
High-resolution Multi-Scale Computational Model for Non-
invasive Cervical Vagus Nerve Stimulation

Antonios P. Mourdoukoutas, BE1, Dennis Q. Truong, MS1,*, Devin K. Adair, BA2, Bruce J. 
Simon, PhD3, and Marom Bikson, PhD1

1Department of Biomedical Engineering, The City College of New York, City University of New 
York, New York, NY

2Department of Psychology, The Graduate Center, City University of New York, New York, New 
York

3electroCore LLC, Basking Ridge NJ

Abstract

Objectives—To develop the first high-resolution, multi-scale model of cervical non-invasive 

vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant 

rheobase thresholds.

Methods—An MRI-derived Finite Element Method (FEM) model was developed to accurately 

simulate key macroscopic (e.g. skin, soft tissue, muscle) and mesoscopic (cervical enlargement, 

vertebral arch and foramen, CSF, nerve sheath) tissue components to predict extracellular 

potential, electric field (E-Field), and activating function along the vagus nerve. Microscopic scale 

biophysical models of axons were developed to compare axons of varying size (Aα-, Aβ- and Aδ-, 

B, and C-fibers). Rheobase threshold estimates were based on a step function waveform.

Results—Macro-scale accuracy was found to determine electric field magnitudes around the 

vagus nerve, while meso-scale precision determined E-field changes (activating function). 

Mesoscopic anatomical details that capture vagus nerve passage through a changing tissue 

environment (e.g. bone to soft tissue) profoundly enhanced predicted axon sensitivity while 

encapsulation in homogenous tissue (e.g. nerve sheath) dulled axon sensitivity to nVNS.

Conclusions—These findings indicate that realistic and precise modeling at both macroscopic 

and mesoscopic scales are needed for quantitative predictions of vagus nerve activation. Based on 

this approach, we predict conventional cervical nVNS protocols can activate A- and B- but not C-
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fibers. Our state-of-the-art implementation across scales is equally valuable for models of spinal 

cord stimulation, cortex/deep brain stimulation, and other peripheral/cranial nerve models.

Background

Neuromodulation using vagus nerve stimulation (VNS) is a promising treatment for a range 

of central and peripheral disorders. The vagus nerve is the primary parasympathetic branch 

of the autonomic nervous system regulating multiple organ systems including breathing, 

heart rate, peristalsis and gastric emptying. It also plays an important role in the regulation 

of the body’s inflammatory responses, through an anti-inflammatory pathway mediated by 

acetylcholine 1,2. VNS is a potential strategy for treating inflammatory conditions like 

rheumatoid arthritis and Crohn’s disease 1–3, increasing brain training and rehabilitation 4–7, 

and direct or adjunctive therapy for the treatment of epilepsy 8,9, depression 10,11, stroke 
12–14, tinnitus 15,16, headache 17,18, traumatic brain injury 19–21, post-traumatic stress 

disorder (PTSD) 22,23, and Alzheimer’s disease 24,25.

Invasive VNS, with an implanted pulse generator and electrodes coiled around the cervical 

branch of the vagus, is FDA approved for the treatment of medically refractory epilepsy and 

major depressive disorder (MDD) 26,27. For the treatment of epilepsy, VNS has been shown 

to reduce both seizure frequency and severity 8,9. In patients with MDD symptom severity is 

reduced, 10,11, though long term follow-up is still ongoing 28.

Non-invasive stimulation of the vagus nerve has been developed, using transcutaneous 

stimulation to target the auricular branch of the vagus nerve at the concha of the outer ear 
5,11,16,29,30 or the cervical branch of the vagus at the neck 13,18,31,32. These devices do not 

require surgical implantation of a stimulator 33 and therefore have the potential to 

dramatically increase accessibility to VNS. Cervical nVNS (gammaCore, electroCore LLC) 

has now been FDA approved for the acute treatment of pain associated with episodic cluster 

headache 32.

Despite the significant advances in the science and technology of nVNS, questions remain 

about optimal treatment paradigms, including signal amplitude and dosing regimen. 

Computational current flow and neuron activation models underpin brain stimulation design. 

