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Abstract

Purpose—Magnetic resonance spectroscopic imaging (MRSI), under low-spatial resolution 

settings, often suffers signal contamination from neighboring voxels due to ringing artifacts. 

Spatial localization can be improved by constraining the point-spread-function (PSF). Here the 

effectiveness of the two-dimensional PSF-Choice technique in providing improved spatial 

localization for MRSI is demonstrated.

Theory and Methods—The PSF-Choice technique constrains the PSF to a desired shape by 

manipulating the weighting of RF excitation pulse throughout phase-encode steps. Based on a 

Point REsolved SpectroScopy (PRESS)-type sequence, PSF-Choice encoding was implemented 

along two dimensions to excite a two-dimensional Gaussian profile, by replacing the usual RF 

excitation pulse with a train of pulses that is modified at each phase-encoding step. The method 

was proven mathematically, and demonstrated experimentally in phantoms containing prostate 

relevant metabolic compounds of choline, creatine and citrate.

Results—Using a dedicated prostate-mimicking spectroscopy phantom surrounded by oil, it was 

found that there is significantly less signal contamination from oil for PSF-Choice encoding 

compared with standard phase encoding. In particular, with standard phase encoding, there was a 

significant difference (p=0. 014) between ratios of Choline+Creatine to Citrate for voxels well 

within the phantom compared to voxels within the phantom but near the boundary with oil. The 

ratios in boundary voxels were also significantly different (p=0. 035) from reference values 

obtained using the prostate phantom with no oil present. In contrast, no significant differences 

were found in comparisons of these ratios when encoding with PSF-Choice.
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Conclusion—The PSF-Choice scheme applied along two dimensions produces MR 

spectroscopic images with substantially reduced truncation artifacts and spectral contamination.

Graphical abstract
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1. Introduction

Voxel bleeding, which is essentially a Gibbs ringing phenomenon, is an artifact frequently 

encountered in Magnetic Resonance Spectroscopic Imaging (MRSI)1–4. A conventional 

approach to suppress this artifact, which is caused by truncation in k-space, is to apply a 

low-pass filter to the data prior to reconstruction. Although this is effective in removing the 

artifact, it does so at the expense of decreased spatial resolution5,6. An example of a more 

advanced reconstruction method7 involves re-computing smooth regions with piecewise 

analytic functions in a Gegenbauer polynomial basis. Unfortunately, numerical instabilities 

occur for certain applications depending on the choice of parameters8. Another potential 

workaround has been based on finding optimal local subvoxel shifts to sample the ringing 

pattern at the zero-crossings of the oscillating sinc-function9. A natural extension to MRSI 

would be to apply sub-voxel shifts to all images acquired at all free induction delay (FID) 

time points; however, it is difficult in a practical setting to determine the exact shift needed 

to minimize artifact overall.

From the perspective of image acquisition, using a finer spatial resolution is one way to 

combat the ringing artifacts but this poses a difficulty in MRSI applications due to limited 

SNR and extended scan times. Somewhat similar to low-pass filtering in post-processing is 

the approach of variable density sampling during acquisition, which has been applied 

successfully in one, two, and three dimensions10–12. The method involves spending more 

time sampling the k-space center and less time at the edge13. When k-space sampling 

density and data windowing are modified proportionally, no compromise has been shown in 
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noise variance12 and the effective reduction of spatial side lobes has been demonstrated in 

chemical shift imaging13. In addition, compared with Cartesian sampling using the same 

number of readouts, non-Cartesian trajectories such as radial sampling demonstrate much 

less ringing artifact. This approach has been applied in a non-MRSI context towards 

eliminating dark-rim artifacts in first-pass myocardial perfusion imaging14.

While most of the aforementioned strategies involve different reconstruction methods or 

employing alternative k-space sampling strategies, this paper aims to demonstrate an 

approach using a manipulation of the RF excitation to counteract the ringing effects. 

Conventional Fourier (phase) encoding involves scaling gradient amplitudes across multiple 

steps to encode the volume and results in a sinc-shaped point-spread-function (PSF). In 

contrast, the so-called non-Fourier encoding approach, also known as RF encoding, modifies 

RF selective excitations on each encoding step15 and produces PSFs that are dependent on 

the shape of the excitation profiles.

The technique, PSF-Choice, which is explored in this work, has been described previously16. 

It is a hybrid approach that combines elements of both Fourier and non-Fourier encoding. 

With a special scheme to adjust the RF excitation weights across phase-encoding steps, the 

PSF can be shaped along phase-encoding dimensions. There is some apparent similarity of 

PSF-Choice with the technique of tagging. In PSF-Choice, a regular, grid-like variation is 

imposed on the FOV via RF excitation as it is in tagging, although in PSF-Choice the image 

resolution is too coarse for the ‘tags’ to be seen (as the pixel dimensions coincide exactly 

with the grid dimensions). An important difference with PSF-Choice is that, unlike tagging, 

the RF amplitudes in PSF-Choice are varied on each individual shot and, as will be shown, 

this varying of RF amplitudes is critical to being able to manipulate the PSF.

Unlike the low-pass filtering approach, which eliminates ringing at the expense of the spatial 

resolution, the PSF-Choice method maintains the original spatial resolution without penalty 

in acquisition time. The method has previously been implemented and evaluated for prostate 

MRSI, with PSF-Choice encoding scheme applied along one single dimension17. Here, we 

describe the development of PSF-Choice scheme along multiple phase-encoding dimensions 

in MRSI to eliminate signal contamination from neighboring (out-of-voxel) areas.

2. Theory

In this section we present a mathematical justification for the PSF-Choice scheme, 

demonstrating that it leads to a modification of the imaging PSF as claimed. First, it will be 

shown that, in the small-tip angle regime, the spatial profile resulting from an RF excitation 

is related to a Fourier transform of some ‘excitation k-space’ description of the RF pulse. 

