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Abstract
By means of a novel methodology that can statistically derive patterns of co-alterations distri-

bution from voxel-based morphological data, this study analyzes the patterns of brain

alterations of three important psychiatric spectra—that is, schizophrenia spectrum disorder

(SCZD), autistic spectrum disorder (ASD), and obsessive-compulsive spectrum disorder

(OCSD). Our analysis provides five important results. First, in SCZD, ASD, and OCSD brain

alterations do not distribute randomly but, rather, follow network-like patterns of co-

alteration. Second, the clusters of co-altered areas form a net of alterations that can be defined

as morphometric co-alteration network or co-atrophy network (in the case of gray matter

decreases). Third, within this network certain cerebral areas can be identified as pathoconnec-

tivity hubs, the alteration of which is supposed to enhance the development of neuronal

abnormalities. Fourth, within the morphometric co-atrophy network of SCZD, ASD, and OCSD,

a subnetwork composed of eleven highly connected nodes can be distinguished. This subnet-

work encompasses the anterior insulae, inferior frontal areas, left superior temporal areas, left

parahippocampal regions, left thalamus and right precentral gyri. Fifth, the co-altered areas

also exhibit a normal structural covariance pattern which overlaps, for some of these areas (like

the insulae), the co-alteration pattern. These findings reveal that, similarly to neurodegenera-

tive diseases, psychiatric disorders are characterized by anatomical alterations that distribute

according to connectivity constraints so as to form identifiable morphometric co-atrophy

patterns.
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1 | INTRODUCTION

The anatomical co-alteration networking analysis is an intriguing and

promising new field of connectomics, which can be defined as the study

of the network patterns according to which structural alterations distrib-

ute across the brain (Yates, 2012). In other words, the networking analysis

of brain disorders aims to give a description of networks formed by co-

altered (or co-atrophic, in the case of grey matter (GM) decreases) cere-

bral regions. Recent studies in this field show that brain alterations are

rarely confined to a single cerebral area, but rather tend to distribute to

many different sites. Often brain areas in which alterations co-occur also

exhibit patterns of anatomical covariance (Evans, 2013). Furthermore,

converging evidence suggests that pathological alterations caused by

brain disorders are likely to follow patterns of distribution that strongly

have a network-like architecture, which depends on the organization of

both the structural and functional connectivity (Cauda, et al., 2017;

Cauda, et al., 2012b; Crossley, et al., 2016; Crossley, et al., 2014; Fornito,

Zalesky, & Breakspear, 2015; Menon, 2013; Raj, Kuceyeski, & Weiner,

2012; Saxena & Caroni, 2011; Seeley, Crawford, Zhou, Miller, & Greicius,

2009; Yates, 2012; Zhou, Gennatas, Kramer, Miller, & Seeley, 2012).
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This new field of research is destined to provide invaluable insight

in the understanding and diagnosis of brain disorders. Thus far the

diagnosis of neuropsychiatric conditions relies entirely on the observa-

tion of constellations of behavioral signs and symptoms. However,

these diagnostic procedures do not seem to have clear relations to the

underlying biological processes that should be the targets of medical

treatments (Poldrack & Farah, 2015). What is more, this approach can

result in heterogeneity within diagnostic categories and in poor inter-

rater reliability for many clinical evaluations, which in turn produces a

negative impact on clinical outcomes (Freedman, et al., 2013).

Even the fifth recent version of the DSM still lacks a rigorous neuro-

biological basis. This is why the US National Institute of Mental Health

Research Domain Criteria (RDoC, http://www.nimh.nih.gov/research-pri-

orities/rdoc/index.shtml; Insel, 2010, 2014) has suggested to construct a

map of relationships between symptoms’ manifestations and wide biolog-

ical realms, so as to improve both the homogeneity and reliability of brain

disorders’ classification. The aim of RDoC is to go beyond the old impre-

cise pathological categories and give the clinicians more reliable diagnos-

tic tools. Recent studies that are consistent with this line of thought have

already tried to identify important biomarkers capable of defining classes

of patients independently of their symptomatic manifestations (Clementz,

et al., 2016; Marquand, Rezek, Buitelaar, & Beckmann, 2016).

The case of schizophrenia (SCZD), autistic (ASD) and obsessive-

compulsive (OCSD) spectrum disorders is paradigmatic of the current

neuroscientific climate as well as of the difficulties in clinical diagnosis

(Luciano, Keller, Politi, Aguglia, & Magnano, 2014). For instance, some

authors tend to recognize a clear clinical connection between SCZD

and ASD (Bolte, Rudolf, & Poustka, 2002; Hommer & Swedo, 2015;

Nylander, Lugnegård, & Unenge Hallerbäck, 2008; Ornitz, 1969; Rapo-

port, Chavez, Greenstein, Addington, & Gogtay, 2009; Sporn, et al.,

2004; Starling & Dossetor, 2009; Stone & Iguchi, 2011). This idea may

be supported by recent epidemiologic, genetic, molecular, and brain

imaging evidence suggesting an underlying shared neurobiological sub-

strate for ASD and SCZD (Arnone, et al., 2009; Biamino, et al., 2016;

Cheung, et al., 2010; de Lacy & King, 2013; King & Lord, 2011; Stone

& Iguchi, 2011). In turn, it has been hypothesized that a common neu-

robiological mechanism might be at the basis of the repetitive behavior

in both ASD and OCSD (Langen, Durston, Kas, van Engeland, & Staal,

2011a; Langen, Kas, Staal, van Engeland, & Durston, 2011b). Also it has

been proposed that OCSD and SCZD might share similar pathogenetic

underpinnings (Owashi, Ota, Otsubo, Susa, & Kamijima, 2010). Of note,

other brain structural (Goodkind, et al., 2015) and genetic studies (The

Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013;

The Network & Pathway Analysis Subgroup of the Psychiatric

Genomics Consortium, 2015) provide further evidence for transdiag-

nostic overlaps between psychiatric conditions. These findings suggest

significant comorbidities between syndromes as well as relevant over-

lap of their symptomatology (Buckley, Miller, Lehrer, & Castle, 2009;

DeVylder, Burnette, & Yang, 2014; Gorun, et al., 2015; Kessler, et al.,

1994; Markon, 2010; Vaidyanathan, Patrick, & Iacono, 2012).

Therefore, the need to understand brain disorders in terms of neu-

robiological features is ever more compelling (Wang & Krystal, 2014). In

particular, with regard to mental illness it has been proposed that

metabolic and microstructural modifications in certain sets of brain

regions might be associated with many different conditions (Buckholtz &

Meyer-Lindenberg, 2012; Crossley, et al., 2016; Crossley, Scott, Ellison-

Wright, & Mechelli, 2015; Goodkind, et al., 2015; McTeague, Goodkind,

& Etkin, 2016). These abnormalities develop as morphological alterations

of gray matter (GM) or white matter (WM) density, which appear as

increased or decreased values in voxel-based morphometry (VBM) inves-

tigations or as dysfunctional patterns in brain activity (Baker, et al., 2014;

Ellison-Wright & Bullmore, 2010; Etkin & Wager, 2007; Goodkind, et al.,

2015; Hamilton, et al., 2012). These studies challenge the intuitive view

that each and every brain disorder should exhibit a specific pattern of

brain alterations as well as a specific constellation of clinical symptoms

(Buckholtz & Meyer-Lindenberg, 2012; Caspi, et al., 2014; Goodkind,

et al., 2015; McTeague, et al., 2016).

In line with these data a recent study by our research group dem-

onstrated that SCZD, OCSD and ASD do not show distinctive patterns

of GM alterations; rather, these three spectra showed a common pat-

tern, which can be divided into two clusters of alterations extending

across the insulae, medial thalamic and the cingulate cortices (Cauda,

et al., 2017). This finding was also recently supported by a study on

functional alterations (Sprooten, et al., 2017), which has showed that

very few functional differences can be statistically observed in a variety

of psychiatric conditions (i.e., schizophrenia, bipolar disorder, major

depressive disorder, anxiety disorders, and obsessive compulsive disor-

der). Of note, this specific pattern of alterations common to SCZD,

OCSD, and ASD is probably not only shared by these three spectra,

but also by other psychiatric disorders (Buckholtz & Meyer-Lindenberg,

2012; Caspi, et al., 2014; Crossley, et al., 2014; McTeague, et al.,

2016). In fact, it encompasses a set of “core areas” that exhibit higher

functional diversity (Andersson, Kinnison, & Pessoa, 2013; or entropy)

and have been found to be active in a number of important cognitive

functions during fMRI studies (Cauda, et al., 2012b). These core areas

are thought to be part of the salience network (Palaniyappan & Liddle,

2012), which is in turn part of the cognitive control network (Cole &

Schneider, 2007; Niendam, et al., 2012), and are characterized by abun-

dant populations of Von Economo neurons (VEN; Cauda, Geminiani, &

Vercelli, 2014b; Cauda, et al., 2013). VEN are large, spindle-shaped pro-

jection neurons present in layer V of the frontoinsular and cingulate

cortex, supposed to be involved in the pathogenesis of specific neuro-

logical and psychiatric diseases (Cauda, et al., 2014b).

In light of these findings, we devised an innovative meta-analytic

method for performing an anatomical co-alteration networking analysis of

brain disorders. In fact, although this meta-analysis focuses on SCZD, ASD,

and OCSD, our methodology can be generally applied for studying every

disease capable of producing appreciable neuropathological alterations.

In particular, the present study aimed to investigate and address

the following issues:

1. Do neuronal alterations distribute coherently across the brain

areas structurally affected by SCZD, ASD, and OCSD in a network

like manner?

2. In case of a positive answer, can the anatomical co-alteration net-

work of SCZD, ASD, and OCSD be identified?
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3. Within this co-alteration network are there brain areas the altera-

tion of which could lead to a faster and more diffuse distribution

of neuronal abnormalities?

4. Can distinct clusters and/or subclusters of co-altered brain areas

be identified within the co-alteration patterns of neuroanatomical

alterations produced by SCZD, ASD, and OCSD?

5. Finally, can co-altered brain areas exhibit a normal pattern of ana-

tomical covariance? If so, how similar is this pattern to the co-

alteration pattern of the same areas?

2 | MATERIALS AND METHODS

2.1 | Selection of studies

We identified the pool of all eligible experiments in the BrainMap data-

base (www.brainmap.org; Fox & Lancaster, 2002; Laird, et al., 2009;

Laird, et al., 2005) which reported GM/WM changes within the brain

parenchyma. At the time of the selection phase, the BrainMap database

was made up by coordinates and associated meta-data of 3,076 publi-

cations and 15,243 neuroimaging experiments. For the present meta-

analysis, only the brain studies reporting GM and WM changes in

standard stereotaxic space were retrieved. As the first step, we identi-

fied (separately for each spectrum) all experiments that featured at

least one focus of GM or WM change. WM data were not analyzed in

this study but, for the sake of completeness, we reported them in the

tables.

