solution in the

lower compartment was changed to sodium- and bicarbonate-free media. After 2 h the sodium

concentration in the lower compartment was measured by atomic absorption spectroscopy.

Sodium bicarbonate-dependent pH recovery assay. Exfoliated hRPTCs obtained from

freshly voided urine.

hRPTCs isolated from freshly-voided urine from 3 SS subjects from our clinical study who

carried SLC4A5 variants were compared with 3 SR subjects who carried WT SLC4A5. The

hRPTCs were cultured overnight (18 h) in serum-free media with 10 μmol/L monensin and

loaded as in the sodium accumulation assay described above, with the exception that 2’-7’-bis

(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethy ester (BCECF AM, 5 μM, Invitrogen)

was the dye used and loaded without Pluronic for 30 min, instead of 2 h. The hRPTCs were

then acidified in a CO2 incubator without bicarbonate for 30 min. Ouabain was added

(100 μmol/L, Na+,K+/ATPase inhibitor) and the cells were incubated for 10 min. Since the

cells showed the same pH recovery response with and without ouabain it was omitted in subse-

quent experiments. Sodium- and bicarbonate-free media were perfused in the presence of 5-

(N-ethyl-N-isopropyl)-amiloride (EIPA, Sigma, 10 μM) to inhibit NHE3 activity[17]. Media

with sodium and bicarbonate were then perfused and intracellular pH was measured by time-

lapse ratiometric imaging on a spinning disk confocal microscope every 30 sec (485 nm excita-

tion, 530 nm emission/430 nm excitation, 530 nm emission). Ratiometric images were

acquired and analyzed using the ratio imaging module of the Slidebook software version 5.5;

the initial rates of pH recovery were calculated.

mmortalized RPTCs obtained from fresh human kidney tissue: RPTCs isolated from

human kidney and identified as SLC4A5 WT or HV were cultured on thin-bottomed 96-well

plates and treated for 24 h with monensin (10 μmol/L) with and without HNF4A antagonists

1-[(2-chloro-5-nitrophenyl)sulfonyl]-2-methyl-1H-benzimidazole, BIM5078, or 2-methyl-1-

[(2-methyl-5-nitrophenyl)sulfonyl]-1H-benzimidazole (BI6015, Cayman Chemical, both at

10 μmol/L)[58, 61]. The pH recovery assay was carried out as outlined above, but confocal

imaging was not used. Instead, kinetic measurements using the fluorescence plate reader

(PherastarFS) were performed. The pH was internally calibrated using the nigericin high

potassium calibration method. Two negative controls were used: 1) no sodium in the buffer

and 2) when DIDS (Cayman Chemical, 500 μM) [17, 23] was added along with the EIPA.

Cl-/HCO3
- exchanger activity.

There is no specific assay for Cl−/HCO3
− exchanger activity. However, pH recovery after

removal of CO2/HCO3
− in the absence of sodium is considered a reasonable approximation of

Cl−/HCO3
− activity[62]. Cells were loaded with the intracellular pH indicator BCECF AM

(5 μM) for 30 min. Sodium-independent HCO3
− transport was assayed as the initial rate of
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pHi recovery after an alkaline load (CO2/HCO3
− removal), in the absence of sodium, as

described previously [62–65]. The cells were washed free of dye and loaded with CO2-equili-

brated Krebs–Henseleit solution (25 mmol/L NaHCO3) for 30 min. Then, the extracellular

solution was replaced with a Krebs-Henseleit NaHCO3-free solution and NaCl replaced with

choline chloride; pH was measured by a microplate spectrofluorometer and fluorescence mon-

itored every 8 s for ratiometric measurements (485 nm excitation, 530 nm emission/430 nm

excitation, 530 nm emission).

Intrinsic hRPTC intracellular pH buffering capacity.

Intrinsic intracellular buffering capacity was measured by sequentially decreasing concen-

trations of NH4Cl in sodium-, CO2-, and bicarbonate-free buffer[63] Sodium-free HEPES

buffer contains in mmol/L: HEPES 25, KCl 4.66, MgSO4 1.05, CaCl2 1.35, N-methyl-D-gluca-

mine 148, glucose 11 NH4Cl 0, 5, 10, 15, 20, and pH adjusted to 7.4. Intrinsic buffering capac-

ity was measured by labeling cells with the pH sensitive ratiometric dye BCECF as above in a

96-well cell culture plate. The hRPTCs were incubated in sodium-, CO2-, and bicarbonate-free

HEPES -containing buffer until the intracellular pH stabilized. Then the same buffer contain-

ing sequentially decreasing concentrations of NH4Cl from 20 mmol/L to 0 at 5 mmol/L inter-

vals were exchanged and read on the microplate reader. At the end of the experiment a single

pH measurement was used for internal calibration and compared with complete pH calibra-

tion curves performed on each cell line [66].

The intrinsic buffering capacity (βi) was calculated from pHi and the concentration of

ammonia [64, 65, 67].

These changes were initiated by the removal of the ammonium ions from the extracellular

buffer. It has been previously demonstrated that buffering capacity is stable over the range of

6.4–7.2 [17, 65].

Statistical analysis

Data are expressed as mean ±1SE. Comparisons within and among groups (� 3) were made

by repeated-measures or factorial ANOVA, respectively, followed by Holm-Sidak or Tukey’s

post-hoc tests. Student’s t-test was used for 2-group comparisons.

Results

Western blots of NBCe1 and NBCe2

We performed western blot analysis of total whole cell homogenates (WC) and apical mem-

brane fractions (APICAL) from two immortalized hRPTC lines that were grown on Trans-

well™ membranes to assure epithelial polarization (Fig 1). Arrows on the left-hand side of the

blots indicate the molecular marker sizes, while the arrows on the right-hand side indicate the

molecular size of the bands of the proteins of interest. The blot was probed for NBCe2 along

with the following membrane markers: CD-13 (APN microvilli marker), Na+,K+/ATPase

(NKA),basolateral membrane marker), and NBCe1 (basolateral membrane marker). The

results demonstrate that two isoforms of NBCe2 exist in the apical membrane of polarized

hRPTCs grown on Transwells™. The control western blots demonstrate that Na+,K+/ATPase

and NBCe1 only stain weakly in the apical fraction, probably due to some basolateral contami-

nation inherent in this kind of preparation. WC homogenates demonstrated the presence of

NBCe2, NBCe1, CD-13, and Na+,K+/ATPase, as expected.
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Effect of Increasing intracellular sodium on the localization of NBCe2 in

cultured hRPTCs

Increasing intracellular sodium (monensin, 10 μmol/L) caused an increase in the apical mem-

brane NBCe2 in hRPTCs carrying HV SLC4A5 but not in those carrying WT SLC4A5 (Fig 2,

see merged images C, F, I, and L). The apical membrane was marked by CD-13 (APN). We

also used TIRFM to image the top 70 nm of the apical cell membrane on cells grown in 3D

with their apical membranes being accessible from the media side of the cell (Fig 3). Cells

grown in 3D are more polarized than cells grown in 2D on Petri dishes. (49) Wild-type control

cells did not significantly increase apical membrane expression of NBCe2 when exposed to

high sodium conditions (Fig 4A and 4B) but HV hRPTCs increased NBCe2 membrane

expression from 4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak

test) (Fig 4A and 4B).