Prior modeling efforts have focused on invasive VNS or peripheral nerve stimulation in 

general, but have not included the macroscopic and mesoscopic details that may be relevant 

to nVNS34–37. Invasive VNS protocols typically have electrode cuffs positioned directly on 

the nerve itself, whereas nVNS electrodes are in contact with skin. These prior studies 

examined the influence of intermediary tissue (scar tissue) relevant to invasive stimulation, 

but much more tissues exist between nVNS electrodes and the nerve. In this study, a multi-

scale computational approach was taken to predict the cellular targets of cervical nVNS - an 

essential step toward elucidating and optimizing both treatment and mechanisms. Indeed, 

our results using an exemplary dose show the importance of previously unrecognized 

precision in modeling methods (including local tissue) in prediction fidelity.
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Methods

High resolution T1 and T2 MRI-scans (1 mm3 voxels) extending between the C7 vertebra 

and the vertex were segmented into eleven tissue masks using automated algorithms and 

manual segmentation techniques as previously described 1. The MRI-derived model is the 

first to accurately reproduce details of macroscopic (e.g. skin, muscle) and mesoscopic 

(vertebra, CSF, anatomical details, nerve sheath) tissues (Figure 1). T1-weighted scans were 

collected using a GRE sequence with a TR of 1900 ms, TE of 2.2 ms. T2-weighted scans 

were collected using a SPACE sequence with a TR of 3200 ms and TE of 402 ms. 

Automated segmentation algorithms were used to create an initial six tissue (skin, skull, 

cerebral spinal fluid (CSF), grey matter, white matter, air/sinus) model 38,39. Post processing 

filters were used to smooth, close holes and discontinuities, and remove floating voxel 

artifacts in skull, CSF, and grey matter 39. Additional tissues and anatomical detail was 

manually segmented in ScanIP (Simpleware, Synopsys) to include fat, muscle, intervertebral 

disk, and ligaments. Three levels of anatomical detail were prepared, which consisted of 

uniform soft tissue (skin, fat, ligament and intervertebral disk merged) and a single mask 

vagus nerve, full anatomical detail with the vagus nerve encapsulated in a connective tissue 

sheath, and full anatomical detail with a single mask vagus nerve (no tissue sheath) (Fig 1).

An adaptive tetrahedral mesh was generated using voxel-based meshing algorithms 

contained in ScanIP (Simpleware, Synopsys). Multiple mesh densities were refined to within 

a 1% error in voltage and current density at the vagus nerve resulting in a model size of 

approximately 30M tetrahedral elements for the full anatomy model. Finite element method 

(FEM) models were generated using the aforementioned meshes in COMSOL Multiphysics 

to simulate current flow generated through the neck during stimulation. We modeled an 

nVNS bipolar electrode montage with two, 2 cm radius electrodes separated (center to 

center) by 4 cm, positioned over the cervical vagus nerve. The Laplace equation for 

electrostatics (∇ · (σ∇V) = 0) was applied and solved as the field equation given: insulated 

(J·n = 0) external boundaries, a normal current density equivalent to 30 mA ((J·n)*Areaanode 

= 30 mA) on the anode, and a ground (V = 0) condition on the cathode. Results were 

linearly scaled to assess different stimulation intensities corresponding to typical currents 

used clinically.

The voltage profile along the vagus nerve solved for in FEM simulations was sampled into 

1000 transverse slices at a Δx of 0.14 mm along the nerve. We considered three related 

“driving functions” for local nerve stimulation that are fiber independent, and a fourth 

biophysical fiber specific neuron model. The driving functions where 1) electric field 

magnitude 40–42, which is reasonable predictor of polarization under the quasi-uniform 

assumption 43 – especially with complex neuronal morphology; 2) electric field magnitude 

along the vagus nerve, which more directly approximates polarization at terminals, branch, 

and membrane property changes 44–46; 3) derivative of electric field along the nerve, which 

is called the “activating function” and determines local transmembrane current drive 47,48. 

All these driving function have been previously considered 49,50 and it is beyond the scope 

of this paper to judge superiority, but each driving function is derived from the prior one, and 

contrasting them facilitates understand the role of tissue segmentation detail across this 

chain – which is an innovation of our work-flow
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For the neuron model, the average voltage of each slice was projected into micro-scale 

models in NEURON 51 to predict nerve activation. Previous studies analyzing compound 

action potentials in vagus nerves have categorized fibers into three groups: A- (Aα-, Aβ-, 

and Aδ-), B-, and C-fibers 52,53. Voltages were applied as extracellular potentials on a long 

axon (145 mm) with diameters corresponding to A, B, and C fibers (22, 10, 1 μm). Active 

and passive parameters were assigned using values from literature 54,55. We developed an 

approach whereby we modeled rheobase thresholds, namely the response to a long duration 

pulse. This allowed us, as a first approximation, to remove considerations of neuron 

dynamics and stimulation train parameters such a number, pulse shape, frequency and duty-

cycle which while important 56–59 would incur a large set of addition fiber specific 

parameterizations 34,60–64- whereas our focus was to address the role of tissue modeling. 