From there, it is shown that the segmented RF excitations in PSF-Choice, in their sum, result 

in the same RF excitation profile as the full non-segmented excitation. This profile is shown 

to have the form of a classic point-spread-function.

2.1. Signal from a hard-pulse RF excitation

We begin by considering a simple excitation hard pulse excitation, where a flip angle of θ 
will result in a weighting of sinθ on the transverse magnetization across the entire volume. 
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This weighting is approximately equal to θ under the small-angle approximation. A 

subsequent gradient pulse along x will then introduce a spatially dependent phase e2πirxx, 

such that rx is equal to γ ̶∫ Gx(t) dt (meters−1), where Gx(t) is a time-dependent gradient 

waveform and γ̶ is gyromagnetic ratio for the proton (42.58 MHz/Tesla). The integration is 

performed from the time right after the hard pulse to some time after the application all 

gradients. Similarly, for a gradient pulse along y, there is a y-dependent phase e2πiryy 

Overall, the signal generated by the magnetization at spatial coordinate (x, y) from the single 

RF excitation can be expressed by

ρ(x, y)θe
2πi(rxx + ryy)

[1]

where ρ(x, y) is the spin density in the excited volume integrated along z such that ∫ ρ(x, y, 
z) dz = ρ(x, y). To discretize the phase terms, we define increments (Δrx, Δry) such that rx = 

pxΔrx and ry = pyΔry where px and py are integers. The total signal coming from the volume 

due to the single hard pulse excitation is:

f (px, py) = ∬ ρ(x, y)g(px, py)e
2πi(pxΔ

rxx + pyΔ
ryy)

dx dy [2]

Here we have replaced θ by the term g(px, py) to account for an RF pulse amplitude that 

may vary with the gradient induced (encoded) phase, as indexed by px and py.

2.2. Excitation profile from an RF pulse train

Figure 1 shows an example of a hard pulse train with its accompanying x and y gradient 

waveforms (top of Fig. 1). This particular RF pulse train is comprised of 16 segments with 

16 hard pulses per segment. The hard-pulse amplitudes vary both within and between 

segments with an apparent Gaussian-shaped weighting. The x-gradient waveforms are 

repeated for each individual segment. Within the segments, the y-gradient is not applied, 

however, a y-gradient pulse is applied between segments. It is important to note that px and 

py are defined such that Eq.2 is applicable for any single hard pulse in the train, assuming 

the effective time is at the end of the application of both sets of gradient pulses.

Under the small-flip-angle assumption, the total signal from a full 2D excitation by an RF 

pulse train such as in Fig. 1 can be obtained by simply summing the result, f(px, py), from all 

individual sub-pulse (hard-pulse) excitations:
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s = ∑
px

∑
py

f (px, py) = ∬ ρ(x, y) ∑
px

∑
py

g(px, py)e
2πi(pxΔ

rxx + pyΔ
ryy)

dx dy

= ∬ ρ(x, y) G(x, y) dx dy

[3]

In Eq. [3], we note that the summation within square brackets is in the form of a complex 

Fourier series expansion of a continuous spatial function G(x, y), which is periodic in two 

dimensions over a grid size of (1/Δrx, 1/Δry). This grid is essentially the field of excitation 

(FOE) of the 2D RF pulse. As a multiplicative weighting on the spin density, G(x, y) can be 

viewed as the excitation profile. Therefore, by an appropriate choice of amplitude weights 

g(px, py) for the hard pulses, we can produce G(x, y) in any desired shape; e.g., a Gaussian 

shape as is obtained with the particular weighting shown in Fig. 1.

The bottom right of Fig. 1 shows a 2D mesh plot of the amplitude weights, g(px, py), for the 

RF pulse train at the top of Fig. 1. The weights form a Gaussian-shaped profile in both px 

and py directions. When the axes are viewed as increments of Δrx and Δry, the representation 

is consistent with the ‘excitation k-space’ interpretation of the RF pulse. Note that each of 

the colored dots represents one hard pulse in the RF pulse train. In other words, each hard 

pulse represents a sample in the 2D excitation k-space.

2.3. PSF-Choice RF excitation

The main distinguishing feature of a PSF-Choice implementation, is that a full 2D excitation 

is split across multiple shots with only a subset of the RF hard pulses executed on each shot. 

In the example of Fig. 1, the full 2D excitation of 256 hard pulses is split across 64 shots 

with only 4 sub-pulses per shot, or 4 excitation k-space samples per shot. The bottom left of 

Fig. 1 shows a hard-pulse train used for PSF-Choice. The Phx and Phy gradients (bottom left 

of Fig. 1) are used to move the excitation k-space sampling locations in increments of Δrx, 

Δry. The excitation k-space locations sampled for one specific shot are labeled with α11, 

α12, α21, and α22 in the 2D mesh plot (bottom right of Fig. 1). Locations of excitation k-

space samples for different shots are represented by the colored-coded numbers in the figure. 

All 256 excitation points in the excitation k-space are covered in the course of 64 shots.

In general, we perform Lx × Ly hard-pulse excitations per shot (2 × 2 in our 

implementation). The incremental step in excitation k-space between samples on each of the 

Mx × My shots (8 × 8 in Fig. 1) is [MxΔrx, MyΔry]. On each shot indexed with [mx, my], 

excitation k-space is sampled in horizontal steps of Δrx, and vertical steps of Δry. Let us 

assume that during the first shot (mx = 0, my = 0), excitation k-space is sampled at 

[ Ro
x − lxMx, Ro

y − lyMy]. Here Ro
x = (LxMx/2) and Ro

y = (LyMy/2) are integers (assuming Mx and 

My are even) that define the positive limits of the 2D excitation k-space, where lx and ly 

range from 0 to Lx-1 and from 0 to Ly-1 respectively. Since Lx=Ly=2 in our implementation 
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(Fig. 1) the indices lx and ly take only the values of 0 or 1. Subsequent excitations sample at 

[ Ro
x − lxMx − mx, Ro

y − lyMy − my], where mx = 0 ⋯ (Mx − 1) and my = 0 ⋯ (My − 1).