Criteria for including studies in an anatomical likelihood estimation

(ALE) meta-analysis may be influenced by knowledge of the results of

the set of potential studies, leading to inclusion bias. To avoid bias in

location and selection of studies, the following additional measures

were taken: (a) assessment of the bibliographies of each study in Brain-

Map so as to identify additional studies that might have not been

included in the database and (b) search on PubMed of the literature

whose temporal boundaries are not included in the BrainMap database

(https://www.ncbi.nlm.nih.gov/pubmed). With regard to this last step,

a systematic search strategy was used to identify relevant studies, pub-

lished until 15 July 2016, involving SCZD, ASD, and OCSD. The search

algorithm have been constructed so as to match for: “autism spectrum

disorder” (ASD); “obsessive-compulsive disorder” (OCD); “schizophre-

nia”; “schizoaffective disorder”; diffusion tensor imaging (DTI); and

VBM, respectively (for more details on literature search and algorithms,

see the online Supporting Information).

Up until 15 July 2016, 1419 papers had been indexed on PubMed

with the selected search terms. In particular, all the articles were

reviewed in order to ensure: (1) both the presence of the healthy con-

trol group and the pathological sample; (2) that the results were

reported by using the Talairach/Tournoux or Montreal Neurological

Institute (MNI) coordinates; (3) that the foci of interest had a signifi-

cance of at least <.05; (4) that the studies described cerebral structural

changes visible with VBM or DTI (only FA technique); (5) that the stud-

ies were original works; and (6) that original diagnosis was made on the

basis of DSM criteria and clinical test batteries.

We adopted the definition of meta-analysis accepted by the

Cochrane Collaboration (Green, et al., 2008) and the “PRISMA State-

ment” international guidelines in order to ensure a transparent and

complete report of data selection (Liberati, et al., 2009; Moher, Liberati,

Tetzlaff, & Altman, 2009).

Studies from BrainMap database and those from PubMed were

compared looking for cases of multiple references to the same

datasets across articles so as to make sure that only one reference

to the same data contributed to the coordinates for the present

meta-analysis (see Table 1 and Supporting Information, Graph S1).

Then, the studies were examined to detect dissimilarities or discrep-

ancies. The researchers who carried out this research stage have

reached substantial agreement as regards inclusion and exclusion of

studies (Cohen’s K5 .7409).

Meta-data were extracted from each selected article. For all

articles that possessed the information, we evaluated the diagnostic

clusters of each psychiatric spectrum, classifying them on the basis of

what was indicated in the section “Subjects and Methods” by the

authors of the selected articles. In case the authors did not specified

the clinical type described in their study, the “mixed” label was used

(Cauda, et al., 2017). The description of the sample composition and

the distribution of the three psychiatric spectra are viewable on the

online Supplementary Materials. In order to facilitate analysis, coordi-

nates from MNI space were converted into Talairach coordinates by

using Lancaster transformation (Lancaster, et al., 2007).

Given that many experiments do not report GM increased values,

we decided to focus our meta-analysis prevalently on GM decreased

values, performing analysis on 1171 foci of interest (see Table 2). To

have also information about GM increases, their number of foci (which

was not sufficiently large to be statistically analyzed) and the number

of foci associated with GM decreases were summed and analyzed. We

then compared the results of this analysis to those of the analysis per-

formed only on GM decreases data. Since most of our networking anal-

yses principally concern GM decreases data, henceforth we will refer

to the co-alteration network as co-atrophy network. In fact GM

decreased VBM values indicate a volume reduction of neurons, which

can be interpreted as brain atrophy (Table 1).

2.2 | Anatomical likelihood estimation and modeled

activation creation map

We performed an ALE (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012;

Eickhoff, et al., 2009; Turkeltaub, et al., 2012) to statistically show

the commonalities between the selected experiments on patients with

SCZD, ASD, and OCSD. The ALE is a quantitative voxel-based

meta-analysis technique, which provides information about the

anatomical reliability of results by comparing them with a sample

of reference studies obtained from the existing literature. Each

focus of every study is considered as the central point of a

three-dimensional Gaussian probability distribution:

pðdÞ5 1

r3

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3

q e2
d2

2r2
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where d is the Euclidean distance between the voxels and the

considered focus, and e is the spatial uncertainty. The standard

deviation is easily obtained through the Full-Width Half-Maximum

(FWHM) as:

r5
FWHMffiffiffiffiffiffiffiffiffiffiffi
8ln 2

p

For each experiment, we determined a modeled activation (MA)

map, resulting from the union of the Gaussian probability distribution

of every focus of each experiment. Then we determined the ALE map,

derived from the union of the MA maps.

Statistical significance of the activation within the ALE map was

calculated by cluster-level inference, as suggested by Eickhoff et al.

(2012, 2017, 2016). Given a particular cluster forming threshold, a null

distribution of cluster sizes was obtained by simulating a long series of

experiments using the same characteristic of the real data and then by

calculating an ALE map. The obtained score histogram was eventually

used to assign a threshold p values.

TABLE 1 Synopsis of the selection procedure with number of articles identified at each stage

BrainMap PubMed Screening Eligibility ASD OCSD SCZD

Articles Articles Abstract
exclusions

Full-text
exclusions

Selected
studies

Selected
studies

Selected
studies

242 1419 44 49 110

+ + Sample (N) Sample (N) Sample (N)

Additional
records

Additional
records

1719 1738 5236

0 15

Eligibility for
full-text lecture

Selected
studies 203

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

+

242 records 1434 records Data
extraction

TABLE 2 White matter and gray matter variations with relative numbers of foci for each of the selected psychiatric spectra. The items shown
in the table are the result of the entire selection process as shown in PRISMA (2009) flow chart on the Supporting Information

SPECTRUM Diagnostic Label

Foci

(N)

White matter
changes

Gray matter
Changes

* + * +

ASD (N 5 1,719) Mixed form 312 27 66 125 94

Primary autism 186 7 57 93 29
Asperger 54 11 14 2 27
High-functionality autism 53 5 20 16 12
Pervasive developmental
disorder

16 0 11 0 5

OCSD (N 5 1,738) Obsessive-compulsive disorder 364 25 77 67 195

Tourette syndrome 70 13 33 5 19
Trichotillomania 4 0 4 0 0

SCZD (N 5 5,236) Schizophrenia simplex 190 0 4 4 182

Paranoia 20 0 17 1 2
Auditory hallucination 34 7 0 0 27
First episode psychosis 92 3 45 4 40
Mixed form 633 18 160 22 433
First episode schizophrenia 65 5 19 0 41
Acute psychosis with
no hallucination

21 0 21 0 0

Early onset symptoms
of psychosis

52 0 8 0 44

Hallucination 21 0 16 0 5
Paranoia with schizophrenia
symptoms

26 0 9 1 16

Foci (Total) 121 581 340 1,171
702 1,511
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2.3 | Construction of the morphometric co-atrophy
network

In order to identify the distribution of brain alterations we developed an

innovative methodology capable of constructing the anatomical co-

alteration networks of brain disorders. Our analysis can find out

whether or not the structural alteration of brain area A is statistically

concatenated with the alteration of one or more other brain areas (B, C,

etc.). The analysis therefore results in the construction of a morphomet-

ric co-atrophy network (MCN) formed by the brain areas that occur to

be altered together, in which it is possible to examine (i) how an altered

brain area is statistically connected to other altered areas and (ii) which

areas appear to be parts of a more extended web of alterations.

2.4 | Node creation

We created a set of nodes, localized in the points of the ALE map,

derived from the union of the MA maps as described in the previous

section, where the probability of alteration was higher (peaks of ALE

values). In particular, we used a peak detection algorithm to determine

the set of local maxima of the ALE values. We selected the voxels

showing an ALE peak value greater than a given threshold. To avoid an

excessive number of regions of interest (ROIs) a threshold was set at

the 75 percentile of the peak values distribution. We then calculated

the distance between peaks, thus obtaining a distance matrix for each

peak. This was done to avoid ROIs superimposition. Indeed we

excluded all peaks within a distance of 10 mm from other peaks. We

obtained then a definitive set of peaks. Finally, around every peak we

designed a ROI of 10 mm2.

The rationales behind these methodological choices are the follow-

ing. (i) The dimension of the nodes is based on the work of Eickhoff,

et al. (2009) that empirically analyzed meta-analytical imaging data pro-

viding quantitative estimates to explicitly model the spatial uncertainty

associated with the reported coordinate. Since this analysis evidenced

an uncertainty in spatial location with a mean of 10.2 mm with an SD

of .4 mm, we chose a radius of 10 mm for our nodes. (ii) We chose the

75 percentile because if the signal is noisy there is the possibility to

detect false peaks considering the Chebyshev’s inequality (Kotz, Balak-

rishnan, & Johnson, 2000), which shows that, independently of the

type or form of the probability distribution, the proportion of the

observation falling within k standard deviations of the population mean

is at least 12 1
k2, which, with k52, correspond to the 75 percentile. (iii)

Although several Authors pointed out that the lack of a gold standard

makes the definition of nodes arbitrary, as shown by Zalesky and col-

leagues (2010) it is possible to make any comparison between net-

works, if the node parcellation was made at the same spatial scale. This

is why we paid particular attention to perform all the analyses at a

comparable spatial scale. For a schema depicting the node detection

pipeline see Figure 1.

2.5 | Co-atrophy distribution and connectivity

To study the co-atrophy pattern, we created a co-alteration matrix

using the previously defined set of nodes. In a N 3 M matrix each row

represents an experiment, while each column represents a network

node; in our particular case the matrix is 127 (experiments) 3 33

(nodes). For each experiment we reported a node (ROI) as being altered

if the experiment MA map reported 20% or more of the voxels within

the ROI.

From this matrix we obtained the strength of the co-alteration

between the nodes by using the Patel’s k index (Patel, Bowman, &

FIGURE 1 Schema depicting the pipeline utilized for the ROI (nodes) detection [Color figure can be viewed at wileyonlinelibrary.com]
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Rilling, 2006). In fact, starting from a Bernoulli generation model of

data it is possible to construct a probability distribution of joint altera-

tion values for each pair of nodes. Given two nodes (a and b), we can

describe their conjoint state of alteration through two binary variables

representing four cases: (i) a and b both altered; (ii) a and b both unal-

tered; (iii) a altered and b unaltered; and (iv) a unaltered and b altered

(Table 3). Therefore, frequencies of the different combinations

through all experiments give the following four probabilities:

u15P a51; b51ð Þ
u25P a51; b50ð Þ
u35P a50; b51ð Þ
u45P a50; b50ð Þ

which represent the conjoint state frequencies of two nodes (a and b)

in all their four possible combinations. Marginal probabilities are illus-

trated by the following table:

Considering these four probabilities, we can apply the two indices

proposed by Patel et al. (2006) for the calculus of connectivity and

directionality, called k and s, respectively. These indices have been vali-

dated by Smith et al. (2011) with simulated data. With regard to Patel’s

s, however, a recent study has criticized its efficacy (Wang, David, Hu,

& Deshpande, 2017). For the sake of caution, we decided therefore to

limit our analysis to the connectivity aspect by solely using Patel’s k

index, even though it is worth noting that the criticism by Wang et al.

is typically directed to problems (i.e., deconvolution of the hemody-

namic response, temporal resolution) related to the application of

empirical Bayesian techniques to fMRI data rather than to anatomical

morphometric data, which are to be considered in the present study.