Fig 1. Western blot of whole cell (WC) homogenates and apical membrane fractions from two immortalized

hRPTC lines grown in Transwell membranes. Arrows on the left-hand side of the blots indicate the molecular sizes,

while the arrows on the right-hand side indicate the molecular sizes of the bands of the proteins of interest. The blot

was probed for NBCe2 along with the following membrane markers: CD-13 (APN microvilli marker), Na+,K+/ATPase

(basolateral membrane marker), and NBCe1 (basolateral membrane marker). The results demonstrate that two

isoforms of NBCe2 exist in the apical membrane of polarized RPTCs grown on Transwells. The control western blots

demonstrate that αNa+,K+/ATPase (NKA) and NBCe1 only stain weakly in the apical fraction, probably due to some

basolateral contamination inherent in this kind of preparation. WC homogenates demonstrate the presence of NBCe2,

NBCe1, CD-13, and Na+,K+/ATPase, as expected.

https://doi.org/10.1371/journal.pone.0189464.g001
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Fig 2. Immunofluorescence localization of NBCe2 in human renal proximal tubule cells (hRPTCs) carrying wild-type (WT) or

homozygous variant (HV) SLC4A5 imaged on Petri dishes using confocal microscopy. CD-13, a specific membrane-bound

ectopeptidase present in RPT but not in other nephron segments, in the membrane is stained green using a more photostable fluor

(CD-13-Alexa 488 antibody) (A, D, G, and J), NBCe2 is stained red (B, E, H, and K), nucleus is stained blue in all the images,

including merged images (C, F, I, and L). With monensin treatment (10 μmol/L 24 hr) which increases intracellular sodium ("Na+),

NBCe2 expression gets more diffuse similar to the apical membrane stain (E and F, K and L), especially for HV cells. Panels C, F, I, and

L show merged images of NBCe2 and CD-13; there is increased NBCe2 on the surface in HV cells treated with monensin (K and L).

The scale bar in panel C, F, I, and L = 10 μm.

https://doi.org/10.1371/journal.pone.0189464.g002
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Effect of SLC4A5 polymorphisms on basal and intracellular sodium and

NBCe2 and NBCe1 expression in hRPTCs

We compared NBCe2 expression in immortalized RPTCs obtained from six individuals who

are homozygous for SLC4A5 SNPs in rs10177833 and rs7571842 (HV) and RPTCs from four

Fig 3. Representative TIRFM images of hRPTCs growing on GEM™ 3D microcarriers. NBCe2 is labeled with a red Alexa 568 fluorescent dye. WT

hRPTCs were incubated in vehicle (VEH) (A) and imaged at 70 nm into the plasma membrane to determine intramembranous presence of NBCe2. After 24

h of exposure to high intracellular sodium there was no significant increase in membranous localization of NBCe2 as determined by counting punctate

fluorescent spots (B) (quantified in Fig 4). In HV hRPTCs NBCe2 is also expressed in the membrane in VEH treated hRPTCs to a similar level as WT VEH

(C) but is increased when the HV hRPTCs were exposed to high intracellular sodium (D)(quantified in Fig 4).

https://doi.org/10.1371/journal.pone.0189464.g003
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individuals who are homozygous wild-type (WT, i.e., no SLC4A5 SNPs). The basal expression

of SLC4A5 mRNA and NBCe2 protein was similar in hRPTCs with WT and HV SLC4A5 (Fig

5). These observations were similar in immortalized hRPTCs that were or were not serum-

starved and hRPTCs in primary culture, indicating that immortalized cells behaved similarly

to primary cells. However, increasing extracellular sodium concentration from 120 to 170

mmol/L (which caused an increase in intracellular sodium) ("Na+) [from 6.1±0.3 to 11.3±1.1

mmol/L or a total increase of 5.2±1.1 mmol/L]) increased NBCe2 protein in carriers of HV but

not WT SLC4A5 by 38.00±6.23% (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test) (N = 4,
�P<0.01 vs 120 mmol/L sodium, two-way ANOVA, Holm-Sidak test) (Fig 5A). The increase

in intracellular sodium (+6.7±2.3 mmol/L sodium) caused by the non-selective ionophore

monensin (10 μmol/L/24 h) slightly increased NBCe2 protein in all four WT SLC4A5 hRPTCs

but markedly increased NBCe2 protein in all six HV SLC4A5 hRPTCs (Fig 5B). The cells that

were incubated for 24 h in 170 mmol/L had no increase in apoptosis or necrosis at the 24 h

time point (data not shown) but looked phenotypically different from normal cells or cells

incubated with the ionophore monensin. Therefore, we favored the use of monensin over

increased sodium concentration in the incubation medium in our 24 h experiments.

Whereas NBCe2 protein expression was increased by high intracellular sodium (monensin

10 μmol/L) which increases intracellular sodium ("Na+) by 6.7±2.3 mmol/L), only in HV

SLC4A5 hRPTC cell lines (Fig 6A), the same maneuver decreased NBCe1 protein expression

Fig 4. Colocalization analysis of NBCe2 and CD-13 in hRPTC. The number of punctate dots per cell was measured using the Fuji program in both confocal and TIRFM

images. We counted punctate dots depicting NBCe2 in hRPTCs grown on Petri dishes (conventional cell culture) using a confocal microscope (A) as well as on cells

grown as spheroids on novel 3D cell culture hydrogel spheres (GEM™) using our total internal reflectance microscope (TIRFM) (B) TIRFM examines only 70 nm at the

surface of the apical membrane. Conventional 2D and the novel 3D cell culture demonstrates significantly increased NBCe2 on the apical (CD-13 positive) cell membrane

under high salt conditions ("Na+) for SLC4A5 homozygous variant (HV) cells. (2D Petri dish, P<0.05, two-way ANOVA; 3D GEM™, P<0.05 two-way ANOVA Holm-

Sidak test).

https://doi.org/10.1371/journal.pone.0189464.g004
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in both WT and HV SLC4A5 hRPTC cell lines (Fig 6B). A lower concentration of monensin

(1 μmol/L) ("Na+) also increased NBCe2 mRNA only in the HV SLC4A5 group (Fig 6C). The

Fig 5. Intracellular sodium-induced NBCe2 protein expression in hRPTCs carrying Wild-Type (WT) or

homozygous variant (HV) SLC4A5. A) Increasing extracellular sodium from 120 to170 mmol/L for 24 h increases

intracellular sodium from 6.1±0.3 to 11.3±1.1 mmol/L and increases NBCe2 protein in HV but not WT hRPTCs (N = 4,
�P<0.01 vs 120 mmol/L sodium, two-way ANOVA, Holm-Sidak test). B) Monensin (10 μmol/L, 24h), which increases

intracellular sodium ("Na+) by 6.7±2.3 mmol/L)), slightly increases NBCe2 protein in all four WT cell lines (each cell

line from a different individual) but markedly increases NBCe2 expression in all six HV cell lines (each cell line from a

different individual) (N = 8–12, �P<0.05 vehicle (VEH) vs monensin ("Na+) with each cell line).

https://doi.org/10.1371/journal.pone.0189464.g005
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lower concentration of monensin (1 μmol/L) ("Na+) decreased NBCe1 mRNA in the WT

group and tended to decrease it in the HV group (Fig 6D).

Effect of dopaminergic and angiotensin stimulation on NBCe2 and NBCe1

expression in hRPTCs

NBCe2 expression. D1R/D5R dopamine receptor agonists (fenoldopam (1 μmol/L) and

SKF38393 (1 μmol/L) and angiotensin peptides angiotensin II (Ang II, 10 nmol/L) and Ang III

(10 nmol/L), were used to stimulate the hRPTCs for both 3 and 24 h. EC-33 was used to inhibit

Ang II peptide metabolism and PC-18 was used to inhibit Ang III peptide metabolism. These

Fig 6. NBCe1 and NBCe2 protein and mRNA expression in hRPTCs carrying wild-type (WT) or homozygous variant (HV) SLC4A5. A) NBCe2 protein. NBCe2

protein is increased following an increase in intracellular sodium by 6.7±2.3 mmol/L for 24 h (monensin, 10 μmol/L) ("Na+) in HV but not WT SLC4A5 hRPTCs (N = 12,

P<0.0001 vs vehicle (VEH), two-way ANOVA, Holm-Sidak test). B) NBCe1 protein. NBCe1 protein is decreased (HV<WT) following an increase in intracellular sodium

(monensin, 10 μmol/L, 24 h) ("Na+) in WT SLC4A5 hRPTCs (N = 36, �P<0.001 vs VEH, two-way ANOVA, Holm-Sidak test) and HV hRPTCs (N = 48, �P<0.05 vs VEH

and #P<0.001 vs WT monensin ("Na+), two-way ANOVA, Holm-Sidak test). C) SLC4A5 mRNA. SLC4A5 mRNA is increased following an increase in intracellular

sodium (monensin, 1 μmol/L, 24 h) ("Na+) in HV but not WT SLC4A5 hRPTCs (N = 9, �P<0.01 vs. others, two-way ANOVA, Holm-Sidak test). D) SLC4A4 mRNA.