The assumption also supports future efforts to optimize stimulation approaches leveraging 

linearity (see Discussion). Indeed, the wave parameters of the only currently FDA approved 

nVNS device, gammaCore, are close to rheobase.65

Cervical, vagus nerve depth from the gammaCore electrodes was measured by 

ultrasonography. The average distances from the electrode surfaces to the vagus nerves were 

1.27 +/− .20 and 1.24 +/− .26 cm for the right and left sides, respectively so an average of 

1.25 cm was used for the modeling. 66

Results

For non-invasive vagus nerve stimulation (nVNS), current applied through electrodes on the 

neck must penetrate ~1.25 cm through varied soft tissue (e.g. muscle) from the skin surface. 

The overall current path may be influenced by details of head shape (e.g. neck 

circumference) and deeper tissues (e.g. vertebra). As a first step to model nVNS, we adapted 

and enhanced a high-resolution model of the head and neck, and simulated current flow 

using an exemplary macro-electrode montage (Figure 1). Given the complexity of the 

anatomy 67, we considered several levels of detail and tissue properties to understand 

sensitivity to model parameters. The role of macroscale detail was considered by comparing 

a realistic inhomogeneous model (with each tissue assigned a specific resistivity) with a 

homogenous model (where all tissues were assigned the same resistivity), and by altering – 

on both models – the resistivity of the bulk soft tissue (Figure 2). The role of mesoscale 

detail was considered by adding an insulating tissue sheath around the vagus nerve (Figure 

2), as well as by evaluating the role of local tissue changes around the nerve (Figure 3). 

Finally, micro-scale stimulation of specific nerve activation was modeled across these 

conditions supporting predictions of sensitivity and selectivity.

Stimulation with macro surface electrodes produced current flow throughout the neck that 

rapidly decreased with distance from the surface >1.5 cm (Figure 1). At the depth of the 

vagus nerve (~1.2 cm) the local current density maximum was between the two electrodes. 

Electric field (E-field) can be quantified by considering intensity along the vagus nerve 

under various model assumptions (Figure 2). In the homogenous model (Figure 2A) the E-

field magnitude (Figure 2A, top) roughly reflected distance from the stimulation electrodes, 

and E-field directed along the nerve even more so (Figure A, middle). The derivative of the 

E-field along the nerve (Figure 2A, bottom) was then a bi-modal profile, with a peak limited 
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by the gradual rate of spatial change of the E-field. Changing tissue resistivity produced an 

expected linear scaling of all these driving terms.

In contrast to the homogenous case, for the inhomogeneous models, both without (Figure 

2B) and with (Figure 2C) a sheath, predicting driving functions were not smooth. While 

there was a general trend to decrease with distance from the electrode (at large distances 

from the electrodes there is no significant generated current flow), meso-scale tissue changes 

resulted in local maxima. The role of local tissue (resistivity) changes in this profile is 

supported by their co-localization with changes in tissue type (Figure 3) and by the dulling 

of the fluctuations by the inclusion of a sheath (Figure 2C), which essentially dampens the 

influence of other local tissues. For the most direct measure of polarization along long 

axons, using the activating function (Figure 2B, 2C bottom row), the resulting maximum and 

minimum are also determined by this tissue inhomogeneity – namely when the nerve passes 

through tissues of varies resistivity there is an associated change in activating function. In 

the inhomogeneous models, increasing bulk tissue resistivity generally increases driving 

functions, but with region specific scaling factors, and the location of activating function 

peaks remains unchanged. To our knowledge this is the first demonstration that meso-scale 

tissue properties, namely the extension of the vagus nerve through high and low resistivity 

surrounding tissues, is the governing factor in determining driving functions in nVNS. 

Moreover, despite the presence of sheaths around major nerves, this is the first modeling of 

effects of current flow around a nerve. Overall, these results strongly support the importance 

of state-of-the-art detail in segmentation.

Finally, we considered resulting activation of axon sub-types in the vagus nerve, with 

separate analysis for the three scales of model detail. The ranking order of sensitivity of A-

fibers, followed by B-fibers, and then C-fibers did not change across all modeled conditions 

(Table 1), consistent with long-standing theory on fiber size and recurrent order 62,68,69. 