With regard to Patel’s k, this index measures the probability that

two nodes (say, a and b) appear to be co-altered compared to the prob-

ability that a and b are independently altered. This index is defined as

follows:

j5 #12Eð Þ= D max #1ð Þ2Eð Þ1 12Dð Þ E2min #1ð Þð Þð Þ

where

E5 #11#2ð Þ #11#3ð Þ
max #1ð Þ5min #11#2; #11#3ð Þ

min #1ð Þ5max 0;2#11#21#321ð Þ

In the fraction the numerator represents the difference between the

probability that a and b are co-altered and the expected probability that a

and b are independently altered, whereas the denominator represents a

weighted normalizing constant. Min #1ð Þ indicates the maximum value of

conjoint probability P a; bð Þ, given P að Þ and P bð Þ, while max #1ð Þ indicates
the minimum value of P a; bð Þ, given P að Þ and P bð Þ. Patel’s k index ranges

from 21 and 1. A value of |k| close to 1 is evidence of high connectivity.

The statistical significance of k is evaluated by simulating, through a

Monte Carlo algorithm, a multinomial, generative model of data, which

can take into account alterations of all nodes. In particular, the Monte

Carlo statistical procedure consists in obtaining an estimate of p kjzð Þ by
sampling a Dirichlet distribution and determining the samples’ proportion

in which k > e, where e is the threshold of statistical significance.

2.6 | Topological analysis

Some network-based analysis techniques were employed to analyze

the neural web of co-atrophy area. The network submitted to these

analysis was a connectivity matrix between the previously selected set

of nodes. In this matrix the edges between the nodes are constituted

by the values of the thresholded Patel’s k described in the previous

section. The analysis of complex networks is a powerful technique

for quantifying both brain structure and functional architecture. A

network is defined as a system of nodes connected by a series of

links. In our case the link is the strength of the co-alteration between

nodes.

2.7 | Node degree

The node degree is the number of connections linking a node with

other nodes. We used the degree distribution to compare the node

degree of different networks. By using the degree distribution we com-

pared a randomly generated network with those exhibited by the three

psychiatric spectra. The degree distribution is the fraction of nodes

with degree k, which is defined as:

PðkÞ5 nk
n

2.8 | Edge betweenness

The edge betweenness consists in the number of the shortest paths

going through an edge within a graph or a network (Girvan & Newman,

2002). Edges with high values of betweenness are involved in a large

number of shortest paths, so that their removal may affect communica-

tion between many pairs of nodes.

2.9 | Network clustering

We employed the k-core decomposition algorithm (Alvarez-Hamelin,

Dall’asta, Barrat, & Vespignani, 2005; Bader & Hogue, 2003) to disen-

tangle the hierarchical structures of our concordance network by pro-

gressively focusing on their central cores. A k-core of a graph G is the

highest connected subgraph of G, in which all the vertices (at least)

present a degree of k. In fact, the k-core decomposition of a network

recursively removes all the vertices having a degree less than k, until in

the graph all vertices with degree k or more remain. This procedure

allowed us to consider our concordance network graph as the central

most densely cluster or connected subgraph.

TABLE 3 Marginal probabilities between altered and unaltered
nodes

Voxel a

Altered Unaltered

Voxel b Altered u1 u3 u11u3

Unaltered u2 u4 u21u4

u11u2 u31u4 1
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2.10 | Anatomical dataset (normative population)

2.10.1 | Subjects and image acquisition

For the anatomical covariance we employed the Beijing dataset which

has been publicly released within the “1000 Functional Connectomes”

Project. This dataset consists of 198 subjects (76 males and 122

female) with age ranging from 18 to 26 years, mean 21.16, SD 1.83,

that underwent structural and resting-state scans. All subjects were

right-handed and had no history of neurological or psychiatric disor-

ders. Written informed consent was obtained from each participant,

and the study was approved by the Institutional Review Board of Bei-

jing Normal University Imaging Center for Brain Research.

MRI data were acquired using a SIEMENS TRIO 3-Tesla scanner in

the Beijing Normal University Imaging Center for Brain Research. Par-

ticipants lay supine with the head fixed by straps and foam pads so as

to minimize movements. During the resting-state session, participants

were instructed to be as still as possible and let their mind roam. Func-

tional images were obtained using an EPI sequence with the following

parameters: 33 axial slices, thickness/gap53/.6 mm, in-plane

resolution564 3 64, TR52,000 ms, TE530 ms, flip angle5908,

FOV5200 3 200 mm. Furthermore, a T1-weighted sagittal three-

dimensional magnetization-prepared rapid gradient echo (MPRAGE)

sequence was acquired, which covered the entire brain: 128 slices,

TR52,530 ms, TE53.39 ms, slice thickness51.33 mm, flip angle5

78, inversion time51,100 ms, FOV5256 3 256 mm, and in-plane

resolution5256 3 192.

2.10.2 | Structural covariance analysis on normative

population

The structural covariance analysis was conducted on the anatomical

dataset of normative population previously described with an opti-

mized protocol using the FSL Tools (Douaud, et al., 2007; Good, et al.,

2001; Smith, et al., 2004). First, structural images were brain-extracted

and GM-segmented before being registered to the MNI 152 standard

space using non-linear registration (Andersson, Jenkinson, & Smith,

2007). The obtained images were averaged and flipped along the x-axis

to create a left-right symmetric, study-specific GM template. Second,

all native GM images were non-linearly registered to this study-specific

template and “modulated” to correct for local expansion (or contrac-

tion) due to the non-linear component of the spatial transformation

(Good, et al., 2001). The modulated GM images were then smoothed

with an isotropic Gaussian kernel with a sigma of 3 mm (Andersson,

et al., 2007; Douaud, et al., 2007; Good, et al., 2001; Smith, et al.,

2004). The GM images were also merged to obtain a 4D image: the

usual x, y, and z coordinates of the brain standard space (MNI coordi-

nates) and along the 4th dimension of the various subjects. For the

node coordinates obtained from the ALE analysis we extracted a set of

time series to form a matrix of dimension subjects 3 nodes. To do so,

for each ROI we averaged the time courses of all voxel belonging to

this ROI. From this matrix we calculated the correlation between

the columns, thus obtaining a correlation matrix of dimension

nodes 3 nodes. The correlation matrix was compared with the co-

alteration matrix using a BRAMILA tool to perform a Mantel test

(Glerean, et al., 2016; Mantel, 1967). This procedure is a type of ran-

domization in which the columns of the matrices are permutated and

the correlation between the distances is consequently calculated

(5,000 times).

2.11 | Reliability

To better understand the contribution of each spectrum to the MCN

we tried to determine the co-alteration patterns associated with each

spectrum. However, the number of experiments of two spectra (ASD

and OCSD) was not sufficient for a valid statistical analysis; indeed the

statistics on ASD or OCSD data only did not produce any significant

results. We therefore decided to conduct four different analyses. (1)

One spectrum was left out in alternation to study how its removal

could change the MCN. (2) We statistically compared (correlation) the

Patel’s k values of each edge between the three spectra. (3) We created

a Euclidean distance matrix between the MA maps obtained from all

the three spectra and performed a k-mean clustering of the same maps

to visualize the different contributions of experiments to the MCN (see

Supporting Information for methodological details). (4) To further inves-

tigate the possibility that the greater amount of SCZD data could

somehow drive our results, we constructed the MCN with an equal

number of experiments for each spectrum. We did not adopt this pro-

cedure in the main analysis because we wanted to use as much data as

possible for statistical needs. Inevitably, a single sampling, with the

inclusion of some SCZD data and the exclusion of others, would have

produced biased and less representative results. To avoid this issue we

used a bootstrap technique by randomly selecting a number of SCZD

experiments (from 25 to 30 studies; this interval corresponds to the

sample range of ASD and OCSD) that was equal to the average of the

number of experiments about ASD and OCSD. We then constructed

the co-alteration matrix for this whole new dataset (for more details

see Section 2). This type of analysis was repeated with 1,000 permuta-

tions (each time by selecting a different sample from SCZD data), so as

to assess the stability of the results (SE). We subsequently evaluated

with the Dice coefficient (DC) the overlapping value between the aver-

aged MCN obtained with this new analysis and the MCN obtained

with the whole original dataset. By comparing two samples (in our case

the co-alteration matrices), the DC can measure their similarity, as

follows:

DC5
2jX \ Yj
jXj1jYj

where jXj and jYj are the number of elements of the two samples,

respectively.

3 | RESULTS

3.1 | Common patterns of anatomical alterations

We performed an ALE that pooled the outcomes of all the experiments

taken into consideration in this meta-analysis. This statistic analysis

revealed significant GM density decreased values mainly in the dorsal

lateral prefrontal cortex, insulae, medial thalami, ventromedial

1904 | CAUDA ET AL.



prefrontal, orbitofrontal, precentral, and cingulate areas. In contrast,

GM density increased values were found mainly in frontal poles, poste-

rior lateral thalami, caudate nuclei, putamen, posterior parietal, cerebel-

lar and inferior temporal cortices (Figure 2).

3.2 | Co-atrophy network

Our meta-analysis prevalently focuses on GM decreased values, as

many experiments do not report GM increased values.

The left panel of Figure 3 and Table 4 show the regions of interest

forming the MCN, while the right panel of Figure 3 illustrates the dis-

tance matrix showing the k values between nodes. In turn, Figure 4

illustrates the MCN: edges colored from blue to red indicate increasing

k values.

The node creation reported 33 nodes placed in prefrontal, insular,

cingulate, hippocampal, lateral and medial parietal, temporal and

thalamic brain areas. Eight nodes out of 33 were found to be uncon-

nected (i.e., they do not exhibit any significant edge of co-atrophy).

The co-atrophy network, as evidenced in Table 5 and Figure 4, shows

70 edges, among which the 20 ones with the highest Patel’s k values (i.e.,

the couples of most strongly co-altered nodes) are shown in Figure 6.

Most of them involves insulo-frontal, insulo-insular, insulo-hippocampal

and frontoparietal co-altered nodes. Patel’s k values range from .92 of the

insular and fronto-orbital edges to .37 of the insulo-supplementary motor

areas’ edges (see the k value graph of S4 in Supporting Information).

Figure 5 shows a representation of the MCN in which the nodes

are characterized by sizes and colors proportionally to their degree val-

ues. In other words, according to their low or high degree values, nodes

are proportionally represented in small or big sizes and in green or red

colors. Among the nodes the insular cortices and inferior frontal areas

show the highest degree values, followed by the superior temporal,

thalamic, parahippocampal, precentral hippocampal and cingulate

FIGURE 3 The left panels shows the nodes that entered the co-atrophy calculation. The right panel shows the co-atrophy matrix. Colors
from blue to red indicates increasing Patel’s k values (i.e., increasing co-alteration probabilities [Color figure can be viewed at wileyonlineli-
brary.com]

FIGURE 2 Gray matter anatomical likelihood estimation (ALE) results. The image summarizes the results of all the experiments considered
in this meta-analysis. Colors from red to yellow show gray matter increases, colors from blue to green show gray matter decreases (ALE
maps were computed at a threshold of p < .001, cluster-level corrected for multiple comparison (Eickhoff et al., 2016) and visualized using
BrainVoyager QX. Only decreases have been utilized for the subsequent analysis [Color figure can be viewed at wileyonlinelibrary.com]
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regions. Node degree values range from 1 to 8, while node between-

ness values range from 0 to .15. Co-alterations between nodes exhibit

a network-like pattern because the connectivity matrix is obtained

using the Patel’s k, which is calculated by means of a Monte Carlo sim-

ulation based on the conjoint probability distribution of altered and

unaltered nodes. Indeed in this procedure, the null hypothesis is that

no network-like architecture is present, which is to say that all

connections are casual or random. Figure 6 shows the 20 edges with

the highest Patel’s k values (i.e., the couples of most strongly co-altered

nodes).