2.4. Reconstruction of PSF-Choice images

With a simple adaptation of Eq.3, the total signal from spins on each individual shot [mx, 

my] in the PSF-Choice scheme can be written as s(mx, my) given below:

s(mx, my) = ∬ ρ(x, y) ∑
lx = 0

Lx − 1

∑
ly = 0

Ly − 1

g(px[lx, mx], py[ly, my])…

∑e
2πi(px[lx, mx]Δ

rxx + py[ly, my]Δ
ryy)

dx dy

[4]

where px[lx, mx] = (Ro
x − lxMx − mx) and py[ly, my] = (Ro

y − lyMy − my).

Note that in PSF-Choice the Mx × My multiple shots are executed as Mx × My (phase) 

encoding steps. For reconstruction, we simply perform inverse discrete Fourier 

transformation of the data from all shots, producing the Mx × My image, S(ux, uy), as 

expressed in Eq.5:

S ux, uy = 1
MxMy

∑
mx = 0

Mx − 1

∑
my = 0

My − 1

s mx, my e
2πi ux

mx
Mx

+ uy
my
My

= 1
MxMy

∬ ρ(x, y) ∑
mx = 0

Mx − 1

∑
my = 0

My − 1

∑
lx = 0

Lx − 1

∑
ly = 0

Ly − 1

g(px[lx, mx], py[ly, my])…

∑e
2πi[px[lx, mx]Δ

rxx + py[ly, my]Δ
ryy]

e
2πi ux

mx
Mx

+ uy
my
My dx dy

[5]

Here the quadruple summations illustrate that in two dimensions there are Mx × My shots 

with Lx × Ly coordinates excited per shot. The quadruple summation can now be 

restructured into a double summation. By reversing the summation order in Eq.5 and then 

substituting ( Ro
x − lxMx − px) for mx and ( Ro

y − lyMy − py) for my we obtain Eq.6 as follows:
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S ux, uy = 1
MxMy

∬ ρ(x, y) ∑
lx = 0

Lx − 1

∑
ly = 0

Ly − 1

∑
px = Ro

x − lxMx − (Mx − 1)

Ro
x − lxMx

∑
py = Ro

y − lyMy − (My − 1)

Ro
y − lyMy

g

px, py …e
2πi[pxΔ

rxx + pyΔ
ryy]

e
2πi ux

Ro
x − lxMx − px

Mx
+ uy

Ro
y − lyMy − py

My dx dy

[6]

Note that throughout lx terms, the index px runs in a consecutively decreasing order and can 

be joined in a single sequence from ( Ro
x − LxMx + 1) to Ro

x, similarly for py running from 

( Ro
y − LyMy + 1) to Ro

y. Additionally, the fact that 2Ro
x = MxLx, 2Ro

y = MyLy and that e2nπi = 1 

(n ∈ ℤ) helps to simplify the second exponential term in which e2πi(uxlx) and e2πi(uyly) are 

equal to 1, as are e
2πi(ux

Lx
2 )

 and e
2πi(uy

Ly
2 )

 when Lx and Ly are both even integers (=2 in our 

implementation). Note that, in case of odd Lx (or Ly), the sign will be flipped on odd rows 

(or columns) of S(ux, uy). This can be simply corrected in reconstruction by applying a sign 

reversal at the appropriate pixel locations. To continue with the assumption of even Lx and 

Ly, Eq. [6] can be expressed as below:

S ux, uy = 1
MxMy

∬ ρ(x, y) ∑
px = − Ro

x + 1

Ro
x

∑
py = − Ro

y + 1

Ro
y

g px, py

e
2πi(pxΔ

rxx + pyΔ
ryy)

e
−2πi ux

px
Mx

+ uy
py
My dx dy

[7]

Finally, we note that summations in Eq. [7], compared to summations in Eq. [3], have the 

additional term e
−2πi · ux

px
Mx

+ uy
py
My = e

−2πi pxΔ
rx ux

MxΔ
rx

+ pyΔ
ry uy

MyΔ
ry

. According to the 

Fourier shift theorem, this produces an expansion of G(x, y) that is shifted in space by 

ux

(MxΔ
rx)

,
uy

(MyΔ
ry)

 Hence each reconstructed value S(ux, uy) can be viewed as the integrated 
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signal density ρ(x, y) sampled at discrete locations of grid size in 

ux

(MxΔ
rx)

,
uy

(MyΔ
ry)

= uxΔx, uyΔy , where (Δx, Δy) is the image spatial resolution.

S ux, uy = 1
MxMy

∬ ρ(x, y)G(x − uxΔx, y − uyΔy) dx dy [8]

As the function G(x, y) is assumed symmetric, it can be rewritten as G(uxΔx − x, uyΔy − y) 

in Eq.8, taking the form of a classic PSF, which convolves with an input function ρ(x, y) to 

produce the output image S(ux, uy). Here a point source ρ(x0, y0) = δ(x0 − x, y0 − y) will 

produce G(uxΔx − x0, uyΔy − y0), which is a discrete sampling of G centered at (x0, y0). 

Therefore we can see that in the PSF-Choice scheme the imaging PSF is uniquely defined by 

the excitation profile G(x, y).