SLC4A4 mRNA is decreased following an increase in intracellular sodium (monensin, 1 μmol/L, 24 h) ("Na+) only in WT SLC4A5 hRPTCs (N = 9, �P<0.05 vs. VEH, one-

tailed t-test); the apparent decrease in HV is not statistically significant.

https://doi.org/10.1371/journal.pone.0189464.g006
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compounds did not alter NBCe2 or NBCe1 protein or NBCe2 mRNA expression (data not

shown).

We investigated the effects of dopaminergic stimulation on NBCe1 protein expression in the

presence of high intracellular sodium. The D1-like receptor agonist SKF38393 (SKF,10 μmol/L)

which had no effect on NBCe1 protein under basal conditions enhanced the inhibitory effect of

monensin, which increases in intracellular sodium ("Na+) on NBCe1 protein in these WT

SLC4A5 hRPTCs (Fig 7). LE300 (10 μmol/L), a D1-like (D1R/D5R) dopamine receptor antago-

nist, also had no effect on NBCe1 expression under basal conditions, but blocked the decrease

in NBCe1 expression induced by monensin ("Na+) and the enhancing effect of the D1-like

receptor agonist SKF38393 on the inhibitory effect of monensin on NBCe1 protein expression

in WT SLC4A5 hRPTCs. Similar results were obtained in HV SLC4A5 hRPTCs (not shown).

Role of HNF4A on the regulation of SLC4A5 expression in hRPTCs

SLC4A5 HV SNPs in the Regulome database (RegulomeDB, www.regulomedb.org) indicated

that HNF4A binding sites are very close to where the NBCe2 HV SNP sites are located by

ChIP sequence data.

HNF4A protein increased following the increase in intracellular sodium ("Na+) due to

monensin (10 μmol/L/24 h) in both WT and HV SLC4A5 hRPTCs (Fig 8A). We, therefore,

investigated if HNF4A binds to the rs7571842 SLC4A5 SNP site using a ChIP assay. We first

Fig 7. NBCe1 protein expression regulation by D1-like (D1R and D5R) dopamine receptor agonist in hRPTCs carrying wild-

type (WT) SLC4A5. NBCe1 protein expression is decreased following an increase in intracellular sodium ("Na+) (10 μmol

monensin/L, 24 h) (N = 4, �P<0.001 vs VEH, one-way ANOVA, Tukey’s test) in WT SLC4A5 hRPTC. The combination of

monensin ("Na+) and D1R/D5R agonist SKF38393 (SKF, 10 μmol/L, 24 h) further decreases NBCe1 protein (N = 4, ��P<0.05 vs

monensin ("Na+), #P<0.001 vs SKF, one-way ANOVA, Tukey’s test) that is blocked by the D1-like receptor antagonist LE300

(10 μmol/l, 24 h), which by itself has no effect. NBCe1 protein is not affected by SKF or LE300 in the absence of monensin.

https://doi.org/10.1371/journal.pone.0189464.g007
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studied the rs7571842 site because it is the most likely site to bind HNF4A, as shown by our

in-silico binding result. We found that HNF4A binding to SLC4A5 was increased to a greater

extent in the HV than WT cell lines (+1.52±0.10-fold, N = 3, P<0.05, t-test, Fig 8B). This result

was confirmed using an in vitro oligonucleotide binding assay that also showed a greater

increase in HNF4A binding in HV (+1.27±0.05-fold, N = 3, P<0.05, t-test Fig 8C) than WT at

the rs7571842 SNP site. Oligo binding of HNF4A to the rs10177833 SLC4A5 SNP site showed

Fig 8. HNF4A expression and binding in hRPTCs carrying wild-type (WT) or homozygous variant (HV) SLC4A5. A) HNF4A protein. HNF4A protein is increased

following treatment with monensin (10 μmol/L, 24 h) which increases intracellular sodium ("Na+) in both WT and HV SLC4A5 hRPTCs (N = 8, �P<0.05 vs WT VEH;

N = 12, ��P<0.0001 vs HV VEH, two-way ANOVA, Holm-Sidak test). B) HNF4A binding at SLC4A5 SNP site using ChIP. Approximately 15 million hRPTCs carrying

either WT or HV SLC4A5 were cross-linked and immunoprecipitated with an HNF4A antibody. Magnetic protein A/G was added to capture HNF4A antibody (sc-6556)

and any corresponding protein-DNA complex. Samples were then eluted, uncross-linked, and purified for DNA. RT-PCR, using primers flanking the SLC4A5 SNP site,

indicates increased binding of HNF4A to SLC4A5 in HV hRPTCs. (N = 3, �P<0.05, t-test) C) In vitro oligonucleotide binding assay. C-myc-tagged HNF4A protein was

added to a solution of double-stranded oligonucleotides labeled with biotin. Oligonucleotides consisted of DNA sequences of WT or HV SLC4A5 alleles. After incubation

for 30 min, streptavidin647 was added to label the oligonucleotides; anti-c-Myc antibody was then added followed by magnetic protein A/G to capture HNF4A-

oligonucleotide complexes. The samples were washed and read on a microplate reader. HNF4A binding is increased in HV relative to WT sequence (t-test), in agreement

with the ChIP data (Fig 8B). D) HNF4A Expression in WT and HV hRPTCs. V5 Protein in empty vector (control WT, HV) and V5 epitope-tagged HNF4A transfection

in 3 WT (WT HNF4A) and 3 HT (HV HNF4A) hRPTC cell lines were measured by in-cell western. V5 protein expression is similar in empty vector-transfected and V5

epitope-tagged HNF4A transfected cells. (N = 9, �P<0.001 vs vector controls, one-way ANOVA, Holm-Sidak test) E) Total HNF4A expression in empty vector- and

HNF4A-transfected WT and HV hRPTCs. Empty vector control (VEH, WT, HV) and V5 epitope-tagged HNF4A transfected cells (WT HNF4A, HV HNF4A) are

equally responsive to monensin ("Na+) treatment. (�P<0.001 vs. WT VEH or HV VEH; #P<0.001 vs others (two-way ANOVA, Holm-Sidak test). F) NBCe2 expression

in WT and HV hRPTCs transfected with empty vector or V5 epitope-tagged HNF4A. An increase in HNF4A expression leads to increased NBCe2 expression in HV

but not WT hRPTCs (��P<0.01HV vs HV HNF4A). The monensin-induced increase in intracellular sodium ("Na+) increases NBCe2 expression in HV (���P<0.001 VEH

HV vs monensin ("Na+) HV) and HV HNF4A (#P<0.001 VEH HV HNF4A vs monensin ("Na+) HV HNF4A) hRPTCs but to a greater extent in HV HNF4A than VEH

HV ($P<0.001). The HNF4A blocker, BI6015, prevents the increase in NBCe2 expression in HV HNF4A cells (&P<0.001, BI6015 HV HNF4A), and in monensin-treated

HV cells ("Na+), without (
�

P<0.05, BI605 HV) or with HNF4A overexpression (&& P<0.05, Bl6015 HV HNF4A). N = 9 in each experiment. All comparisons were made

using two-way ANOVA, Holm-Sidak test.

https://doi.org/10.1371/journal.pone.0189464.g008
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binding above background but did not achieve significance between the WT and HV alleles

(data not shown).