As the MCN is rather large, we investigated the possibility of

identifying within it the central most densely connected subnet-

works. The analysis conducted with the k-core decomposition algo-

rithm reported a subnetwork (shown in Figure 7) composed of

eleven nodes located in the insulae, inferior frontal gyrus (IFG),

superior temporal gyrus (STG), thalamus and right precentral gyrus.

Similarly to Figure 5, Figure 7 right panel shows the node degree

and the edge betweenness. Node degree values range from 1 to 8,

while node betweenness values range from 2.5 to 4.5. Low or high

degree values of nodes are proportionally represented in small or big

sizes and in green or red colors. In addition, edges with low or high

betweenness are represented in green or red colors and proportion-

ally vary in thickness. Although the nodes exhibiting the highest

degree are the insular and inferior frontal areas, the connections

showing the highest values of edge betweenness link the insular and

precentral/thalamic regions (Figure 7, right panel).

Since several ROIs fall within the insular cortices (Figure 8, upper

panel), in order to inspect the pattern of connectivity of these nodes

we calculated for each of them the resting state functional connectivity

(see Supporting Information for a brief description of the connectivity

methods). We found that the five different insular nodes express three

different patterns of connectivity (Figure 8, middle panel): one sensori-

motor (Insula_R2), three ventral attentional (Insula_R, Insula_R1, Insu-

la_L1), and one showing part of the default mode network (DMN)

(Insula_L). The attentional nodes are all placed in the anterior insulae

and the sensorimotor one in the right posterior insula. The DMN one is

also the most ventral among the five. The two nodes characterized by

a ventral attentional connectivity pattern are located in the most ante-

rior dorsal regions. The lower panel of Figure 8 shows the network

composed by the first connected nodes of these three different pat-

terns (Insula_R2; Insula_R, Insula_R1, Insula_L1; Insula_L). All the three

patterns show interconnections between insular ROIs; aside from these

insular connections, Insula_R2 is connected with superior frontal gyrus

and the supplementary motor area.

3.3 | Structural covariance analysis

The structural co-atrophy/co-alteration data can be considered a form

of pathological anatomical structural covariance. To better compare the

normal structural covariance and the pathological alteration of the

nodes that, within the MCN, appear to be the most frequently charac-

terized by GM reduction, we calculated the former in a normative pop-

ulation constituted by a set of healthy subjects. Figure 9 (upper panels)

shows the results of this analysis. The investigated nodes exhibit a rich

pattern of anatomical covariance that is fairly correlated with the co-

atrophy pattern (r5 .2059). This value is statistically significant

(p < .0076). The anatomical covariance edges have r values ranging

from .67 to .31 (Table 6). The 20 edges with the highest covariance val-

ues are shown in Figure 10 and mostly exhibit fronto-parietal, insulo-

frontal, insulo-parietal and temporo-frontal correlations. The nodes

TABLE 4 Nodes employed for the co-atrophy analysis

Tal Coord

Node Name X Y Z

Cingulum_Ant_R 6 20 28

Cingulum_Mid_L 28 216 44

Frontal_Inf_Oper_L 250 10 16

Frontal_Inf_Oper_R 42 10 8

Frontal_Inf_Orb_L 238 24 24

Frontal_Inf_Tri_R 50 16 20

Frontal_Mid_L 236 42 20

Frontal_Mid_Orb_L 232 54 24

Frontal_Mid_R 42 38 14

Frontal_Sup_Medial_L 22 56 18

Frontal_Sup_Medial_L_1 22 28 40

Hippocampus_L 218 210 216

Insula_L 238 16 210

Insula_L_1 242 14 0

Insula_R 42 8 22

Insula_R_1 42 18 0

Insula_R_2 34 24 10

Lingual_L 232 288 216

Lingual_L_1 212 244 24

ParaHippocampal_L 222 2 226

ParaHippocampal_R 22 218 212

Parietal_Inf_L 246 256 44

Parietal_Inf_L_1 234 242 44

Precentral_R 46 4 32

Precuneus_R 18 258 14

Precuneus_R_1 18 266 26

Precuneus_R_2 8 264 54

Supp_Motor_Area_L 0 4 46

SupraMarginal_L 260 252 28

Temporal_Mid_L 246 264 4

Temporal_Sup_L 252 210 4

Temporal_Sup_L_1 250 220 12

Thalamus_L 22 220 4

1906 | CAUDA ET AL.



with the highest degree are localized in medial and inferior frontal cor-

tices, right insula, right precuneus and left supramarginal cortices (Fig-

ure 11, left panel).

Areas showing both anatomical covariance and co-atrophy (AND

logic between anatomical covariance and co-atrophy values; see Figure

9 lower panels, Figure 11 right panel for comparison between edges)

mainly exhibit insulo-insular, interemispheric, fronto-insular, cingulo-

insular and insulo-temporal connections, all of which are present both

in the anatomical covariance and in the pathological co-atrophy analy-

ses. Among the nodes showing both anatomical covariance and patho-

logical co-atrophy, the ones with the highest degree are those placed

in orbitofrontal, opercular and insular regions (Figure 11, right panel).

Edges showing the highest edge betweenness values are those linking

fronto-insular and temporo-insular nodes (Figure 11, right panel).

3.4 | Co-alteration networks of GM decreases and GM

increases

As already said, most of the studies examined in this meta-analysis do

not report GM increase data. However, since we wanted to obtain

information from these data as well, we performed a co-alteration anal-

ysis on a dataset that was the sum of GM decreased and increased val-

ues. The rationale for doing this was that GM increase data were not

on their own sufficient to be statistically examined.

Specifically, we conducted two supplementary analyses using as

inputs both GM decrease and GM increase data. In the first analysis

we employed the same set of nodes previously used for the MCN (see

Figure 12, left panel, Table 4). In the second analysis we created a new

set of nodes keeping the same node detection parameters already

employed.

The first analysis of data (GM decrease plus GM increase) with the

same set of nodes of the MCN shows a co-alteration pattern that is

somewhat similar to the pattern obtained from the analysis of GM

decrease data only (Figure 12, right and middle panels). It can be

observed that in both analyses the group of main edges linking the

insular, cingulate, temporal and parietal cortices is quite constant, even

though it is slightly thicker when the sum of GM decrease and GM

increase is considered. However, some prefrontal and parietal connec-

tions, which are only present when GM decrease data are considered,

are lost. In the results obtained from both GM decrease and GM

increase data, Patel’s k values range from .93 to .34.

The second analysis of data (GM decrease plus GM increase), con-

ducted with a new set of nodes, shows a much thicker network (Figure

12, left panel). New nodes, which were not present in the results

obtained from GM decrease data only, now emerge, while the nodes

that were lost in the first analysis return to be part of the network.

Also in this case Patel’s k values range from .93 to .34.

Figure 13 upper panels show the pattern of anatomical covariance

in healthy subjects associated with the new set of nodes used in the

second analysis of data (GM decrease plus GM increase); Figure 13

lower panels show the comparison between the co-alteration pattern

obtained from both GM decrease and GM increase data and the ana-

tomical covariance of the same nodes in healthy subjects. In the case

of the new set of nodes r values range from .25 to .78; while in the

case of the previous set of nodes r values range from .34 to .93.

Just at first sight it is evident that the pattern of anatomical covari-

ance and the co-alteration pattern are less similar when GM decrease and

GM increase data are analyzed together than when only GM decrease

data are analyzed. In fact in this case the correlation value is r5 .1452

FIGURE 4 Morphometric co-atrophy network results. Colors from blue to red indicates increasing Patel’s k values (i.e., increasing co-
alteration probabilities) [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 5 Edge anatomical co-atrophy strength between co-altered nodes (Patel’s k)

X Y Z Node 1 X Y Z Node 2 Patel’s k

218 210 216 Hippocampus_L 22 218 212 ParaHippocampal_R .4574

222 2 226 ParaHippocampal_L 238 16 210 Insula_L .4439

218 210 216 Hippocampus_L 238 16 210 Insula_L .5129

222 2 226 ParaHippocampal_L 238 24 24 Frontal_Inf_Orb_L .5516

218 210 216 Hippocampus_L 238 24 24 Frontal_Inf_Orb_L .4961

238 16 210 Insula_L 238 24 24 Frontal_Inf_Orb_L .7499

222 2 226 ParaHippocampal_L 42 8 22 Insula_R .8412

218 210 216 Hippocampus_L 42 8 22 Insula_R .4695

238 16 210 Insula_L 42 8 22 Insula_R .6024

238 24 24 Frontal_Inf_Orb_L 42 8 22 Insula_R .6568

222 2 226 ParaHippocampal_L 242 14 0 Insula_L_1 .5438

238 16 210 Insula_L 242 14 0 Insula_L_1 .8574

238 24 24 Frontal_Inf_Orb_L 242 14 0 Insula_L_1 .7781

42 8 22 Insula_R 242 14 0 Insula_L_1 .6787

222 2 226 ParaHippocampal_L 42 18 0 Insula_R_1 .6509

238 16 210 Insula_L 42 18 0 Insula_R_1 .7408

238 24 24 Frontal_Inf_Orb_L 42 18 0 Insula_R_1 .7202

42 8 22 Insula_R 42 18 0 Insula_R_1 .884

242 14 0 Insula_L_1 42 18 0 Insula_R_1 .7877

222 2 226 ParaHippocampal_L 246 264 4 Temporal_Mid_L .706

238 16 210 Insula_L 22 220 4 Thalamus_L .4655

42 8 22 Insula_R 22 220 4 Thalamus_L .4183

242 14 0 Insula_L_1 22 220 4 Thalamus_L .5438

42 18 0 Insula_R_1 22 220 4 Thalamus_L .6326

246 264 4 Temporal_Mid_L 22 220 4 Thalamus_L .6959

218 210 216 Hippocampus_L 252 210 4 Temporal_Sup_L .4574

238 16 210 Insula_L 252 210 4 Temporal_Sup_L .5666

238 24 24 Frontal_Inf_Orb_L 252 210 4 Temporal_Sup_L .8068

42 8 22 Insula_R 252 210 4 Temporal_Sup_L .5277

242 14 0 Insula_L_1 252 210 4 Temporal_Sup_L .5438

42 18 0 Insula_R_1 252 210 4 Temporal_Sup_L .5358

222 2 226 ParaHippocampal_L 42 10 8 Frontal_Inf_Oper_R .6509

238 16 210 Insula_L 42 10 8 Frontal_Inf_Oper_R .6775

238 24 24 Frontal_Inf_Orb_L 42 10 8 Frontal_Inf_Oper_R .6628

42 8 22 Insula_R 42 10 8 Frontal_Inf_Oper_R .8412

242 14 0 Insula_L_1 42 10 8 Frontal_Inf_Oper_R .7877

42 18 0 Insula_R_1 42 10 8 Frontal_Inf_Oper_R .926

22 220 4 Thalamus_L 42 10 8 Frontal_Inf_Oper_R .6326

42 8 22 Insula_R 34 24 10 Insula_R_2 .4183

(Continues)
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(p < .0347). This is probably so because the new nodes obtained by add-

ing the GM increase data are more anatomically covariant than anatomi-

cally co-altered. The nodes and edges shared by the anatomical

covariance matrix and the matrix obtained from both GM decrease and

GM increase data are those associated with the connections between the

insular cortices and between the insular and prefrontal/cingulate cortices

already found in the MCN. In addition to these connections, other ones

occur between the cingulate and posterior parietal cortices. Therefore,

similarities between the anatomical covariance matrix and the matrix

obtained from both GM decrease and GM increase are less statistically

relevant, but they extend beyond the insular cortices, involving also

prefrontal, cingulate and parietal regions, which are not present when the

anatomical covariance matrix and theMCNmatrix are compared.