2.5. Theoretical spatial resolution with PSF-Choice

Figure 2 shows a comparison between the excitation k-space sampling with PSF-Choice 

(left) and k-space sampling with a standard phase encoding method (right). Note that both 

approaches involve the same number of encoding steps (8×8). Because the phase encoding 

gradients (Phx and Phy) are the same for both PSF-Choice and standard phase encoding, the 

increment of sampling in excitation k-space, Δrx, Δry, is the same as the k-space sampling 

increment for phase encoding, Δkx, Δky. In the previous section, we defined the image 

resolution for PSF-Choice as Δx, Δy = 1

(MxΔ
rx)

, 1

(MyΔ
ry)

. To ensure this, we need the width 

(spread) of the PSF (e.g. the full width at half maximum or FWHM) to be equal to (Δx, Δy). 

This implies that the spread of the weight function in excitation k-space must be (MxΔrx, 

MyΔry). This is the same size as the k-space extent for standard phase encoding (see bottom 

right of Fig. 2) and thus results in the same theoretical spatial resolution (with Mx=My=8) 

for both methods.

It is important to note here that, as demonstrated in Fig. 2, although there is a difference 

between the extent of excitation k-space sampled in the PSF-Choice method and the extent 

of k-space sampled in the standard phase-encoding method, the resolution, as defined by the 

width or spread of the PSF, is the same for both methods. While PSF-Choice clearly 

involves sampling a greater range of spatial frequencies, this does not go towards increasing 

spatial resolution, but instead allows for achieving a sharper (more localized) point-spread-

function.

2.6. Choice of point-spread-function

The PSF describes the degree of blurring or spreading of a point source object and, in this 

sense, directly measures the quality of the imaging device. Desirable properties of a PSF 

include a narrow main lobe with no or minimal side lobes. The ideal case for the PSF is a 
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Dirac-delta function. However, because the Dirac-delta function (left side of Fig. 3) has a 

flat response in all frequencies, it would require sampling an infinite range of spatial 

frequencies and is, therefore, not a practical option.

Conventional Fourier-encoding uses constant weights across a truncated k-space. This 

results in the expected sinc-shaped PSF (center-left in Fig. 3). Note that the truncation 

artifacts become substantial when the edge transition in the object is on the order of or is 

smaller than the pixel size prior to any zero filling18. Another option for the PSF might be a 

compact boxcar shape (center-right in Fig. 3). In excitation k-space, this PSF is represented 

by the sinc-shaped function. The side lobes characteristic of this function make this option 

less practical for implementation due to the need to sample very high spatial frequencies. 

The Gaussian shape (right side of Fig. 3) provides good a compromise between the 

compactness of PSF and tapered expansion of frequency response and, therefore, this is the 

function that was chosen for the implementation of PSF-Choice.

Note that the three PSF’s in Fig. 3 other than the delta function have the same PSF width 

(Δx, Δy), which defines the spatial resolution. (Δx, Δy). However, the degree of compactness 

or localization of the functions is significantly different in the three cases. The range of 

spatial frequencies covered for the three cases is also very different with the narrowest 

spatial frequency range for the case of the sinc-shaped PSF. The Gaussian function 

represents an optimal compromise between compactness in both the spatial extent of the 

PSF and of the distribution of spatial frequencies.

As discussed previously, imaging a point source results in a discrete sampling of the 

theoretical point-spread-function. The resultant image depends intimately on the position of 

the point within the imaging voxel. This is demonstrated at the bottom of Fig. 3 for both the 

sinc-shaped and the Gaussian PSF’s. Note that, if the point source is positioned precisely at 

the center of the imaging voxel, the resultant image shows no sign of ringing as seen in the 

result labeled, ‘No Shift’. This is due to a sampling of the sinc-function at the zero crossings. 

For most other positions, however, there is significant signal contribution from the side-lobes 

of the sinc-shaped function. For the Gaussian PSF, when the point source is away from the 

center of the voxel, there is significant signal in more than one voxel, e.g., as seen on the far 

right for a point-source shift of half a voxel dimension. In general, however, signal remains 

significantly better localized than for the sinc-shaped PSF.

2.6. Signal-to-noise

It has been demonstrated in previous studies, both experimentally and through simulation 

that no significant difference in SNR is found whether using PSF-Choice encoding or 

standard phase encoding16,17. Theoretically, this makes sense. The PSF-Choice method can 

be seen as performing Fourier (phase) encoding of the signal integrated under a set of 

sampling functions (PSF’s) shifted across the FOV. In fact, standard phase encoding has 

been implemented with our sequence by appropriate manipulation of the RF weights, giving 

a sinc-shaped PSF. Since Fourier encoding and decoding/reconstruction are employed 

regardless of the PSF, the treatment of noise does not vary. Only the total signal sampled by 

the PSF causes a variation in SNR between different implementations, e.g. whether the PSF 
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is Gaussian or sinc-shaped. Thus, as long as the integral under the PSF is the same, the SNR 

will be identical.

In order to insure that the integral under different PSF’s are the same, we required that the 

RF weights were scaled to have the same maximum value for any chosen PSF. Since flip 

angles also must be the same regardless of PSF, we further required that the maximum 

heights of the PSF’s be the same, implying that the sums of the weights for all PSF’s are 

equal. Note that a further constraint is that the width (or spread) of the RF weight functions 

must also be the same to maintain equivalent spatial resolution. We confirmed via simulation 

that for the chosen weight distribution to obtain the desired Gaussian PSF, the resultant 

signal level obtained by summing all transverse magnetization vectors, was the same as that 

obtained for the Fourier case (sinc-shaped PSF).

3. Methods

3.1 Pulse sequence implementation for PSF-Choice encoding

PSF-Choice was implemented by modifying the 3D-PROSE [PROstate Spectroscopy and 

Imaging Examination] sequence on a 3T GE Signa MRI system. PROSE itself is a 

modification of a standard point-resolved spatially localized spectroscopy (PRESS) 

sequence. Our modification to PROSE includes replacing the 90° excitation pulse with a 

train of 2×2 (Lx = 2, Ly = 2) hard RF pulses separated by gradient pulses along two of the 

phase encoding directions (x and y, as illustrated at the bottom left of Fig. 1). One result of 

our scheme is the loss of capability in the original RF excitation pulse for selecting the 

PRESS box along one dimension. To provide this selectivity for the PSF-Choice sequence, 

an additional 180° spatially selective (but non-spectrally selective) refocusing pulse was 

inserted after the train of excitation sub-pulses. In our experiments, the optional outer-

volume suppression pulses were also selected for all acquisitions.