In order to investigate the effect of HNF4A over-expression on NBCe2 protein levels, we

used V5 epitope-tagged HNF4A lentiviral constructs and established stable cell lines in both

WT and HV SLC4A5 hRPTCs. These cells were then used to test whether or not the transcrip-

tion factor HNF4A regulates NBCe2 in an SLC4A5 SNP-dependent manner. The 3 WT and 3

HV independent hRPTC lines from different study participants expressed equal amounts of

HNF4A protein (Fig 8D), measured by in-cell western using an antibody to the V5 epitope tag

(N = 9, �P<0.001 vs vector WT or HV controls, one way ANOVA, Holm-Sidak test). Total

HNF4A protein expression was increased in the transgenic cells compared with vehicle

(VEH)-treated vector control cells; monensin (10 μmol/L) ("Na+) increased total HNF4A lev-

els to a similar extent in WT and HV hRPTCs (Fig 8E). These data indicate that an increase in

intracellular sodium increases HNF4A expression to a similar extent in WT and HV SLC4A5
hRPTCs.

By contrast, we found that monensin ("Na+)(10 μmol/L/24 h) increased NBCe2 expression

in vector-transfected HV but not vector-transfected WT SLC4A5 hRPTCs (Fig 8F), indicating

that the empty vector construct, per se, does not alter the phenotype of these cells.

In spite of the fact that monensin (10 μmol/L/24 h) increased HNF4A expression to a simi-

lar extent in WT and HV cells (Fig 8A), HNF4A overexpression increased NBCe2 protein in

vehicle-treated HNF4A overexpressing HV SLC4A5 hRPTCs (HV HNF4A) but not in vehicle-

treated HNF4A overexpressing WT SLC4A5 hRPTCs (Fig 8F). Monensin (10 μmol /L/24h)

did not increase NBCe2 expression in HNF4A overexpressing WT hRPTCs (WT HNF4A) but

increased it in HNF4A overexpressing HV hRPTCs (HV HNF4A) (Fig 8F) and to a greater

extent than vehicle-treated HNF4A overexpressing HV hRPTCs (HV HNF4A) (Fig 8F). These

studies suggest that an increase in intracellular sodium allows HNF4A to increase NBCe2

expression in HV but not WT SLC4A5 cells, presumably related to its increased binding to

rs7571842 SLC4A5 (Fig 8B and 8C).

The activity of HNF4A is increased by the presence of rs7571842 SLC4A5 because the

HNF4A inhibitor, Bl6015, prevented the monensin-mediated increase in NBCe2 protein in

HV SLC4A5 hRPTCs, regardless of vector transfection (HV) or HNF4A over expression (HV

HNF4A) (Fig 8F), indicating the importance of an increase in intracellular sodium in the

increase in NBCe2 expression in HV SLC4A5 hRPTCs.

Sodium and bicarbonate transport in hRPTCs. In order to determine if the increase in

NBCe2 protein in HV SLC4A5 hRPTCs leads to an increase in sodium transport relative to the

WT SLC4A5 hRPTCs, we measured the transport of several ions in these hRPTCs.

Sodium accumulation. We studied the intracellular sodium concentration (measured by

SBFI) in cells treated with monensin (10 μmol/L/30 min). The monensin-induced increase in

intracellular sodium was higher in three different HV SLC4A5 hRPTC lines than three differ-

ent WT SLC4A5 hRPTC lines (Fig 9A). Because basolateral exit of sodium was prevented by

inhibiting Na+,K+/ATPase with ouabain, this result suggested that sodium entry at the luminal

membrane is increased that could be due, in part, to increased NBCe2 activity in HV SLC4A5

hRPTCs.

NHE3 protein expression. Because the activity of NHE3 and NBCe2 may be tightly

linked and protein activity is influenced by protein expression, we measured NHE3 expression

in WT and HV SLC4A5 hRPTC lines. In-cell western assay revealed higher basal levels of

NHE3 protein in HV than WT SLC4A5 hRPTC lines (Fig 9B).

Total hRPTC sodium transport. Total basal transcellular (luminal to basolateral) sodium

transport in polarized hRPTCs grown on Transwell™ membranes was higher in HV than WT

SLC4A5 hRPTCs (Fig 9C). Whether or not the increase in total hRPTC sodium transport in
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HV SLC4A5 hRPTCs is caused by an increase in luminal sodium and bicarbonate transport

could not be determined in this study (Fig 9A and 9B) because the basolateral transport due

to Na+,K+/ATPase was not determined.

Fig 9. Ion transport assays in cultured hRPTCs carrying wild-type (WT) or homozygous variant (HV) SLC4A5. A) Sodium accumulation assay. Intracellular

sodium was measured in SBFI-loaded hRPTCs in response to monensin (MON, 10 μmol/L, 30 min). Monensin increases F340/F380 SBFI ratio to a greater extent in HV

than WT SLC4A5 hRPTCs (N = 18, �P<0.005, t-test). B) NHE3 protein expression. Basal NHE3 protein expression is greater in HV than WT SLC4A5 hRPTCs (N = 48,
�P<0.02, t-test). C) Transcellular sodium transport in polarized hRPTCs grown in Transwells™. Six HV SLC4A5 hRPTC lines derived from 6 different subjects and 4

WT SLC4A5 hRPTC lines derived from 4 different subjects were grown to confluence on Transwell™ membranes and until a stable trans-epithelial electrical resistance

was achieved. Total sodium transport from the upper chamber (luminal) to the lower chamber (basolateral) was measured at 2 h as the amount of sodium measured by

atomic absorption of samples taken from the lower chamber. Total sodium transport is greater in HV than WT SLC4A5 hRPTCs (N = 6–8, �P<0.01, t-test). D) Cl-/

HCO- exchanger activity. The rate of pH recovery was measured after an alkaline load (CO2/HCO3
- removal). Six HV SLC4A5 hRPTC cell lines derived from 6

different subjects (N = 4 experiments per subject) were compared with 4 WT SLC4A5 hRPTC lines derived from 4 different subjects (N = 4 experiments per subject).

HV SLC4A5 hRPTCs have enhanced Cl-/HCO3
- exchanger activity compared with WT SLC4A5 hRPTCs; rate of pH recovery is faster in hRPTCs carrying HV than WT

SLC4A5 (�P<0.05, t-test).

https://doi.org/10.1371/journal.pone.0189464.g009
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Cl-/HCO3
- exchanger activity. Cl-/HCO3

- exchanger activity was also assessed as the rate

of pH recovery after an alkaline load (CO2 and HCO3
− removal).(7, 37) In the basal state, HV

SLC4A5 hRPTCs had increased Cl-/HCO3
- exchanger activity compared with WT SLC4A5

hRPTCs (Fig 9D).

Bicarbonate-dependent pH recovery in hRPTCs. Sodium bicarbonate transport was mea-

sured by the sodium bicarbonate-dependent pH recovery assay(23) in two models of hRPTCs;

freshly isolated hRPTCs from human urine (Fig 10), and immortalized hRPTCs (Fig 11).

Exfoliated RPTCS cultured from human urine. To determine if RPTCs from SS human

subjects have different bicarbonate-dependent pH recovery compared with RPTCs from SR

subjects, we studied cultured hRPTCs (CD-15 positive cells, CD-15 is another marker for

hRPTC which was available labeled with magnetic particles allowing hRPTC purification) exfo-

liated into urine of SS subjects who carry HV SLC4A5 and SR subjects who carry WT SLC4A5.