3.5 | Reliability

Analysis 1 reveals that certain edges linking the insulae, temporal lobes

and cingulate cortices are always present in the MCN, independently

of which spectrum is removed. These edges connect the “core” areas

already described in Cauda, et al. (2017). Most of the other edges are

present when ASD and OCSD are removed, but not when SCZD is left

out of the analysis. In this case, the MCN is significantly less distributed

TABLE 5 (Continued)

X Y Z Node 1 X Y Z Node 2 Patel’s k

238 16 210 Insula_L 250 220 12 Temporal_Sup_L_1 .5666

238 24 24 Frontal_Inf_Orb_L 250 220 12 Temporal_Sup_L_1 .6629

42 8 22 Insula_R 250 220 12 Temporal_Sup_L_1 .5277

242 14 0 Insula_L_1 250 220 12 Temporal_Sup_L_1 .5438

42 18 0 Insula_R_1 250 220 12 Temporal_Sup_L_1 .5358

252 210 4 Temporal_Sup_L 250 220 12 Temporal_Sup_L_1 .4662

242 14 0 Insula_L_1 250 10 16 Frontal_Inf_Oper_L .4874

250 220 12 Temporal_Sup_L_1 250 10 16 Frontal_Inf_Oper_L .4883

222 2 226 ParaHippocampal_L 50 16 20 Frontal_Inf_Tri_R .413

246 264 4 Temporal_Mid_L 50 16 20 Frontal_Inf_Tri_R .7108

42 10 8 Frontal_Inf_Oper_R 50 16 20 Frontal_Inf_Tri_R .4654

250 220 12 Temporal_Sup_L_1 50 16 20 Frontal_Inf_Tri_R .413

238 16 210 Insula_L 6 20 28 Cingulum_Ant_R .4807

42 8 22 Insula_R 6 20 28 Cingulum_Ant_R .6127

42 18 0 Insula_R_1 6 20 28 Cingulum_Ant_R .6194

42 10 8 Frontal_Inf_Oper_R 6 20 28 Cingulum_Ant_R .6194

250 220 12 Temporal_Sup_L_1 6 20 28 Cingulum_Ant_R .5301

18 258 14 Precuneus_R 6 20 28 Cingulum_Ant_R .6271

238 16 210 Insula_L 46 4 32 Precentral_R .5005

242 14 0 Insula_L_1 46 4 32 Precentral_R .4744

42 18 0 Insula_R_1 46 4 32 Precentral_R .4654

22 220 4 Thalamus_L 46 4 32 Precentral_R .5329

42 10 8 Frontal_Inf_Oper_R 46 4 32 Precentral_R .4654

50 16 20 Frontal_Inf_Tri_R 46 4 32 Precentral_R .4225

250 10 16 Frontal_Inf_Oper_L 234 242 44 Parietal_Inf_L_1 .6016

42 8 22 Insula_R 0 4 46 Supp_Motor_Area_L .3729

34 24 10 Insula_R_2 0 4 46 Supp_Motor_Area_L .3835

250 10 16 Frontal_Inf_Oper_L 0 4 46 Supp_Motor_Area_L .5369

18 266 26 Precuneus_R_1 0 4 46 Supp_Motor_Area_L .5881

234 242 44 Parietal_Inf_L_1 0 4 46 Supp_Motor_Area_L .5881

212 244 24 Lingual_L_1 8 264 54 Precuneus_R_2 .5359

CAUDA ET AL. | 1909



and less relevant edges are present (see also Supporting Information,

Figure S7).

This phenomenon can be better understood in light of analysis 2,

which reveals that the correlation results between the Patel’s k values

of the edges associated to each spectrum suggest a good similarity

between ASD and SCZD, and between OCSD and SCZD: for ASD

versus SCZD r5 .37, and for OCSD versus SCZD r5 .56, respectively.

In contrast, correlation values between the ASD matrix and OCSD

matrix appear to be less similar: for ASD versus OCSD r5 .13.

As already pointed out in Cauda, et al. (2017), analysis 3 reveals

that the structural alterations (GM decreases) caused by the three

spectra can be clearly subsumed under two clusters. Neither of the

two clusters can be specifically associated with a spectrum, as all three

psychiatric disorders distribute almost equally within them (see Sup-

porting Information, Figure S3). Figure 14 summarizes the results of

these three analyses.

As Figure 14 illustrates, when we leave SCZD out, the number of

edges substantially diminishes; this, along with the fact that ASD and

OCSD have more inhomogeneous sample data, as shown in Cauda

et al. (2017), explains why the correlation value between the matrix

constructed with the SCZD data only and the matrix constructed with

the whole dataset is low. Moreover, it is worth noting that, even

though results are significantly reduced when SCZD is left out, the

remaining edges are those that form the most connected part of the

MCN, which is also the core of the pattern constructed with the SCZD

data only (please see both the upper right panel of Figure 14 and the

upper panel of Supporting Information, Figure S5).

Finally, analysis 4 shows a high degree of similarity between the

MCN constructed with the same amount of data for each spectrum

and the MCN constructed with the original dataset. In fact, the DC is

significantly high: .7969 (Figure 15, left and middle panels). Moreover,

the evaluation of the stability of the result has been assessed by

repeating the analysis with 1,000 permutations (each time with a differ-

ent sample selection from SCZD data). Of note, the standard error has

very low values, ranging from 0 to .04 (Figure 15, right panel). The

result of analysis 4 shows that, even though the reduced sample leads

to the loss of certain edges and the decrease of Patel’s k values, the

new MCN largely overlaps the original MCN obtained with the whole

FIGURE 5 Topological analysis of the morphometric co-atrophy

network. Colors and dimensions of nodes indicates their topological
degree (smaller node5 lower degree; from green to red5 from
lower to higher values) [Color figure can be viewed at wileyonlineli-
brary.com]

FIGURE 6 Morphometric co-atrophy network results. This graph shows the 20 edges showing the highest Patel’s k values (i.e., the couples
of most strongly co-altered nodes) [Color figure can be viewed at wileyonlinelibrary.com]
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dataset, thus providing evidence that the predominance of SCZD data

does not bias the validity of our original outcome.

4 | DISCUSSION

The analysis of the co-atrophy network of SCZD, ASD, and OCSD

reveals that alterations in certain GM sites appear to be statistically

related to alterations of other GM regions. Although this finding has

already been proved to be the case in neurodegenerative diseases, it

has never been found before in psychiatric conditions. As our study

dealt mainly with GM decreases, we propose to define the ensemble

of co-altered areas as morphometric co-atrophy network or MCN and

the structural and functional pathways linking these areas as

pathoconnectivity.

Our analysis of VBM data has revealed that alterations in the GM

density of patients with SCZD, ASD, and OCSD do not develop ran-

domly but rather follow identifiable patterns of co-alteration. In partic-

ular, our results indicate that a small number of brain areas show a high

degree of pathoconnectivity (Yates, 2012); in other words, only a few

cerebral areas appear to be particularly co-altered with several other

regions. Many of these areas also exhibit a normal pattern of anatomi-

cal covariance that can be partly altered by the progressive impact of

SCZD, ASD, and OCSD. Clearly, these brain sites play an important

role in the formation and development of the MCN and, as a conse-

quence, can be thought of as pathoconnectivity hubs. For instance, the

left lingual gyrus appears to be co-altered only with one particular area

(i.e., the right precuneus), whereas the left insula (ROI Insula_L1)

appears to be co-altered with eleven other regions. Thus, the co-

alteration patterns of these two areas contribute differently in shaping

and developing the MCN across the brain. In fact, neuronal alterations

are supposed to distribute more quickly and diffusely from cerebral

regions showing a high degree of pathoconnectivity. These results

were obtained by calculating the network degree or level of connectiv-

ity for each altered area.

Overall, brain sites with the highest network degree were found to

be the insulae and the prefrontal cortices, which are also densely con-

nected with each other. These regions are therefore pathoconnectivity

hubs and can be considered as primary altered areas, whereas the other

brain regions, which have a lower network degree and appear to be

connected only with pathoconnectivity hubs, can be considered as sec-

ondary altered areas.

The network clustering analysis developed and employed in this

study was able to identify within the MCN a “core” subnetwork com-

posed of eleven nodes located in the insulae, IFG, STG, thalamus, and

right precentral gyrus. Some of these regions are involved in supporting

the salience network, which is an essential part of the frontoparietal

control system. The insular cortices are pivotal components of this

important circuitry, which has been found to be altered in a great vari-

ety of brain disorders (Cole, Repovs, & Anticevic, 2014; McTeague,

et al., 2016; Sprooten, et al., 2017). In particular, the disruption of the

functional integrity of this network would account for the executive

deficits that are frequently observed across several psychiatric

FIGURE 7 Network clustering. On the basis of our data, the k-core algorithm reported a subnetworks evidenced in the left panel (yellow
nodes) and in the right panel. Colors and dimensions of nodes indicates their topological degree (smaller node5 lower degree; from green
to red5 from lower to higher values). Colors and dimensions of edges indicates the degree of edge betweenness (smaller edge5 lower
degree; from green to red5 from lower to higher values) [Color figure can be viewed at wileyonlinelibrary.com]
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conditions (Power, et al., 2011). That the insula might be thought of as

a pathoconnectivity hub is not surprising, as this brain area has vast

and extensive connections to both several cortical areas and the limbic

system. The insula has also been found to be involved in important

brain functions—that is, integration of external sensory stimuli with

emotions, the conscious perception of error, the generation and main-

tenance of a state of awareness associated with the body’s condition

(Cauda, et al., 2012a; Cauda, et al., 2011a; Klein, Ullsperger, & Daniel-

meier, 2013; Vercelli, et al., 2016; Wylie & Tregellas, 2010).

Our analysis reveals that particularly the anterior part of the insular

cortex seems to be mostly involved in the formation of the MCN asso-

ciated with SCZD, ASD, and OCSD. In fact only one node was located

within the posterior insula (i.e., Insula_R2). This node has been found to

be part of a network with sensorimotor functions. Overall, these find-

ings provide evidence that the insula is not only an important brain hub

supporting functional connectivity during rest as well as task activities,

but also a pathoconnectivity hub lying at the center of co-alteration

networks produced by a variety of brain disorders. Indeed the idea that

anatomically defined subsets of brain regions might be hotspots for

abnormality of GM volume is supported by the fact that these core

areas are more functionally valuable for higher-order cognitive tasks

and adaptive behavior, and thereby also more likely to be associated

with a wide range of pathological processes (Crossley, et al., 2016;

Crossley, et al., 2014).