The finite time gap between RF sub-pulses α11, α21, α12 and α22 (Fig. 1) result in a phase 

evolution between sub-pulses due to off-resonance. This introduces a difference in effective 

TE (dependent on Tx and Ty of the sub-pulses and can result in ghosting artifact if sharp 

phase transitions are introduced between encoding steps. To avoid these artifacts, an 

incremental echo shifting across encoding steps was implemented so that the phase 

transition is made linear across the steps (Δtx = Tx/Mx along x and Δty = Ty/My along y).

During the RF excitation, a list of pre-calculated weights is applied on each sub-pulse across 

encoding steps in order to generate the desired 2D excitation in the x-y plane. For low flip-

angle excitation, weights can be obtained by simply taking the Fourier Transform of the 

desired point-spread-function. However, for high flip-angle excitation, i.e. greater than about 

45°, using weights from a direct Fourier Transform of the desired PSF produces some 

distortion in the form of an extra side lobe in the resultant PSF shape19. Therefore weights 

were adjusted to account for the non-linear response due to 90° flip-angle excitations. To 

determine these adjusted weights, we begin first with the weights obtained by direct Fourier 

Transform. We then calculate the response to the excitation by solving the Bloch equations 

for a simulated spatial distribution of spins. Modifications are made to the weights based on 

the desired response versus the computed solution in an iterative fashion20.
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As previously mentioned, a Fourier encoding scheme can be implemented while using the 

PSF-Choice sequence. In this case, the sub-pulse weights are obtained from an excitation k-

space profile that is just a uniform square padded with outer zeros (see truncated k-space in 

Fig. 3). With this scheme, there is only one sub-pulse at a time (e.g. on any one shot) with a 

nonzero weight and the sequence effectively reverts to a standard phase encoding scheme. 

This option has been used to allow for a more direct comparison of results between Gaussian 

and Fourier PSF’s.

For acceleration in 3D MRSI, as an option, an echo planar imaging (EPI) train of gradient 

pulses with alternating polarity can be added to the sequence during acquisition of the FID 

in order to implement echo-planar spectroscopic imaging (EPSI) in which case a readout 

direction is encoded in a single shot21–23. EPSI differs from typical echo-planar imaging in 

that no phase encode blips are applied during the gradient train. In all experiments, both with 

and without EPSI, a total of 512 time points were sampled along the FID. For the EPSI case, 

the sample dwell was set so that 512×32 data points were acquired under the train of 512 

gradient pulses, giving 32 data points per echo. Echo data acquired under negative gradient 

lobes are flipped and then shifted to properly align with the positive-lobe data. Odd and even 

echoes may be reconstructed separately, however, at the expense of spectral bandwidth. 

Several data points are acquired under the gradient ramps and are generally not included in 

order to simplify reconstruction. Alternatively, if they are included, re-gridding becomes 

necessary to avoid distortions.

3.2 Experimental point-spread-function validation and SNR comparison

All phantom imaging acquisitions were conducted at 3T using either a GE MR750W or 

HDxt system. The 2D PSF obtained with this technique was experimentally verified using a 

GE spherically-shaped prostate phantom of 10 cm in diameter. The phantom solution 

contains 50 mM potassium phosphate monobasic, 33 mM sodium citrate tribasic dihydrate, 

4 mM choline chloride, 10 mM creatine monohydrate, 12 mM lithium l-lactate and 0.1% 

sodium azide.

Ideally, the PSF is the image one would obtain when the target object is a point of 

infinitesimal size. To simulate this scenario, all acquisitions were prescribed with the 

PRESS-localized spectroscopy box set to select a volume significantly smaller than the 

imaging voxel - equal to one half the length of the imaging voxel along each of three 

dimensions (one-eighth of the imaging voxel in volume). The imaging parameters were: 

FOV = 40×40×40 cm3, matrix = 8 × 8 × 8 along PSF/PSF2/EPSI dimension, TE/TR = 

85/1500ms, spectral width = 976Hz. To map the PSF, 16 acquisitions were collected with 

−frac34;, −¼, ¼ and ¾ voxel shifts in each of the two PSF-Choice encoding directions. Each 

dataset was then reconstructed in spatial and spectral dimensions. The final multi-

dimensional image array of spatial-spectral data was obtained by interleaving the 16 separate 

data sets along the two PSF-Choice encoded dimensions to form high-density PSF maps.

These datasets were used in order to confirm the prediction that SNR was the same for 

Gaussian and sinc-shaped PSF’s. A measurement of the noise level was obtained by taking 

the standard deviation in a frequency range and region-of-interest that appeared to be free of 

any obvious structured signal components. The SNR was then computed for the signal in the 

Zhang et al. Page 11

J Magn Reson. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



range of frequencies covering the metabolites of interest and compared for the two different 

PSF’s.

3.3 Experimental verification of improvement in spectroscopic localization

To evaluate the quality of spatial localization using the PSF-Choice method, MRSI was 

performed using the GE prostate phantom sitting on a bath of olive oil. Voxels that were 

completely within the prostate phantom but close to the oil compartment were examined as 

to the degree of contamination from the oil spectra. Acquisition parameters were as follows: 

TE/TR = 85/1000ms, spectral width = 976Hz, slice thickness = 1 cm (voxel thickness in the 

EPSI direction), and FOV = 8 × 8 cm2 with an acquisition matrix = 8 × 8 along the two PSF-

Choice encoding directions, resulting in an imaging voxel volume of 1 ml. Dimensions of 

the prescribed PRESS box were 3×5×3 cm. Shimming over the region of the PRESS box 

was performed using the standard auto-shim procedure using linear gradient shims only.