HV SLC4A5 RPTCs from the urine of SS subjects treated with monensin (10 μmol/L/24 h) had

faster bicarbonate-dependent pH recovery than their SR counterparts (Fig 10A). Representative

recordings from one SS and one SR subject are shown in Fig 10B. Because this assay was per-

formed with EIPA to inhibit NHE3 activity, the faster bicarbonate-dependent pH recovery was

due to increased bicarbonate transport in SS subjects.

RPTCs cultured from human kidneys. Studies were performed in WT or HV SLC4A5
hRPTCs expressing vector control (VC), overexpressing (OE) SLC4A5 (4A5OE), knock-down

(KD) SLC4A5 (4A5KD), and knock-down (KD) SLC4A4 (4A4KD). Relative to vehicle treat-

ment (0.002% EtOH), bicarbonate-dependent pH recovery was faster in SLC4A5 OE (4A5OE)

and slower in SLC4A5 KD (4A5KD), relative to VC in both WT and HV SLC4A5 (Fig 11A).

Fig 10. Bicarbonate-dependent pH recovery rate in hRPTCs isolated from urine of salt-sensitive (SS) and homozygous variant (HV) (for the SLC4A5 gene) or salt-

resistant (SR) and wild-type (WT) (for the SLC4A5 gene) individuals. A) Bicarbonate-dependent pH recovery rate. hRPTCs were isolated from the urine of four SS

individuals who are HV for SLC4A5 or from four SR individuals who are WT for SLC4A5. The hRPTCs were cultured with monensin (10 μmol/L/24 h) to increase

intracellular sodium ("Na+), acidified, and the bicarbonate-dependent pH recovery rate was measured using BCECF in media with EIPA (10 μM) to inhibit NHE3 activity.

The ratiometric data obtained by confocal microscopy are greater in hRPTCs from SS (HV) than SR (WT) individuals (N = 4 per group, �P<0.05 vs WT, t-test). B)

Representative recording of bicarbonate pH recovery rate assay. Exfoliated urinary RPTCs were isolated from two study individuals, one HV-SS and one WT-SR. The

sodium bicarbonate recovery rate assay was carried out as in A and imaged by ratiometric spinning disk confocal microscopy. The cells were excited at 485 nm, then 440

nm light and the fluorescence emission ratio at 525 nm was recorded every 10 s. Buffers containing sodium at 120 mmol/L and bicarbonate at 25 mmol/L were rapidly

perfused at the fourth time point and imaged for 10 min. Because this assay was performed with EIPA to inhibit NHE3 activity, the increase in BCECF is due to increased

bicarbonate-dependent pH recovery rate in the HV-SS individual (�P<0.05, #P<0.01 vs SR, N = 3, multiple t-test). Because the monensin-induced increase in sodium

("Na+) downregulated NBCe1 protein to a greater extent in WT than HV SLC4A5 hRPTCs (Fig 6B), but upregulated NBCe2 protein in HV but not WT SLCC4A5
hRPTCs, the increased bicarbonate-dependent pH recovery in SS with HV SLC4A5 is most likely due to NBCe2 (Fig 6A).

https://doi.org/10.1371/journal.pone.0189464.g010
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By contrast, bicarbonate-dependent pH recovery was not altered in SLC4A4 KD (4A4KD), rel-

ative to VC in either WT or HV SLC4A hRPTCs, indicating that either NBCe1 expression does

not appreciably affect pH recovery rate in this assay, or that the effect of the KD is masked by

compensatory effect of another transporter (Fig 11A).

Monensin (10 μmol/L/24 h) ("Na+) treatment of VC cells increased the rate of pH recovery

in HV but not WT SLC4A5 hRPTCs (Fig 11A). In SLC4A5 OE (4A5OE) hRPTCs, pH recovery

was increased by monensin (10 μmol/L/24 h) in both WT and HV SLC4A5 hRPTCs but to a

greater extent in the latter than in former hRPTCs (Fig 11A). By contrast, knock-down of

SLC4A5 (4A5KD) in monensin-treated hRPTCs slowed pH recovery to the same extent in WT

and HT SLC4A5 RPTCs and similar to that observed in hRPTCs not treated with monensin.

These data suggest that an increase in intracellular sodium increases bicarbonate transport

only in HV SLC4A5 hRPTCs. When SLC4A4 was silenced (SLC4A4 KD [4A4KD]), monensin

(10 μmol/L/24 h) did not affect pH recovery in SLC4A4 WT cells, similar to the absence of an

effect of SLC4A4 KD (4A4KD) in the vehicle-treated (VC) cells. The increased rate of pH

recovery with monensin treatment in HV SLC4A5 hRPTCs was also not affected by SLC4A4
KD (4A4KD (Fig 11A), indicating that SLC4A5, not SLC4A4, is responsible for the increase in

bicarbonate transport in hRPTCs carrying SLC4A5 variants.

Monensin’s stimulatory effect of bicarbonate-dependent pH recovery in hRPTCs is

blocked by HNF4A inhibitors. Two different HNF4A inhibitors (BIM5078 and BI6015)

blocked the ability of monensin ("Na+), to hasten the pH recovery in HV SLC4A5 hRPTCs

(Fig 11B); these HNF4A inhibitors had no effect when added alone in either WT or HV

SLC4A5 hRPTC (Fig 11B). Bicarbonate-dependent pH recovery was completely blocked when

Fig 11. Bicarbonate-dependent pH recovery assays in cultured hRPTCs carrying Wild-Type (WT) or homozygous variant (HV) SLC4A5. A) Bicarbonate-dependent

pH recovery: pH recovery was measured in WT and HV SLC4A5 hRPTCs expressing empty vector (vector control, VC), overexpressing (OE) SLC4A5 (4A5OE), knock-

down (KD) SLC4A5 (4A5KD), and knock-down (KD) SLC4A4 (4A5KD). Bicarbonate-dependent pH recovery is faster in SLC4A5 OE (4A5OE) (�P<0.001 and &P<0.01)

and slower in SLC4A5 KD (4A5KD) (��P<0.001 and &&P<0.001), relative to VC in both WT and HV SLC4A5 hRPTCs. By contrast, bicarbonate-dependent pH recovery

is not altered in SLC4A4 KD, relative to VC in either WT or HV SLC4A hRPTCs. Monensin (10 μmol/L, 24 h) treatment that increases intracellular sodium ("Na+)

increases pH recovery rate in HV but not WT SLC4A5 hRPTCs (#P<0.001). In SLC4A5 OE (4A5OE) hRPTCs, pH recovery rate is increased by monensin (10 μmol/L/24

h) ("Na+) in both WT (##P<0.001) and HV SLC4A5 ($ $P<0.001) but to a greater extent in the latter than in the former ($P<0.001). Knockdown of SLC4A5 (4A5KD)

prevents the stimulatory effect of monensin on pH recovery rate in both WT and HV SLC4A5. Knockdown of SLC4A4 (4A4KD) does not affect the increased pH recovery

in monensin-treated ("Na+) HV SLC4A5 hRPTCs (%P<0.05 HV 4A4KD vs WT 4A4KD). B) Increased bicarbonate-dependent pH recovery rate in monensin-treated

HV SLC4A5 hRPTCs is blocked by HNF4A inhibitors. Bicarbonate-dependent pH recovery was measured in vehicle (VEH) or monensin (10 μmol/L, 24 h)-treated

("Na+) HV SLC4A5 hRPTC in the presence of HNF4A inhibitors BIM5078 or BI6015. These inhibitors have no effect when added alone, but either inhibitor completely

blocks (n = 4 #P<0.05 vs monensin HV, two-way ANOVA, Holm-Sidak test) the monensin-stimulated ("Na+) (n = 12 �P<0.05, two way ANOVA, Holm-Sidak test)

increase in bicarbonate-dependent pH recovery rate in HV hRPTCs.

https://doi.org/10.1371/journal.pone.0189464.g011
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the hRPTC were incubated in the absence of sodium or in the presence of DIDS to block

anion exchangers, including NBCe1 and NBCe2, indicating the importance of sodium in stim-

ulating bicarbonate transport, presumably due to NBCe2.