The STG multimodal areas are involved in cortical integration of

both sensory and limbic information at the highest level; this makes

them key regions implicated in the social perceptual skills. Moreover,

STG is thought to process biological motion (Jou, et al., 2011a; Jou,

et al., 2011b) and has been associated with some verbal and non-

verbal communication impairments observed in patients with ASD

(Radua, Via, Catani, & Mataix-Cols, 2011).

Precentral and inferior frontal gyri are involved in the mirror neu-

ron system; GM thinning in regions associated with the mirror-neuron

system have been correlated with social and communication deficits in

patients with ASD (Cattaneo & Rizzolatti, 2009; Keller, Bugiani, Fantin,

& Pirfo, 2011; Kilner, Friston, & Frith, 2007; Rizzolatti & Craighero,

2004).

The disruption of the thalamus has been variously associated with

SCZD and ASD. For instance, a reduced GM density in the thalamus,

right cerebellum hemisphere and left temporoparietal cortex is related

to intellectual disabilities in ASD (Spencer, et al., 2006). Moreover,

other findings suggest a relationship between hypoconnectivity

FIGURE 8 The upper panel shows the location of the insular nodes. The middle panel shows the meta-analytic connectivity modeling
(MACM) associated to these nodes (p < .001 cluster-level corrected for multiple comparison). Nodes are associated on the basis of their
patterns of connectivity. The lower panel shows the first-step nodes of the morphometric co-atrophy network connected to the insular
nodes pertaining to each connectivity pattern [Color figure can be viewed at wileyonlinelibrary.com]
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disturbances in the thalamofrontal system and ASD (Cheon, et al.,

2011). As we will see, the thalamus is also supposed to play an impor-

tant role in inflammatory processes.

It is worth noting that the brain areas altered by the three spectra

(the nodes of our analyses) have a normal pattern of anatomical covari-

ance (Evans, 2013). This pattern overlaps partially with the MCN

(r5 .2059, p < .0076). Similarities are mainly found in the insulo-insular

as well as cingulo-cingulate intraparietal connections. This result sug-

gests that the normal anatomical covariance of insular and cingulate

areas tends to be progressively altered toward the development of a

pathological anatomical covariance (co-atrophy). Our finding is in line

with the frequent observation that the patterns of brain co-alterations

match in part the patterns of brain connectivity (Cauda, et al., 2017;

Cauda, et al., 2012b; Crossley, et al., 2016; Crossley, et al., 2014; Evans,

2013; Fornito, et al., 2015; Menon, 2013; Raj, et al., 2012; Saxena &

Caroni, 2011; Seeley, et al., 2009; Yates, 2012; Zhou, et al., 2012). In

contrast, when different edges are involved, as it is the case of the

other altered or co-atrophic areas of the MCN, especially those with a

lower network degree, the normal pattern of anatomical covariance

does not overlap with the alteration pattern.

The fact that neuronal abnormalities caused by SCZD, ASD, and

OCSD converge on a set of core areas that are associated with cogni-

tive control functions (Buckholtz & Meyer-Lindenberg, 2012;

McTeague, et al., 2016) is also consistent with previous evidence show-

ing that in brain disorders GM alterations and WM alterations tend to

exhibit concordant patterns of distribution, which are influenced by

brain connectivity (Iturria-Medina & Evans, 2015; Raj, et al., 2012; Voy-

tek & Knight, 2015; Zhou, et al., 2012). As already pointed out, this

FIGURE 9 Anatomical covariance results. The upper left panels shows the structural covariance network results for the same set of nodes
employed in the co-atrophy analysis. The upper right panel shows the anatomical covariance matrix. The lower left panels shows the logic
AND between the co-atrophy results and the structural covariance network results for the same set of nodes employed in the co-atrophy
analysis (i.e., the edges represented are those that are statistically significant in the co-atrophy AND in the anatomical covariance analysis).
The lower right panel shows the logic AND between the anatomical covariance matrix and the co-atrophy co-alteration matrix. The
correlation between the two matrices is .2059 (p < .0076). Colors from blue to red indicates increasing correlation values (r) [Color figure
can be viewed at wileyonlinelibrary.com]
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TABLE 6 Edge anatomical covariance strength between nodes (r)

X Y Z Node 1 X Y Z Node 2 r

42 38 14 Frontal_Mid_R 212 244 24 Lingual_L_1 .6716

42 38 14 Frontal_Mid_R 42 10 8 Frontal_Inf_Oper_R .668

236 42 20 Frontal_Mid_L 18 258 14 Precuneus_R .6495

42 18 0 Insula_R_1 238 24 24 Frontal_Inf_Orb_L .6493

250 10 16 Frontal_Inf_Oper_L 252 210 4 Temporal_Sup_L .6463

18 258 14 Precuneus_R 42 10 8 Frontal_Inf_Oper_R .6324

42 18 0 Insula_R_1 42 8 22 Insula_R .6321

42 10 8 Frontal_Inf_Oper_R 212 244 24 Lingual_L_1 .6264

42 8 22 Insula_R 238 24 24 Frontal_Inf_Orb_L .6258

42 8 22 Insula_R 232 54 24 Frontal_Mid_Orb_L .6253

22 220 4 Thalamus_L 242 14 0 Insula_L_1 .6189

18 266 26 Precuneus_R_1 50 16 20 Frontal_Inf_Tri_R .6141

232 54 24 Frontal_Mid_Orb_L 22 218 212 ParaHippocampal_R .6089

22 28 40 Frontal_Sup_Medial_L_1 50 16 20 Frontal_Inf_Tri_R .6028

18 266 26 Precuneus_R_1 18 258 14 Precuneus_R .5998

232 54 24 Frontal_Mid_Orb_L 238 16 210 Insula_L .5886

22 28 40 Frontal_Sup_Medial_L_1 18 266 26 Precuneus_R_1 .5701

232 54 24 Frontal_Mid_Orb_L 238 24 24 Frontal_Inf_Orb_L .5643

246 264 4 Temporal_Mid_L 42 18 0 Insula_R_1 .5641

18 258 14 Precuneus_R 34 24 10 Insula_R_2 .5639

42 8 22 Insula_R 238 16 210 Insula_L .5582

18 266 26 Precuneus_R_1 42 10 8 Frontal_Inf_Oper_R .5536

238 16 210 Insula_L 22 218 212 ParaHippocampal_R .5422

42 38 14 Frontal_Mid_R 18 258 14 Precuneus_R .5406

238 24 24 Frontal_Inf_Orb_L 22 218 212 ParaHippocampal_R .5381

18 266 26 Precuneus_R_1 42 38 14 Frontal_Mid_R .5261

246 256 44 Parietal_Inf_L 18 266 26 Precuneus_R_1 .5032

18 258 14 Precuneus_R 212 244 24 Lingual_L_1 .5018

260 252 28 SupraMarginal_L 22 56 18 Frontal_Sup_Medial_L .4981

18 266 26 Precuneus_R_1 236 42 20 Frontal_Mid_L .4848

50 16 20 Frontal_Inf_Tri_R 18 258 14 Precuneus_R .4763

42 18 0 Insula_R_1 232 54 24 Frontal_Mid_Orb_L .4731

50 16 20 Frontal_Inf_Tri_R 34 24 10 Insula_R_2 .4642

260 252 28 SupraMarginal_L 18 266 26 Precuneus_R_1 .463

246 256 44 Parietal_Inf_L 18 258 14 Precuneus_R .4606

18 266 26 Precuneus_R_1 212 244 24 Lingual_L_1 .4585

18 258 14 Precuneus_R 42 18 0 Insula_R_1 .4568

34 24 10 Insula_R_2 232 54 24 Frontal_Mid_Orb_L .4566

246 264 4 Temporal_Mid_L 232 54 24 Frontal_Mid_Orb_L .4565

(Continues)
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TABLE 6 (Continued)

X Y Z Node 1 X Y Z Node 2 r

18 266 26 Precuneus_R_1 34 24 10 Insula_R_2 .4556

260 252 28 SupraMarginal_L 236 42 20 Frontal_Mid_L .4532

260 252 28 SupraMarginal_L 42 10 8 Frontal_Inf_Oper_R .4514

246 264 4 Temporal_Mid_L 238 24 24 Frontal_Inf_Orb_L .4496

22 28 40 Frontal_Sup_Medial_L_1 34 24 10 Insula_R_2 .4469

22 28 40 Frontal_Sup_Medial_L_1 18 258 14 Precuneus_R .4428

42 18 0 Insula_R_1 238 16 210 Insula_L .4418

260 252 28 SupraMarginal_L 18 258 14 Precuneus_R .4415

250 220 12 Temporal_Sup_L_1 212 244 24 Lingual_L_1 .4414

236 42 20 Frontal_Mid_L 50 16 20 Frontal_Inf_Tri_R .439

218 210 216 Hippocampus_L 232 288 216 Lingual_L .4294

18 266 26 Precuneus_R_1 232 54 24 Frontal_Mid_Orb_L .4286

22 28 40 Frontal_Sup_Medial_L_1 42 10 8 Frontal_Inf_Oper_R .4285

18 258 14 Precuneus_R 42 8 22 Insula_R .4272

22 28 40 Frontal_Sup_Medial_L_1 46 4 32 Precentral_R .4258

238 24 24 Frontal_Inf_Orb_L 238 16 210 Insula_L .4241

42 8 22 Insula_R 22 218 212 ParaHippocampal_R .4195

236 42 20 Frontal_Mid_L 22 56 18 Frontal_Sup_Medial_L .4165

236 42 20 Frontal_Mid_L 42 10 8 Frontal_Inf_Oper_R .412

22 28 40 Frontal_Sup_Medial_L_1 236 42 20 Frontal_Mid_L .4078

34 24 10 Insula_R_2 42 8 22 Insula_R .4075

18 266 26 Precuneus_R_1 42 8 22 Insula_R .4063

246 256 44 Parietal_Inf_L 42 10 8 Frontal_Inf_Oper_R .4032

232 288 216 Lingual_L 222 2 226 ParaHippocampal_L .4014

260 252 28 SupraMarginal_L 42 38 14 Frontal_Mid_R .4013

22 28 40 Frontal_Sup_Medial_L_1 42 18 0 Insula_R_1 .398

6 20 28 Cingulum_Ant_R 260 252 28 SupraMarginal_L .3915

246 256 44 Parietal_Inf_L 42 38 14 Frontal_Mid_R .3883

34 24 10 Insula_R_2 238 16 210 Insula_L .385

50 16 20 Frontal_Inf_Tri_R 42 10 8 Frontal_Inf_Oper_R .3831

260 252 28 SupraMarginal_L 212 244 24 Lingual_L_1 .3811

42 18 0 Insula_R_1 22 218 212 ParaHippocampal_R .3802

22 56 18 Frontal_Sup_Medial_L 18 258 14 Precuneus_R .3774

46 4 32 Precentral_R 50 16 20 Frontal_Inf_Tri_R .3773

236 42 20 Frontal_Mid_L 42 38 14 Frontal_Mid_R .3755

246 256 44 Parietal_Inf_L 212 244 24 Lingual_L_1 .3751

18 266 26 Precuneus_R_1 238 16 210 Insula_L .3724

42 38 14 Frontal_Mid_R 250 220 12 Temporal_Sup_L_1 .369

246 256 44 Parietal_Inf_L 260 252 28 SupraMarginal_L .3674

(Continues)
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finding is further supported by the good correlation between the pat-

terns of anatomical covariance and co-atrophy, especially with regard

to the set of “core areas”.