However, the absolute thresholds (applied nVNS current) varied across models, as expected 

given changes in the activating function (Figure 2C, bottom). At stimulation intensities 

comparable to clinical nVNS protocols, the current flow patterns and nerve neurophysiology 

resulted in preferential activation of A-fibers and large B- fibers. This is consistent with 

clinical and animal studies showing nVNS effects mediated by vagus firing of 

predominantly A- and large B- fibers but not the smaller, myelinated B or non-myelinated C 

fibers responsible for producing bradycardia and bronchoconstriction. 70,71

Discussion

We developed a state-of-the art computational model to support the interpretation and design 

of cervical nVNS protocols. We emphasize the difference between a model with 

“complexity” but without accuracy (i.e. detail for its own sake, incorrectly segmented tissue 

compartments) and accurate models that prioritize accurate segmentation of the most 

relevant tissues 67. The latter requires careful a priori knowledge about structure-function 

that may exceed resolution of the anatomical (MRI) scans but none-the-less profoundly 

influences current flow patterns, including tissue continuity. Our model workflow advances 

nerve stimulation modeling at the macro- (cm) and meso- (mm) scales (Figure 1). At the 

meso-scale, unlike geometric models generated using CAD 36,72,73, our model captures 
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idiosyncratic differences in anatomy that influence current clustering (Figure 2). At the same 

time, our findings emphasize that highly “detailed” models that do not validate segmentation 

accuracy 74,75 are subject to spurious results. Our simulations indicate that the 

inhomogeneous properties of tissue immediately surrounding nerves strongly influence 

membrane polarization by stimulation. Passage of axons along tissues with varied 

conductivities (e.g. soft tissue to bone) leads to a sudden change in electric field (activating 

function) that, in turn, increases axon membrane polarization (Figure 3B). However, the 

presence of encapsulating tissue, such as a fat sheath, can effectively dull these electric field 

transients, reducing axon membrane polarization (Figure 3C). In contrast to the role of local 

tissue properties, macro-scale tissue properties (tissue between the electrodes and the nerve) 

influence the total current delivered near the target, which scales the electric field along the 

axon (Figure 2, colored lines) untimely influencing polarization magnitude.

Our approach to modeling nerve activation was heuristic but supported by more 

sophisticated biophysical studies. The maximal polarization achieved at any given intensity, 

for arbitrarily long pulses, was predicted by the response to a DC (static) field. Moreover, 

this step function-based threshold should approximate polarization achievable by optimized 

pulse trains – based on consideration of single cell dynamics as a low-pass filter. This step is 

methodologically important and novel as it linearizes an otherwise complex optimization 

problem. This method ignores non-linear contributions of complex membrane dynamics 

(e.g. resonance) 76 or synaptic 77 and network effects 78, but is especially reasonable for 

axons of passage (axons that do not terminate or initiate near the electrodes) 79 as the case 

for cervical vagus nerve stimulation. Using step-function based thresholds would not capture 

relative differences in strength-duration (e.g. chronaxie) between fiber types such as A and 

C. 80

As linearity is preserved, this approach lends itself to efforts to automatically optimize 

stimulation approaches 67. For any given axon morphology and biophysics, electrode 

montage, and tissue properties, the stimulation current threshold to activate an action 

potential can be calculated. In turn, this means that (given the same electrode montage and 

modeling assumptions) for any given applied current, which axons can be activated 

(assuming optimized waveform) can be predicted. This in turn allows understanding axon 

recruitment and selectivity for any given stimulation approach (independent of waveform), 

and supports tractable optimization efforts using a look-up-table matching stimulation dose 

with axon threshold. Importantly, accurate modeling of tissue properties (see above) can 

categorically influence activation prediction (Table 1). Our modeling advancements for 

macro/mesa-scale current flow (based on tissue representation) and micro-scale nerve 

activation (DC-Rheobase look-up-table) generalize to a wide range of brain stimulation 

models spanning spinal cord stimulation 73,74,81, cortex/deep brain stimulation 82–84, and 

peripheral/cranial nerve stimulation 85–87.

In trying to encompass the scale needed for non-invasive stimulation, some limitations did 

arise. Previous VNS models34,36,37,88,89 have considered finer physiological detail including 

distribution of fibers in fassicles, varying fiber dynamics, blockage threshold, and the 

presence of local polarity peaks (virtual anode and cathodes). These studies can be leveraged 

in future work to develop more physiologically detailed models. Future models of nVNS can 
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explore the effects of interindividual anatomical differences, varied electrode designs and 

locations90, and experimental validation of current flow and target engagement91929394.