Effect of HNF4A inhibitors on basal expression of NHE3, PAT1 and Na+/,K+/ATPase

in hRPTCs. Because there were no differences between HV and WT hRPTCs in basal

HNF4A binding by ChIP assay as well as basal expression of NHE3 protein, sodium trans-

port and Cl-/HCO3 exchange activity, we tested the effect of HNF4A inhibitors under basal

conditions. αNa+, K+/ATPase and PAT1 expressions both with and without the HNF4A

inhibitor BIM6015 was measured by western blot (Fig 12). The basal protein expression of

α-Na+/,K+/ATPase (NKA) or PAT1 expression was not changed by HNF4A inhibition.

There was a difference in basal NHE3 protein expression between WT and HV hRPTCs, so

the effect of inhibiting HNF4A activity with BIM5078, was measured by in-cell western (Fig

13A). The basal difference in NHE3 expression was not altered by HNF4A inhibition.

Sodium transport is not different between WT and HV hRPTCs under basal condition as

well. In order to test whether HNF4A alters this difference, a sodium influx assay was used

(Fig 13B). Cells were loaded with the sodium sensitive ratiometric dye SBFI and sodium

Fig 12. The effect of BI6015 on the expression of Na+,K+/ATPase (NKA) and the putative anion transporter type 1

(PAT-1). Compared to vehicle control (VEH), neither NKA nor PAT-1 is affected by the addition of the HNF4A

inhibitor BI6015. α tubulin was used as a protein loading control.

https://doi.org/10.1371/journal.pone.0189464.g012
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influx was initiated by inhibiting α-Na+/,K+/ATPase with ouabain (100 μmol/L) and mea-

suring the amount of sodium accumulation inside the cells. A difference in sodium influx

between the two cell types was found, with HV hRPTCs having a slightly higher influx rate

than WT hRPTCs. The difference between the two cell types was abolished by the HNF4A

inhibitor BIM5078 (10 μmol/L 24 h).

Fig 13. Effect of HNF4A inhibitors on basal expression of NHE3, PAT1 and Na+,K+/ATPase in hRPTCs. A) NHE3

protein expression Basal NHE3 protein expression is greater in HV than WT SLC4A5 hRPTCs (N = 3, �P<0.01, t-test).

Pharmacological inhibition of HNF4A with BIM5078 does not significantly inhibit basal NHE3 protein expression. B)

Sodium influx assay. Intracellular sodium was measured in SBFI-loaded hRPTCs in response to ouabain (100 μmol/L,

30 min). Ouabain increases F340/F380 SBFI ratio, converted to mM sodium to a greater extent in HV than WT

SLC4A5 hRPTCs (N = 3, �P<0.01, t-test). HNF4A inhibitor (BIM5078, 10 μM, 24 h) inhibits the increased sodium

influx in HV hRPTCs (N = 3, #P<0.01 vs HV VEH, two-way ANOVA, Holm-Sidak test) but not in WT hRPTCs.

https://doi.org/10.1371/journal.pone.0189464.g013
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Intracellular intrinsic buffering capacity. We performed pH recovery assays in WT and

HV hRPTCs and found no significant difference between HV (6 HV hRPTCs each from a dif-

ferent individual) and WT RPTCs (4 WT hRPTCs each from a different individual), repeated

3 times, a total 18 replicates in HV and 12 replicates in WT hRPTCs (Fig 14). These data were

transformed mathematically (see Methods) to provide the intrinsic buffering capacity, which

showed that there was no difference between WT and HV specimens (Fig 15).

Proposed models of ion transport in hRPTC with HV SLC4A5. The principal ion

transporters and some of the receptors that regulate them are shown in the models in Figs

16 and 17. In Fig 16, starting at 11 o’clock in blue is shown the classic pathway for trans-

porting bicarbonate (HCO3
-) into the cell. Filtered NaHCO3 dissociates into Na+ and

HCO3
-. HCO3

- in the luminal fluid and H+ secreted into the lumen form H2CO3. Carbonic

anhydrase type IV (CA IV) in the luminal membrane catalyzes the conversion of H2CO3 to

H2O and CO2; CO2 diffuses inside the hRPTC where intracellular carbonic anhydrase type

2 (CA II) catalyzes the conversion of CO2 and H2O into H2CO3 which then dissociates into

HCO3
- and H+. At 9 o’clock is NHE3 which exchanges one Na+ from the lumen with one

H+ inside the hRPTC. At 7 o’clock is depicted a HCO3
- Cl- exchanger (PAT1) which

exchanges luminal Cl- with cytoplasmic HCO3
-. At 3 o’clock is depicted NBCe1 at the baso-

lateral membrane which electrogenically transports 2 Na+ and one HCO3
- into the basolat-

eral space. At 4 o’clock is Na+,K+/ATPase which pumps 3 Na+ out of the cell into the

basolateral space and pumps in 2 K+ inside the cell. The topic of this manuscript deals with

NBCe2, drawn at 8 o’clock. Under a normal sodium load it plays a minor role in Na+ and

HCO3
- transport into the hRPTC.

There are various plasma membrane receptors that regulate some of these transporters/

exchangers/pumps. The dopamine-1 receptor (D1R) (ten o’clock) when stimulated with

dopamine (green box) inhibits (red lines) both NHE3 and Na+,K+/ATPase (without the

Fig 14. Intracellular pH recovery assay. pH recovery assay in WT and HV hRPTCs shows no significant differences

between HV hRPTCs (6 HV hRPTCs each from a different individual) and WT hRPTCs (4 WT hRPTCs each from a

different individual), repeated 3 times, a total 18 replicates in HV and 12 replicates in WT hRPTCs (Fig 14). These data

were transformed mathematically (see Methods) to provide the intrinsic buffering capacity, which demonstrates that

there is no significant difference between WT and HV (Fig 15).

https://doi.org/10.1371/journal.pone.0189464.g014
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red line, for simplicity) activities resulting in reduced reabsorption and increased Na+

excretion. The AT1R (5 o’clock) increases Na+,K+/ATPase activity (green arrow) resulting

in increased Na+ reabsorption. An increase in intracellular Na+ increases Na+,K+/ATPase

activity (5 o’clock) that is abetted by AT1R (green arrow) resulting in increased Na+ trans-

port from inside the cell to the basolateral space. The D1R and AT1R oppose each other.

The D1R inhibits the AT1R, resulting in reduced Na+ transport. We showed that NBCe2 is

not affected by stimulation of the D1R or AT1R. Under basal conditions, NBCe1 is more

active than NBCe2 (depicted as relatively larger directional transport arrows).

In an hRPTC containing the rs7571842 SLC4A5 SNP the model changes to what is

depicted in Fig 17. Increasing intracellular Na+ concentration with high extracellular Na+

concentration or monensin (9 o’clock) increases NBCe2 mRNA, protein, and activity,

while only marginally attenuating the protein and activity of NBCe1 (2 o’clock) in

hRPTCs with SNPs in NBCe2. This results in a net increase in Na+ transport into the baso-

lateral space. PAT1 activity (7 o’clock) increases because of an increase in intracellular

bicarbonate (7 o’clock). NHE3 (9 o’clock) activity also increases because the increase in

NBCe2 activity increases intracellular H+ following the conversion of transported HCO3
-

to H2CO3 and its dissociation to H+ and HCO3
- resulting in a further increase in sodium

reabsorption. An increase in HNF4A binding to the rs7571842 SLC4A5 increases its

expression.