Post-processing was performed using in-house software with MATLAB (Mathworks, 

Natick, MA). Phase correction was performed on spectra with sufficient water peak intensity 

(above 10% of the maximum water peak) to obtain the real component, i.e. absorption 

spectrum. A first-order phase factor was determined as the slope from linear fitting of 

unwrapped phase of the FID array. The zeroth-order phase factor was estimated from the 

remaining average phase. Baseline removal was performed to remove the tail of the water 

signal. While tools such as LCModel24 might have been used for quantification, we instead 

employed simple integration over the spectral range of the relevant metabolites. 

Reconstruction in spatial dimensions involved Fourier transformation only with no 

additional corrections applied.

3.4. Statistical Tests

The ratio of (Choline+Creatine)/Citrate was computed for all voxels containing spectra. 

Distributions of ratios did not pass the Lilliefors test for normality, thus, we performed the 

Wilcoxon rank sum test, comparing ratios in voxels inside the prostate phantom against 

voxels on the boundary between the prostate phantom and the oil, as well as comparing 

against gold-standard reference (from prostate phantom alone without surrounding oil). This 

was done for ratios acquired both with the PSF-choice and the Fourier encoding schemes. 

The significance level was set at p < 0.05.

4. Results

4.1 Verification of 2D point-spread-functions

The experimental results of the point-spread-function mapping using PSF-Choice and 

conventional phase encoding schemes are shown in Fig. 4. The PSFs of metabolites were 

constructed by integrating the signal from the absorption spectra under the peaks of interest: 

choline-plus-creatine, and citrate. The PSF of the residual-water peak is also shown. We note 

that for the metabolic components, the 2D PSF mapped using the Gaussian PSF-Choice 

encoding scheme is essentially free of side lobes surrounding the main peak (second and 

third rows, left column of Fig. 4) although there does appear to be some artifact that rises 

above the background noise level for the choline-plus-creatine result. The results obtained 
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using the Fourier-based encoding scheme show significant side lobes with magnitudes up to 

10% of the maximum peak value. This ringing of the PSF is clearly seen along both axes 

(right column of Fig. 4). Clarity of the PSF is particularly notable for the high-SNR, 

residual-water peak. Representative spectra of the metabolites, obtained using both encoding 

schemes, are shown at the bottom of Fig. 4. Spectral quality is effectively identical in the 

two cases.

A comparison of the SNR over the range of the metabolites of interest is shown at the 

bottom of Fig. 4. The noise measure was obtained from the standard deviation in an ROI and 

in a frequency range free of signal components. The noise level for the Fourier-encoded 

result was slightly higher than for PSF-Choice encoding but differed by less than 1.5 

percent. Peak SNR of the metabolites for the two encoding methods is comparable as it 

should be, although SNR for PSF-Choice encoding is slightly higher than for Fourier 

encoding across the frequency range of interest. Note that the two datasets were acquired 

separately as evidenced by the small frequency shift of the spectra. The observed differences 

in SNR may be due to sub-optimal calibration between the two scans resulting in slightly 

different signal levels.

4.2 Lipid contamination of spectra

The PRESS box was prescribed in order to cover part of the GE prostate phantom along with 

part of the volume containing oil, as shown by the inset image in Fig. 5. The through-plane 

(or slice) direction is the EPSI-encoded direction. Grids of spectra obtained with the 

Gaussian PSF-Choice encoding scheme and the Fourier-encoding scheme are shown at the 

top of Fig. 5 with a zoomed portion below for two rows of voxels that are at the edge of the 

prostate phantom and close to the oil compartment. Note that Fig. 5 shows the result for only 

one section (slice) of the three sections within the PRESS box (which was prescribed to be 3 

cm in the slice direction). In the analysis of results comparing PSF-Choice and Fourier 

encoding, voxels from the center section (slice) inside the PRESS box was chosen as it had 

the highest SNR.

A visual inspection of voxel signals for the two methods shows a generally higher level of 

signal outside the selected PRESS box for the Fourier-encoding method. A close inspection 

of the zoomed spectra for the PSF-Choice result (bottom left of Fig. 5) demonstrates that the 

metabolic components in the prostate phantom-only region are qualitatively uncontaminated 

by contributions from out-of-voxel lipids. Results obtained from the Fourier encoding 

scheme, however, show significant contamination from lipid signal in voxels within the 

prostate phantom (see orange arrows at bottom right of Fig. 5).

The out-of-voxel lipid contamination observed with conventional Fourier encoding 

complicates interpretation of the spectra in the prostate-only region. Specifically, it can be 

seen that the clinically relevant ratio of Choline+Creatine to Citrate is affected in the voxels 

near the phantom boundary. The ratios computed from voxels well within the phantom 

(n=18) and voxels at the phantom boundary (n=11 are 0.47 ± 0.047 and 0.56 ± 0.097 

respectively with Fourier encoding, representing a statistically significant difference (p = 

0.014). In contrast, comparing ratios from inner voxels (0.50 ± 0.039, n=18) and boundary 

voxels (0.49 ± 0.069, n=11) with PSF-Choice encoding, there is no statistical significance 
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(p=0.637). We also computed ratios of Choline+Creatine to Citrate from the prostate 

phantom alone (no surrounding oil) to obtain a gold-standard reference (0.48 ± 0.043). 

Comparing ratios in the boundary voxels against the gold-standard reference, there is a 

statistically significant difference when using Fourier encoding (p = 0.035) but no 

statistically significant difference when PSF-Choice was used (p=0.935). There is no 

statistical difference when comparing ratios for voxels well inside the phantoms with either 

Fourier encoding or PSF-Choice encoding against the gold-standard reference (i.e. in the 

prostate phantom with no surrounding oil).