Notwithstanding these potential refinements, the methods developed in this study provides a 

foundation for modeling non-invasive vagus nerve stimulation from macroscale image-

derived data, including the ability to predict nerve sensitivity and selectivity. This workflow 

is exemplified for the case of non-invasive electrical stimulation of the cervical vagus nerve. 

We predicted, using a specific electrode montage, that at a typical clinical applied current of 

~ 10 mA, electric fields produced along the right vagus nerve are sufficient to activate A-

fibers and larger B-fibers but not C-fibers (based simply on fiber diameter) These models 

support emerging clinical evidence of efficacy and tolerability 18,29,31,32 that properly 

designed non-invasive vagus nerve stimulation is a targeted neuromodulation tool, and can 

be an alternative to an implanted stimulator, without the associated morbidities.
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Figure 1. High-resolution model of nVNS current flow
(A) MRI derived model including bone, brain, muscle and other soft tissue masks, and vagus 

nerve (green). (B) Stimulation of nVNS with electrode placement showing flux lines map 

gross current flow patterns through neck, with false color of local current density (>10 A/m2 

max). Gross current flow patterns are determined by electrode position and anatomy. (C) 

Inset showing expansion of current flow around vagus nerve (1.44 A/m2 max) using the 

given electrode montage. (D) Arrow plots of gross current density pattern and current 

density on vagus nerve in false colors. The current density (proportional to electric field) 

along the nerve supports the prediction of activation, depending on fiber type. All models are 

under the quasi-static assumption with the anode in red and cathode in blue for illustration of 

instant direction.
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Figure 2. Role of tissue properties around nerve in predicting driving forces for activation
Three drivers of neuronal polarization: Electric field magnitude (top row), electric field 

component aligned with the nerve (middle row), and spatial derivative of electric field 

(activating function) in the direction of the nerve (bottom row). Three conditions of tissue 

detail are modeled: (A, first column) simplified homogenous soft tissue (muscle, fat, 

ligament, intervertebral disk merged); (B, second column) full inhomogeneous soft tissue 

anatomy without a fat sheath surrounding the vagus nerve; (C, third column) full 

inhomogenous soft tissue anatomy with a fat sheath surrounding the vagus nerve. In each 

case, soft tissue conductivity was doubled (red), unaffected (blue) and halved (green). 

Whereas in a simplified homogeneous soft tissue case (A) drivers of activation are smooth, 
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with full inhomogeneous soft tissue anatomy (B, C) local maximum are observed (0.217 m, 

0.250 m and 0.269 m) corresponding to changing tissue around the nerve (see Figure 4). The 

addition of a sheath generally dulls the influence of these transitions.
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Figure 3. Illustration of local tissue inhomogeneity around nerve leading to transients in drivers 
of activation
(A) 0.180 m (B) 0.217 m (C) 0.250 m (D) 0.263 m (E) 0.269 m. Five anatomical cross 

sections showing cases in which either fat and soft tissue (A, B, C, E) or just fat (D) borders 

the vagus nerve. Slices (B, C, D, E) are relatively close to the stimulating electrodes while 

slice (A) is relatively far.
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Table 1
Nerve fiber threshold and activation selectivity under varied tissue models

For each stimulation current, a check indicates action potential generation (current above rheobase threshold) 

while a cross indicates no action potential generation (current below rheobase threshold). (A) Condition of full 

soft tissue compartment. (B) Condition of full anatomy without a fat sheath surrounding the vagus nerve. (C) 

Condition of full anatomy with a fat sheath surrounding the vagus nerve. In general, the lowest thresholds 

were predicted for the condition of full anatomy without sheath (B) corresponding to the most significant 

driving functions (Figure 2). For a similar reason, addition of a sheath in the full model (C) slightly increases 

thresholds. In all cases, thresholds decreased for larger nerves. Macro- and meso-scale anatomical details thus 

influence predictions on fiber type activation threshold and so selectivity.

(A)

Rheobase: 1 mA 10 mA 30 mA

A (22 μm) ✕ ✓ ✓

B (10 μm) ✕ ✓ ✓

C (1 μm) ✕ ✕ ✕

(B)

Rheobase: 1 mA 10 mA 30 mA

A (22 μm) ✓ ✓ ✓

B (10 μm) ✕ ✓ ✓

C (1 μm) ✕ ✓ ✓

(C)

Rheobase: 1 mA 10 mA 30 mA

A (22 μm) ✕ ✓ ✓

B (10 μm) ✕ ✓ ✓

C (1 μm) ✕ ✕ ✓
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