Fig 15. Intracellular intrinsic buffering capacity. Measurement of intrinsic buffering capacity in WT and HV

hRPTCs. hRPTCs were labeled with the pH sensitive ratiometric dye BCECF and pH measured by microplate

fluorometry by incubating cells in sodium-, CO2-, and bicarbonate-free HEPES buffer by sequential incubation in

decreasing amounts of ammonium chloride. There are no significant differences in intrinsic buffering capacity

between WT and HV hRPTCs (N = 8 per cell type).

https://doi.org/10.1371/journal.pone.0189464.g015
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Fig 16. Models of ion transport in hRPTCs. This is a model of the hRPTC with the apical (brush border, facing the lumen) (left hand side) and the basolateral side (right

hand side). The principal ion transporters and some of the receptors that regulate them are shown. Starting at 11 o’clock in blue is shown the classic pathway for

transporting bicarbonate (HCO3
-) into the cell. Filtered NaHCO3 dissociates into Na+ and HCO3. HCO3

- in the luminal fluid and H+ secreted into the lumen form

H2CO3. Carbonic anhydrase type 4 (CA IV) in the luminal membrane catalyzes the conversion of H2CO3 to H2O and CO2.CO2 diffuses inside the hRPTC where

intracellular carbonic anhydrase type 2 (CA II) catalyzes the conversion of CO2 and H2O into H2CO3 which then dissociates into HCO3
- and H+. At 9 o’clock is NHE3

which exchanges one Na+ from the lumen with one H+ inside the hRPTC. At 7 o’clock HCO3
- Cl- exchanger (PAT1) is depicted which exchanges luminal Cl- with

cytoplasmic HCO3
-. At 3 o’clock is depicted NBCe1 at the basolateral membrane which electrogenically transports 2–3 Na+ and one HCO3

- into the basolateral space. At 4

o’clock is Na+, K+/ATPase which pumps 3 Na+ out of the cell into the blood stream and pumps in 2 K+ inside the cell The topic of this manuscript deals with NBCe2,

drawn at 8 o’clock. Under a normal sodium load it plays a minor role in Na+ and HCO3
- transport into the hRPTC. There are various plasma membrane receptors that

regulate some of these transporters/ exchanger/pumps. The dopamine-1 receptor (D1R) (ten o’clock) when stimulated with dopamine (green box) inhibits (red lines) both

NHE3 and Na+, K+/ATPase (without the red line, for simplicity) activities resulting in reduced Na+ reabsorption and increased Na+ excretion. The AT1R (5 o’clock)
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Discussion

Increased renal sodium transport is involved in the pathogenesis of salt sensitivity with or

without hypertension [1, 2, 9, 11–14, 23–29, 32–35, 37, 63, 68, 69]. The inability to eliminate

the excess sodium intake can increase blood pressure in about 60% of hypertensive and

approximately 25% of normotensive individuals, depending on racial background[68, 70]. The

RPT regulates approximately 65% of renal sodium transport[71]. In the RPT, NHE3 is respon-

sible for the majority of sodium transported across the RPT luminal membrane while Na+, K+/

ATPase is responsible for the majority of sodium transported across the basolateral membrane.

The sodium bicarbonate transporters, NBCe1 and NBCe2, are also involved in RPT sodium

transport [7, 14, 17, 23, 29, 39, 71, 72].

The SLC4A5 gene encodes for NBCe2 (aka NBC4). NBCe2 transports bicarbonate and

sodium ions in a ratio of two-three to one, respectively [7, 73]. NBCe2 is expressed in the liver,

heart, brain, and PT, mTAL, cTAL, and CD of the kidney [7, 16, 17, 20]. However, relatively

low amounts of NBCe2 messenger RNA and protein have been found in the RPT in rats [16]

and apical membrane of the RPT in humans on normal salt intake [17] and corroborated by

the current report (Figs 1 and 2) in flash-frozen human kidney and primary cultures of RPTCs

from fresh human kidneys, and immortalized hRPTCs. Our immunofluorescence studies

demonstrating the presence of NBCe2 in hRPTC is corroborated by The Human Protein Atlas

(www.proteinatlas.org). However, the minimal expression of NBCe2 in RPT and hRPTC in

the basal state is increased by an increase in intracellular sodium [17] that was invariably

observed in hRPTCs carrying SLC4A5 HV, but less consistently in hRPTCs carrying SLC4A5
WT. Extracellular apical membrane expression of NBCe2 has been demonstrated using

TIRFM that places this protein in the top 70 nM of the membranes extracellular surface [17].

We now report that the presence of SLC4A5 SNPs induces the binding of HNF4A to SLC4A5,

resulting in an increase its transcription and hence the expression of NBCe2.

We used two methods to increase intracellular sodium to rule out nonspecific effects. We

either increased extracellular sodium chloride or added monensin (10 μmol/L) which is used

by many investigators to increase intracellular sodium[17, 50–57]. Monensin, at this concen-

tration, has been reported to increase intracellular sodium by about 20 mmol/L in opossum

kidney cells [57]. Since there was no difference in our results using extracellular sodium or

monensin we ruled out the potential effect of monensin altering the trafficking of protein from

the Golgi. Sodium chloride or sodium bicarbonate loading is associated with a decrease in

RPT sodium transport via inhibition of NBCe1 and NHE3[22]. We found that when intracel-

lular sodium was increased by monensin for 24 h, NBCe1 protein was decreased in hRPTCs

carrying both WT and HV SLC4A5, but to a lesser degree in HV cells than in the WT hRPTCs,

which could contribute to an attenuated suppression of bicarbonate transport in hRPTCs car-

rying SLC4A5 (NBCe2) SNPs. This finding in WT hRPTCs is in agreement with the report

showing that sodium loading of normotensive rats reduced the renal expression of NBCe1

[22]. In WT hRPTCs, monensin changed the localization of NBCe1 from a membrane location

to an intracellular location,[17] similar to that seen in monensin-treated parotid acinar cells

[74]. As aforementioned, monensin is a non-selective ionophore, but used widely to increase

intracellular sodium in various tissues[17, 50–57]. Therefore, we examined the effect of either

monensin or high extracellular sodium in parallel in several experiments and found that either

increases Na+, K+/ATPase activity (green arrow) resulting in increased Na+ reabsorption. An increase in intracellular Na+ increases Na+, K+/ATPase activity (5 o’clock)

that is abetted by AT1R (green arrow) resulting in increased Na+ transport from inside the cell to the basolateral space. The D1R and AT1R oppose each other. The D1R

inhibits the AT1R, resulting in reduced Na+ transport. We showed that NBCe2 is not affected by stimulation of the D1R or AT1R. Under basal conditions, NBCe1 is more

active than NBCe2 (depicted as relatively larger directional transport arrows).

https://doi.org/10.1371/journal.pone.0189464.g016
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monensin or high extracellular sodium concentration increased NBCe2 protein in HV but not

WT SLC4A5 RPTCs. The increase in intracellular sodium was also associated with a change in

Fig 17. Model of ion transport in hRPTCs with HNF4A binding to SCL4A5 promoter. In a hRPTC containing the SNP rs7571842 in SCL4A5 the model changes to

what is depicted in Fig 17. Increasing intracellular Na+ concentration with high extracellular Na+ concentration or monensin (9 o’clock) increases NBCe2 mRNA,

protein, and activity, while only marginally attenuating the protein and activity of NBCe1 (2 o’clock) in hRPTCs with SNPs in NBCe2. This results in a net increase in

Na+ transport into the basolateral space. PAT1 (7 o’clock) activity increases because of an increase in intracellular bicarbonate (7 o’clock). NHE3 (9 o’clock) activity

also increases because the increase in NBCe2 activity increases intracellular H+ following the conversion of transported HCO3
- to H2CO3 and its dissociation to H+

and HCO3
- resulting in a further increase in sodium reabsorption. An increase in HNF4A binding to the rs7571842 SLC4A5 increases its expression.

https://doi.org/10.1371/journal.pone.0189464.g017
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NBCe2 localization from highly compartmentalized perinuclear areas to diffuse punctate areas

that extended to the luminal membrane shown in the current (Fig 2K and 2L) and a previous

study[17]. This would be consistent with increased RPT sodium bicarbonate transport in

hypertension [32–34].