The inclusion in the MCN analysis of the GM increase data (GM

decrease plus GM increase) leads to a pattern that is fairly similar to

the one found on the basis of GM decrease data only; however, the

former is significantly less similar than the latter to the normal pattern

of anatomical covariance associated with the same nodes. This sug-

gests that GM increase data may contribute to the MCN by adding a

series of edges that are not present in the anatomical covariance pat-

tern. However, it must be observed that, given the little knowledge

with regard to the processes at the root of the increase and decrease

of GM density, the conjoint use of GM decrease and GM increase data

is still a debated issue, which is reflected by different approaches and

positions in the scientific literature (Eickhoff, et al., 2012; Radua &

Mataix-Cols, 2009).

To date, at least four mechanisms have been suggested to explain

how brain abnormalities propagate (Fornito, et al., 2015; Zhou, et al.,

2012), two of which call attention to the role that may be played by

brain architecture. The first mechanism hypothesizes a shared vulner-

ability (caused in particular by the co-expression of genes) between cer-

tain brain areas (Cioli, Abdi, Beaton, Burnod, & Mesmoudi, 2014;

French, Tan, & Pavlidis, 2011; Lichtman & Sanes, 2008; Prieto, Risueno,

Fontanillo, & De las Rivas, 2008; Wolf, Goldberg, Manor, Sharan, &

Ruppin, 2011; Zhou, et al., 2012). The second mechanism posits a

transneuronal spread of misfolded proteins along axonal pathways

TABLE 6 (Continued)

X Y Z Node 1 X Y Z Node 2 r

246 256 44 Parietal_Inf_L 22 56 18 Frontal_Sup_Medial_L .3668

50 16 20 Frontal_Inf_Tri_R 42 8 22 Insula_R .3645

250 220 12 Temporal_Sup_L_1 42 10 8 Frontal_Inf_Oper_R .3595

236 42 20 Frontal_Mid_L 34 24 10 Insula_R_2 .3593

246 256 44 Parietal_Inf_L 236 42 20 Frontal_Mid_L .3556

34 24 10 Insula_R_2 42 10 8 Frontal_Inf_Oper_R .3517

50 16 20 Frontal_Inf_Tri_R 232 54 24 Frontal_Mid_Orb_L .3508

46 4 32 Precentral_R 34 24 10 Insula_R_2 .3501

18 266 26 Precuneus_R_1 42 18 0 Insula_R_1 .3465

236 42 20 Frontal_Mid_L 246 264 4 Temporal_Mid_L .3445

246 264 4 Temporal_Mid_L 22 218 212 ParaHippocampal_R .3404

22 28 40 Frontal_Sup_Medial_L_1 42 8 22 Insula_R .3388

260 252 28 SupraMarginal_L 50 16 20 Frontal_Inf_Tri_R .3388

242 14 0 Insula_L_1 42 8 22 Insula_R .3371

50 16 20 Frontal_Inf_Tri_R 42 18 0 Insula_R_1 .3345

22 220 4 Thalamus_L 42 18 0 Insula_R_1 .3334

34 24 10 Insula_R_2 42 18 0 Insula_R_1 .3312

246 256 44 Parietal_Inf_L 50 16 20 Frontal_Inf_Tri_R .3297

50 16 20 Frontal_Inf_Tri_R 246 264 4 Temporal_Mid_L .3285

22 28 40 Frontal_Sup_Medial_L_1 260 252 28 SupraMarginal_L .3272

236 42 20 Frontal_Mid_L 212 244 24 Lingual_L_1 .3266

236 42 20 Frontal_Mid_L 42 18 0 Insula_R_1 .3239

46 4 32 Precentral_R 250 10 16 Frontal_Inf_Oper_L .3238

42 18 0 Insula_R_1 242 14 0 Insula_L_1 .3231

246 256 44 Parietal_Inf_L 34 24 10 Insula_R_2 .3228

18 258 14 Precuneus_R 232 54 24 Frontal_Mid_Orb_L .3191

50 16 20 Frontal_Inf_Tri_R 22 218 212 ParaHippocampal_R .3132

260 252 28 SupraMarginal_L 34 24 10 Insula_R_2 .3126

42 18 0 Insula_R_1 46 4 32 Precentral_R .3109
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FIGURE 10 Anatomical covariance results. This graph shows the 20 edges showing the highest correlation values (i.e., the couples of most
strongly structurally covariant nodes) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Anatomical covariance results. The left panel shows the anatomical covariance network results for the same set of nodes employed
in the co-atrophy analysis (GM decreases). Colors and dimensions of nodes indicates their topological degree (smaller node5 lower degree; from
green to red5 from lower to higher values). The right panel shows a spring embedded visualization of the logic AND between the co-atrophy
results and the anatomical covariance network results for the same set of nodes employed in the co-atrophy analysis (i.e., the edges represented
are those that are statistically significant in the co-atrophy AND in the anatomical covariance analysis). Colors and dimensions of nodes indicates
their topological degree (smaller node5 lower degree; from green to red5 from lower to higher values). Colors and dimensions of edges indicates
the degree of edge betweenness (smaller edge5 lower degree; from green to red5 from lower to higher values) [Color figure can be viewed at
wileyonlinelibrary.com]
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connecting different brain regions (Chevalier-Larsen & Holzbaur, 2006;

Fornito, et al., 2015; Goedert, Clavaguera, & Tolnay, 2010; Guest,

et al., 2011; Iturria-Medina, Sotero, Toussaint, & Evans, 2014; Zhou,

et al., 2012). The third mechanism proposes a trophic failure in the neu-

ronal metabolism, that is, a dysfunction of trophic factors that would

disrupt the development and maintenance of neural wiring (Appel,

1981; Fornito, et al., 2015; Salehi, et al., 2006; Zhou, et al., 2012).

Finally, the fourth mechanism hypothesizes that the network hubs

might be more exposed to nodal stress and, thereby, be more suscepti-

ble to pathological modifications (Crossley, et al., 2014; Saxena & Car-

oni, 2011; Zhou, et al., 2012). Probably certain pathological processes

are preferentially involved in some disorders than in others, at least at

their inception. However, it is important to highlight that these four

mechanisms are not mutually exclusive, as different pathological factors

may operate simultaneously.

Of note, all the three psychiatric spectra examined in this study

have been linked to genetic dysfunction. Recently, the risk of develop-

ing SCZD has been associated with variation in the major histocompati-

bility complex locus, in particular in the complement component four

genes (Sekar, et al., 2016). In turn, a number of altered genetic mecha-

nisms have been associated with ASD. In patients with ASD, alterations

of gene expressions might disrupt the autoregulatory feedback of neu-

ronal loops, the brain electrical activity, the concentration of signaling

molecules, as well as the mechanisms of synaptic excitation and inhibi-

tion (Mullins, Fishell, & Tsien, 2016). With regard to OCSD, it has been

suggested that complex patterns of molecular dysfunctions due to

genetic factors (regarding in particular the serotonergic and dopaminer-

gic systems) may account for the familial occurrences of this disorder

(Nestadt, Grados, & Samuels, 2010; Pauls, 2010; Tukel, et al., 2016).

Therefore, studies that aim to understand the genetic patterns of brain

disorders are extremely important and future investigations are needed

to find out whether altered co-expressions of genes can affect the

areas that this meta-analysis has put forward as key nodes in the ana-

tomical co-alteration networking of SCZD, ASD, and OCSD.

Furthermore, proteins such as astrotactins have been suggested

as a common genetic link among these three psychiatric spectra,

because they are fundamental in guiding neurons migration during

brain development (Lionel, Tammimies, Vaags, Rosenfeld, & Ahn,

FIGURE 12 Results comparison of the morphometric co-alteration network for GM increases plus GM decreases, and for GM decreases
only. The left panel shows the morphometric co-alteration network results for GM increases plus GM decreases using an ad hoc developed
set of nodes. The central panel shows the morphometric co-alteration network results for GM increases plus GM decreases using the set of
nodes previously employed for the co-atrophy analysis (see these nodes in Figure 2). The right panel shows the morphometric co-alteration
network results for GM decreases. Colors from blue to red indicates increasing Patel’s k values (i.e., increasing co-alteration probabilities)
[Color figure can be viewed at wileyonlinelibrary.com]
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2014). Oxytocin too—which is a hormone not only associated with

childbirth, milk let-down, and maternal care, but also with the regula-

tion of social behavior and the formation of pair bonds—has been

found to be involved in multiple psychiatric disorders, including

ASD, SCZD, and OCSD. Indeed, in patients with ASD oxytocin

appears to be related to social recognition, attachment, and stereo-

typed behaviors, whereas in patients with SCZD it has been associ-

ated with a potential antipsychotic effect. Interestingly, in patients

with OCSD this hormone has been found to have higher values in

patients that respond to serotonin reuptake inhibitor treatment, but

lower values in patients who have autistic traits (Cochran, Fallon,

Hill, & Frazier, 2013; Humble, Uvnas-Moberg, Engstrom, & Bejerot,

2013; Romano, Tempesta, Micioni Di Bonaventura, & Gaetani,

2015; Shin, et al., 2015; Strauss, et al., 2015).

There are significant symptomatic overlaps between ASD, OCSD,

and SCZD. Between ASD and OCSD common symptoms are insistence

on sameness, tics, ritual and repetitive behaviors. Within SCZD a sub-

type of schizophrenia (schizo-obsessive) is particularly characterized by

obsessive symptoms (Bleich-Cohen, et al., 2014). Of note, the first

diagnostic criterion of DSM-5 for ASD is strictly related to the negative

symptoms of SCZD, while the second diagnostic criterion is similar to

the OCSD symptomatology. The relative symptomatic similarity

between ASD and SCZD is consistent with a neurobiological model

that suggests a common basis for SCZD and ASD, with a number of

genetic alterations (SHANK 3 variations, DISC 1, dysregulation of

CYFIP1, SCN2A, NRXN1 neurexin gene or RELN), cytoarchitectural

abnormalities (about proliferation, migration and lamination defects),

neuropsychological deficit, neuroimaging investigations (about GM/

FIGURE 13 Anatomical covariance results for the GM increases plus GM decreases set of nodes. The upper left panel shows the
anatomical covariance network results for the same set of nodes employed in the co-alteration analysis of GM increases plus GM decreases.
The upper right panel shows the anatomical covariance matrix. The lower left panel shows the logic AND between the co-alteration results
of GM increases plus GM decreases and the anatomical covariance network results for the same set of nodes employed in the analysis of
GM decreases (i.e., the edges represented are those that are statistically significant in the co-atrophy AND in the anatomical covariance
analysis). The lower right panel shows the logic AND between the anatomical covariance matrix and the co-alteration matrix. The correlation
between the two matrices is .1452 (p < .0347). Colors from blue to red indicates increasing correlation values (r) [Color figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 14 Results of the morphometric co-atrophy network by leaving one spectrum out in alternation. This figure shows the comparison
between the results of the morphometric co-atrophy network of the three spectra together (upper left panel) and each of the morphometric
co-atrophy network obtained from leaving one spectrum out in alternation. Colors from blue to red indicates increasing Patel’s k values (i.e.,
increasing co-alteration probabilities) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Results of the morphometric co-atrophy network (MCN) obtained with an equal number of experiments fro each psychiatric
spectrum. The left panel shows the results obtained with the original dataset. Colors from blue to red indicates increasing Patel’s k values
(i.e., increasing co-alteration probabilities). The central panel shows the overlap between the MCN calculated with the equalized dataset and
the MCN calculated with the original dataset. The right panel shows the stability of the equalized results (analyses were repeated with
1,000 permutations, each time by randomly selecting a different sample of schizophrenia data) expressed in standard error values. Colors
from blue to red indicates increasing standard error values [Color figure can be viewed at wileyonlinelibrary.com]
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WM abnormalities and structural/functional connectivity alterations),

and clinical observations (Baribeau & Anagnostou, 2013; Cauda, et al.,

2017; Cauda, et al., 2014a; Cauda, et al., 2011b; Cheung, et al., 2010;

Chisholm, Lin, Abu-Akel, & Wood, 2015; de Lacy & King, 2013; King &

Lord, 2011; Pathania, et al., 2014).