It should be noted that the olive oil is mostly beneath the prostate phantom so that most lipid 

contamination due to ringing should to be expected in the vertical direction. To validate that 

both PSF-Choice encoding directions have less out-of-voxel contamination than for the 

Fourier case, we ran a second set of experiments, swapping encoding directions between 

horizontal and vertical. For example, referring to the two PSF-Choice encoding directions as 

PSF_A and PSF_B, in the first set of experiments, PSF_A was vertical and PSF_B was 

horizontal. In the second set of experiments PSF_B was horizontal and PSF_A was vertical. 

Results in terms of the degree of lipid contamination were similar in both sets of 

experiments.

5. Discussion

In this work, the PSF-Choice method was implemented to minimize the voxel bleeding 

artifacts in MR spectroscopic images that arise due to the inherently low spatial resolution 

characteristic of MRSI. The unique aspect of the current work is that the method is applied 

along two separate phase-encoding directions to achieve improved spatial localization. We 

have included a detailed mathematical exposé of the technique along with experimental 

validation in a series of MRSI experiments using a prostate spectroscopy phantom.

Validation of the method has been limited here to experiments using a phantom containing 

metabolic components relevant for prostate spectroscopic imaging25. However, prior work 

has also validated the method using a phantom containing metabolic components relevant 

for neuroimaging. While a previous study with one-dimensional PSF-Choice reported results 

with a group of patients, it remains for future work to demonstrate the two-dimensional 

method in vivo. We do not anticipate effects limiting in vivo performance that are any 

different from those encountered in standard phase encoding. Sensitivity of PSF-Choice to 

problems such as susceptibility and motion are also expected to be the same as for standard 

phase encoding. Most sequence parameter adjustments can be made using phantoms prior to 

conducting in vivo work. Adjustments, such as shimming, that must be made at exam time 

will be identical to those required for MRSI with standard phase encoding. EPSI should be 

considered for in vivo acquisitions in order to reduce the exam times21–23. While we have 

included EPSI as an option in this implementation, further work on the reconstruction 

algorithm remains to be done in order to improve the correction for misalignment between 

even and odd echoes as well as for re-gridding of the ramp-sampled data.

It could be argued that even better spatial localization could be accomplished by choice of a 

sharper and more spatially constrained PSF than the Gaussian scheme implemented here 
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(e.g. the box-shaped PSF in Fig. 3). However, because this involves sampling higher spatial 

frequencies in excitation k-space, a greater number of sub-pulses beyond the 2 × 2 sub-pulse 

train used in the Gaussian scheme would be required. The longer pulse trains come at the 

inevitable cost of longer duration of the RF excitation, affecting the minimum TE of the 

sequence. Longer pulse trains are also more susceptible to off-resonance effects.

In analogy with multi-shot EPI, in our implementation we used a corresponding echo 

shifting to control the off-resonance effect and avoid serious artifacts. Essentially, the delay 

between the sub-pulse set and the acquisition window of the sequence was arranged to avoid 

sharp phase transitions in excitation k-space and instead created a smooth linear phase 

evolution. The result of this scheme is that, after reconstruction, the spectral images are 

shifted spatially in both PSF-Choice encoding directions with the amount of shifting 

depending on the duration of the echo-shift increment and the resonant frequency of 

individual metabolites. It should be noted here that, with appropriate manipulation of the 

phase of the RF pulses on each shot, we are able to achieve a controlled shifting of the 

spectral images, an approach that was used to produce the images of the point-spread-

functions shown in Fig. 4.

In previous one-dimensional implementations of PSF-Choice, trains of slice-selective RF 

pulses were used16,17. In this two-dimensional PSF-Choice implementation, trains of hard 

pulses were employed to minimize duration of the pulse trains at the expense of removing 

the slice-selective capability of the initial RF excitation. The use of slice-selective sub-pulses 

is not precluded in the two-dimensional implementation; however, this inevitably leads to 

longer overall RF pulse train duration and, as discussed, with all the disadvantages this 

entails. A scheme implemented on a system equipped with parallel transmitters might be 

envisioned, potentially allowing for the use of shorter sub-pulse trains.

Alternate sampling schemes can be considered for traversing the excitation k-space when 

implementing PSF-Choice. We note that, in principle, to expand a n-dimensional space, a 

structural element must have a minimum number of vertices equal to n + 1. Therefore, one 

might conceive of using just three instead of four sub-pulses to cover a two-dimensional 

excitation k-space (or four sub-pulses in a three-dimensional implementation). By virtue of 

puzzle solving, a design using a train of three evenly spread sub-pulses to cover a hexagon-

like area in an 8 × 8 matrix is illustrated in Fig. 6. Besides benefiting from a shorter sub-

pulse train, this scheme samples the excitation k-space similarly as in elliptical sampling of 

k-space with a low-pass filtering effect to boost SNR. As the areas of excitation k-space that 

are not sampled are in the high-frequency corners, the impact on the PSF is expected to be 

minimal. For the three-dimensional implementation, it is possible to expand a truncated 

octahedron using a tetrahedron element formed by sampling with a four-sub-pulse train.

6. Conclusions

In conclusion, we have implemented a PSF-Choice method for encoding in two phase-

encoding dimensions and demonstrated both theoretically and through phantom experiments 

that the resultant PSF is free of the ripple characteristic of standard Fourier encoding. The 

phantom experiments demonstrated the superior spatial localization of the technique at 
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prostate cancer-relevant metabolic peaks. The reduction of contamination from surrounding 

lipid signals was further demonstrated for MRSI at 3T.
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Highlights

• A MR Spectroscopic Imaging method to improve spatial localization was 

implemented.

• A true 2D Gaussian imaging point-spread-function was obtained without 

filtering.

• Spectral contamination from surrounding fat was minimized in a prostate 

phantom.