SLC4A5 variants rs10177833 and rs7571842 are associated with salt sensitivity in a Euro-

Caucasian cohort of mixed sex[14], whereas SLC4A5 variant rs8179526 is associated with salt

resistance in African-American women [11] Therefore, we determined if the SLC4A5
rs10177833 and rs7571842 cause loss or gain of function (i.e., sodium bicarbonate transport).

We found that total (transcellular) sodium transport (from luminal membrane to outside the

basolateral membrane) was increased in polarized hRPTCs with HV SLC4A5 HV, relative to

hRPTCs with WT SLC4A5. The increased total transcellular sodium flux in HV SLC4A5
hRPTCs may be due to the increased expression and activity of NHE3 and NBCe2 at the lumi-

nal membrane, in spite of decreased expression and activity of NBCe1 as compared with WT

cells. Indeed, the faster bicarbonate-dependent pH recovery in HV SLC4A5 hRPTCs, induced

by an increase in intracellular sodium due to monensin persisted even when SLC4A4 was

silenced. By contrast, the faster bicarbonate-dependent pH recovery in HV SLC4A5 hRPTCs,

induced by monensin was no longer evident when SLC4A5 was silenced. Moreover, the

increase in total sodium-dependent bicarbonate influx in polarized hRPTCs with SLC4A5 vari-

ants also persisted, even when NHE3 activity was inhibited. Therefore, although increased

activity of NHE3 is also associated with hypertension, the salt sensitivity associated with

SLC4A5 rs7571842 may indeed be due to a gain in its function. It is also possible that the

increased activity of Cl-/HCO3
- [aka putative Cl-/HCO3

- anion transporter (PAT1)[62, 63, 75,

76] in hypertension may be linked to the increased activity of NBCe2. Hypertension in the

metabolic syndrome has been suggested to be related to preserved RPT sodium bicarbonate

cotransporter sensitivity to insulin[32, 34]. SS humans have enhanced renal tubular bicarbon-

ate reabsorption[33]. Because NBCe1 function is decreased in RPTCs from SHR [23] the insu-

lin-sensitive sodium bicarbonate cotransporter in the RPT in the metabolic syndrome and salt

sensitivity could be NBCe2. In the current study, SS humans with SLC4A5 HV had increased

bicarbonate transport and faster pH recovery that could be attributed to NBCe2, because this

observation persisted after silencing SLC4A4/NBCe1. Thus, we hypothesize that the SS pheno-

type could, at least in part, be related to the increased activity of NHE3, NBCe2, and PAT1 and

the increased activity of NBCe2 may be secondary to an increase in its transcription.

An increase in renal bicarbonate transport in hypertension [32–34], however, is not consis-

tent with the low serum bicarbonate and high anion gap in primary (essential) hypertension[21,

33, 77–80]. Primary hypertension is associated with increased acid production and the increase

in renal bicarbonate transport may be secondary rather than primary. However, we propose that

the increased expression of NBCe2 in the luminal membrane and decreased expression and

activity of NBCe1 in the basolateral membrane of RPTs in salt sensitivity may be a mechanism

that increases renal sodium transport when sodium intake is increased [14, 33, 77, 79, 80] and at

the same time keeps bicarbonate transport into the blood stream lower than normal.

Dopamine, via D1-like receptors, can decrease sodium and bicarbonate transport in the

RPT especially with a moderate sodium load [2, 25, 28, 29, 35, 37, 59, 60, 71, 72] or high tubu-

lar flow [38]. These effects are impaired in hypertension [2, 25, 28, 29, 35, 37, 59, 71, 72, 81]. In

the current study, we found that stimulation of D1-like receptors had no effect on NBCe2

expression but enhanced the inhibitory effect of monensin on NBCe1 expression to a similar

extent in hRPTCs carrying either WT or HV SLC4A5. This finding is in agreement with the

increase in NBCe1 expression in mouse kidneys engineered to produce less RPT dopamine

[82]. SLC4A5 knockout mice are normotensive and do not become hypertensive until after an

acid load. These mice are hypertensive presumably due to a compensatory increase in distal
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nephron sodium-bicarbonate transporters, e.g.SLC4A7 [83] and ENaC [84]. Indeed, the ele-

vated BP of SLC4A5 knockout mice was normalized by bicarbonate treatment, presumably by

preventing the activation of distal sodium transport[83]. Interestingly, an increase in bicarbon-

ate consumption elevated BP in the WT mouse [83], some salt-sensitive and hypertensive

humans have increased renal bicarbonate reabsorption [32–34].

Epigenetics is now appreciated to have an important role in the pathogenesis of cardiovascular

disease, including hypertension[40, 85–89]. The Regulome database (www.regulomedb.org) con-

tains a reference to HNF4A binding near a variant form of SLC4A5. In the kidney, HNF4A is

present only in the RPT and no other segment of the nephron, and is involved with renal develop-

ment[41, 42]. HNF4A DNA binding was increased in hRPTCs carrying HV SLC4A5. Further-

more, two HNF4A antagonists prevented the increase in NBCe2 activity in HV SLC4A5 hRPTCs.

Normally, on WT SLC4A5 hRPTCs, the salt-induced increase in HNF4A expression may play a

role in sodium homeostasis while also being an important regulator of many other metabolic

pathways[41–47]. However, when SLC4A5 variants rs10177833 and rs7571842 are present, the

salt-induced increase in HNF4A expression takes on a new promiscuous role of increasing

NBCe2 expression that leads to salt sensitivity. The fact that the SNPs are located in a non-pro-

moter-related DNA intron suggests that they may act as an enhancer and that sodium-related

binding may require additional cofactors to alter DNA structure or looping to a location remote

to the binding event. However, determining the mechanism by which HNF4A increases expres-

sion of SLC4A5 variants is beyond the scope of this report and will be the subject of future studies.

In conclusion, our results provide a possible mechanism on how increased NBCe2 activity

associated with an attenuation of NBCe1 activity contributes to the salt sensitivity of BP. A

model of the basal state of NBCe2 and NBCe1 is depicted in Fig 16. In HV SLC4A5 hRPTCs

the increase in NBCe2 activity is, at least in part, due to an increase in NBCe2 expression

through a sodium-mediated increase in the interaction of HNF4A with SLC4A5 variant

rs7571842. The mechanism by which an increase in NBCe2 activity leads to an increase in

sodium transport is depicted in the model in Fig 17. The finding of increased NBCe2 activity

in hRPTCs from SS subjects has translational potential. We have developed a method to isolate

and test living hRPTCs exfoliated into the urine and found that their response to monensin

correlated with the clinically determined salt sensitivity of the subjects from which the hRPTCs

were obtained[90]. Thus, we hope to develop this assay into a diagnostic test that will be capa-

ble of definitive and rapid determination of salt sensitivity without the cost and difficulty of

administering a two week controlled diet [2].
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Methodology: John J. Gildea, Peng Xu, Brandon A. Kemp, Julia M. Carlson, Hanh T. Tran,

Dora Bigler Wang, Christophe J. Langouët-Astrié, Robin A. Felder.
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