Zhang et al. Page 18

J Magn Reson. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Top: RF and gradient waveforms for a 2D RF Pulse. The inset shows a zoomed-in portion of 

the pulse showing detail of a RF hard-pulse train interleaved with short gradient pulses. The 

hard-pulse amplitudes follow a Gaussian weighting. Note that each hard pulse samples a 

unique location in excitation k-space. Bottom Left: A 2×2 sub-pulse train used in a 2D PSF-

Choice implementation. Amplitudes of the 4 RF pulses and the gradients, Phx and Phy, are 

set on each of the 8×8 encoding steps (shots). The PSF-Choice encoding scheme is designed 

so that each of the 256 excitation k-space locations (4×8×8) is sampled over the course of 64 

shots (with 4 locations per shot). The time scales for the RF diagrams are in arbitrary units 

included only to show the relative duration of the RF trains for the PSF-Choice RF pulse 

train compared to the full 2D pulse train. Bottom Right: Excitation k-space representation 

for the 2D RF pulse. The RF pulse train for PSF-Choice consists of a subset of 4 hard pulses 

(α11, α12, α21 and α22) sampling 4 excitation k-space locations on each of 64 shots (with 

shot number as indicated for the first 10 shots). The locations in excitation k-space sampled 

by the 4 pulses are represented by the red, blue, green and purple colored dots respectively. 

Amplitude settings for the pulses are represented by height of the mesh plot, giving an 

overall Gaussian weighting across the excitation k-space.
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Figure 2. 
The schematic at the top left shows the RF pulse train and gradients used in the current 

implementation of PSF-Choice. The bottom left shows locations in excitation k-space 

sampled by the α11, α12, α21 and α22 hard pulses over the course of all shots (encodes) as 

represented by black circles, white diamonds, white circles, and black diamonds 

respectively. The exact location excited by each hard pulse is governed by the setting of the 

phase-encoding gradients, Phx and Phy. The schematic at the top right shows a simple 2D 

phase-encoding sequence with the same phase-encoding gradients as used for PSF-Choice. 

The sampled k-space locations are shown at the bottom-right. Note that the 2D phase-

encoding k-space sampling increments, Δkx and Δky, are equal to the sampling increments in 

excitation k-space, Δrx and Δry, for the PSF-Choice implementation. The number of 

encoding steps is also the same for both sequences (= 8x8). However, the area of excitation 

k-space covered in the PSF-Choice encoding sequence is four times that of k-space covered 

with the standard phase-encoding sequence.
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Figure 3. 
The top of the figure illustrates various 2D PSF shapes, which are, from left to right: the 

Delta function, the sinc-shaped function corresponding to the PSF for conventional Fourier 

imaging, a smoothed Box-shaped function and, on the far right, a Gaussian function 

corresponding to the PSF characterizing the PSF-Choice implementation. Note that the 

width (Δx,Δy) of all the PSF’s shown is the same, except for the Delta function. The second 

row shows the corresponding 2D k-space representation for each of the corresponding point-

spread-functions. The bottom rows show simulations of point-source images where the point 

source is placed at various positions within the imaging pixel (voxel). For both the sinc-

shaped and the Gaussian-shaped PSF’s, there is significant signal intensity in more than one 

pixel, except for the case where there is no shift in the position of the point source (e.g. the 

case labeled as ‘No Shift’).
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Figure 4. 
The figure shows experimental results of point-spread-function mapping obtained using a 

spherical prostate spectroscopy phantom with a solution containing the prostate-relevant 

metabolites: Choline-plus-Creatine, and Citrate. The experimental point-spread-function 

mapping was performed for the MRSI sequences implemented using both Gaussian PSF-

Choice and standard Fourier encoding where (magnitude) results are shown in left and right 

columns respectively. Representative spectra for individual voxels with examples for both 

methods are shown below the point-spread-function results. The plot at the bottom of the 

figure shows the SNR computed within the spectral range of interest for both Fourier and 

PSF-Choice encoding.
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Figure 5. 
Results from phantom MRSI experiments with the prostate phantom and a surrounding 

compartment below containing vegetable oil. Results are for scanning with the PSF-Choice 

method (left side of the figure) and the standard Fourier-encoding method (right side). A 

PRESS box was prescribed with an upper portion within the spherical GE spectroscopy 

phantom and the lower portion inside the vegetable oil. The orange lines in the inlaid image 

demarcate the PRESS box selected for the experiment. The grid of green lines in the inlaid 

image shows the imaging FOV and the location of the individual voxels. The figure shows 

results for one section (slice) out of the three that were within the 3×5×3 cm PRESS box. 

Voxel size is 1×1×1 cm. The spectra acquired with PSF-Choice encoding demonstrate the 

relative lack of lipid contamination from neighboring voxels, versus the spectra in Fourier 

encoding scheme. A zoomed in portion is shown at the bottom of the figure. Solid orange-

colored arrows point to portions of the spectra that are contaminated by lipids from the 

Fourier-encoded result. Note that for both methods 8x8 data arrays of spectra were obtained 

with half-pixel shifting in both directions, giving four 8x8 arrays. These data were then 

interleaved to give the 16×16 arrays of spectra shown in the displays. For reference, a 

spectral plot at the full spectral width is shown for one PSF-Choice encoded voxel within the 

phantom.
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Figure 6. 
Demonstration of the excitation k-space sampling for a hypothetical three-pulse PSF-Choice 

encoding scheme. The sub-pulse sampling is evenly distributed in three orange sections 

(sections 1,2 and 3) and three blue sections (sections 4,5 and 6). Those corner locations 

remaining unsampled with this scheme are marked with white dots. The resulting hexagon 

mask applied on 16×16 Gaussian shaped matrix should produce minimal changes to the PSF 

compared to the current four-pulse implementation since only the corners of excitation k-

space are not covered in this scheme.
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