The psychotic manifestations of SCZD, especially the negative and

catatonic ones, are so much associated with the social withdraw and

communicative difficulty in ASD that even specific tests, such as the

Autism Diagnostic Observation Schedule (ADOS), sometimes fail and

produce false positives if performed on adolescent patients with SCZD

(Bertelli, et al., 2015). Furthermore, psychotic manifestations and ASD

are frequently observed in the clinical practice, and it is particularly

worth noting that some patients, diagnosed with ASD in their child-

hood, show a schizophrenic development in adolescence or adulthood,

accompanied by psychotic and neurodegenerative aspects (Keller, Pie-

dimonte, Bianco, Bari, & Cauda, 2016). These clinical data might be

accounted for by finding out common genetic roots at the basis of neu-

rodevelopment disorders, which bring about phenotypic expressions

with different timings and modalities, due to epigenetic factors affect-

ing the production of proteins with regulatory function over the brain

organization and development (Di Gregorio, et al., 2017). This hypothe-

sis is supported by the clinical examination of families of patients with

ASD, in which phenotypic expressions bear psychiatric disorders differ-

ent from ASD, OCSD, and SCZD (Biamino, et al., 2016). The relation-

ship between genes, epigenetic and environmental factors could

typically emerge from the specific patterns of structural alterations that

our analysis has discovered. In particular, brain hubs are likely to be the

areas in which this relationship appears to be stronger.

Compared to OCSD, structural abnormalities in SCZD and ASD are

especially located in brain areas with a high degree of pathoconnectiv-

ity—that is, areas where altered voxel exhibit a higher degree of con-

nectivity than unaltered voxel—albeit not necessarily in network hubs

with the highest degree of connections. Presumably, factors being spe-

cific to the disorder are likely to determine the regions to be first

affected and how anatomical alterations distribute across the brain

(Crossley, et al., 2016; Crossley, et al., 2014).

As pointed out, frontal and insular cortices are essential parts of the

MCN shared by OCSD, ASD, and SCZD. In particular, fronto-striatal

regions are involved in OCSD, thus supporting the hypothesis that an

orbitofrontal-striatal circuit may be abnormal in OCSD (Cavedini, Riboldi,

Keller, D’annucci, & Bellodi, 2002; Nakao, Okada, & Kanba, 2014).

In both ASD and SCZD, disruption of the loop system of the basal

ganglia is thought to explain impaired sensorimotor access, which

reflects the ability of an organism to filter out irrelevant stimuli. In turn,

the neural circuit composed of the caudate nucleus, the orbitofrontal

cortex, and the anterior cingulate cortex has been reported to play an

important role in OCSD (Chamberlain, Blackwell, Fineberg, Robbins, &

Sahakian, 2005). What is more, the impairment of the anterior cingulate

cortex is supposed to be relevant for causing awareness deficits in

bipolar disorder (Palermo, et al., 2015). Finally, hippocampal disruption

has been associated with both ASD and SCZD (Wible, 2012).

From the clinical point of view, alteration of the areas forming the

MCN may lead to a disruption of social cognition, which is frequently

associated with ASD and SCZD (Bicks, Koike, Akbarian, & Morishita,

2015). Approaches of functional connectivity reveal that specific

parameters of connectivity networks present heritability and are asso-

ciated with familial risk for psychopathology, suggesting a genetic role

not only with regard to psychiatric categories tout court but also with

regard to the brain inter-regional synchronization, thus confirming

liability to broad dimensions of symptomatically related disorders

(Buckholtz & Meyer-Lindenberg, 2012; Caspi, et al., 2014). What is

more, mental illness is generally characterized by polygenic inheritance,

which constantly causes genetic liability. This defies the validity of cat-

egorical models of psychiatric illness and risk, as it implies that brain

disorders can be viewed as the extreme manifestations of normally dis-

tributed quantitative traits (Cauda et al 2017).

The neurobiological substrate of these common alterations may

involve a neurochemical unbalance, especially an alteration in the ratios

of GABA-glutamate on the one hand, and oxytocin-vasopressin on the

other, which could be the targets of specific pharmacological therapies

(Ford, Nibbs, & Crewther, 2017; LeBlanc & Fagiolini, 2011).

If we draw our attention to the altered areas that are not shared

by the three spectra, we see that they can account for differences in

symptomatology. For instance, the more involvement of posterior areas

(sensorimotor and occipito-temporal) in ASD than in SCZD can lead to

a peculiar hypersensitivity for auditory, tactile, and visual stimuli and/or

hyposensitivity for pain stimuli. In turn, a more intense fronto-striatal

alteration characterizes OCSD, thus supporting the hypothesis that an

orbitofrontal-striatal circuit may be abnormal in OCSD (Benzina, Mallet,

Burguiere, N’diaye, & Pelissolo, 2016; Cauda, et al., 2017; Cavallaro,

et al., 2003; Cavedini, et al., 2002).

Several studies have supported a role of neuroinflammation in the

etiology of ASD, SCZD and other brain disorders. In fact, an increased

inflammatory response in the central nervous system is supposed to

activate microglial cells, the activity of which leads to the release of

pro-inflammatory cytokines, including interleukin (IL)-1b, IL-6, and

tumor necrosis factor-a. In turn, pro-inflammatory cytokines aggravate

and propagate neuroinflammation, thus degenerating healthy neurons

and impairing brain functions. Thus, the activated microglia may con-

tribute to the generation of GM abnormalities and, consequently, to

the pathogenesis of psychiatric disorders (Hong, Kim, & Im, 2016).

With regard to SCZD, cortical immune activation and immune-

related markers have been reported in the prefrontal cortex, along with

deficits in the basilar dendritic spines of layer 3 pyramidal neurons and

disturbances in inhibitory inputs to pyramidal neurons. Importantly,

microglia is supposed to regulate excitatory and inhibitory input to

pyramidal neurons (Volk, 2017). Furthermore, differently from SCZD,

the development of ASD appears to be more related to cerebellar dys-

function and subsequent thalamic hyperactivation in early childhood. In

contrast, SCZD seems to be triggered by thalamic hyperactivation in

late adolescence, whereas hippocampal aberration can possibly origi-

nate in childhood. A possible culprits could be found in the metal

homeostasis disturbances, which can induce dysfunction of blood–cer-

ebrospinal fluid barrier. Thalamic hyperactivation is thought to be pro-

duced by microglia-mediated neuroinflammation as well as by

abnormalities of the intracerebral environment. Consequently, it is
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likely that thalamic hyperactivation leads to the dysregulation of the

circuit formed by dorsolateral prefrontal cortex and lower brain regions

related to social cognition (Nakagawa & Chiba, 2016).

All these considerations provide further support for the hypothesis

of a common neurobiological substrate at the basis of diagnostically dif-

ferent psychiatric conditions (Buckholtz & Meyer-Lindenberg, 2012;

Caspi, et al., 2014; Crossley, et al., 2014; McTeague, et al., 2016). Intrigu-

ingly, our findings are consistent with similar results obtained by Good-

kind et al. (2015), which have highlighted the importance of the anterior

insula/dorsal anterior cingulate network as a key circuit that is impaired

by different brain disorders. Both our results and those of Goodkind et al.

are in line with the theoretical proposals suggesting the need for trans-

diagnostic accounts of neuropathological diseases (Buckholtz & Meyer-

Lindenberg, 2012; Caspi, et al., 2014; Crossley, et al., 2014; Douaud,

et al., 2014; Etkin & Cuthbert, 2014; McTeague, et al., 2016; Voytek &

Knight, 2015). The co-alteration networking analysis developed in this

study could play a major role in order to investigate the pathological brain

as well as to lead us to a unifying perspective on neuropathology.

4.1 | Relationship between the co-alteration matrix

and diffusion matrix

At first sight the relationship between the structural co-alteration pat-

tern and the propagation pattern of alterations may seem unclear, as

the two concepts are likely to be considered unrelated. In fact, the for-

mer is straightforwardly associated with a picture of a static event,

which is based on anatomical evidence, while the latter is typically con-

ceived as implying a causal event characterized by a precise temporal

directionality, which can be investigated by longitudinal studies. The

propagation of neuronal abnormalities is a dynamic phenomenon,

which has its onset in certain cerebral areas and then proceeds to

affect other parts of the brain. Cerebral areas appear therefore to be

altered in different temporal sequences, thus originating different prop-

agation patterns. These patterns, however, can be mathematically

described by a Laplacian matrix. What we propose to show is that this

type of matrix can be also obtained from co-alteration meta-analytical

data. Strictly speaking, therefore, although this does not allow to speak

about propagation, it does allow us to interpret the co-alteration pat-

tern as having a network-like architecture.

If we consider two brain areas (populations of neurons): A1 (altered)

and A2 (unaltered) that are structurally connected, then we can say that

the alteration factor, which propagates to A2, is the product of the con-

centration of the alteration factor x1 and the strength of the effective

connectivity c12. Consequently, at a certain time the concentration of the

alteration in A2 is going to increase by a factor of bc12 x22x1ð Þdt, where

b is the diffusion constant that controls the speed of alterations’ spread.

This model can be mathematically described in differential terms, such as:

dx2
dt

5bc12 x22x1ð Þ

Abdelnour, Voss, and Raj, (2014) have shown that it is possible to

construct a network of cerebral nodes by developing this model with

the following equation:

dx tð Þ
dt

52bLx tð Þ

where L is the Laplacian matrix, which is defined as:

L 5D 2 A

In this equationD is the degree matrix, which is a diagonal matrix con-

taining information about the number of edges attached to every node,

and A is the adjacency matrix, which is a square matrix containing informa-

tion about whether or not pairs of nodes are adjacent or connected.

It can be shown that this formula is the heat equation, which in

turn is a particular case of the diffusion equation, generalized to com-

plex networks (Kondor & Lafferty, 2002). The diffusion equation has

the following explicit solution:

x tð Þ5exp 2bLð Þx0 (1)

This formula defines the evolution of an initial configuration x0 of

a diffusion process.

The Laplacian matrix, needed for the solution of the diffusion

equation, can be derived from the co-alteration matrix of meta-

analytical data. In fact the co-alteration matrix, which can be calculated

in several ways (Crossley et al., 2013), represents the relationship

between the structural alterations of different nodes of a complex net-

work. In our case we determined the co-alteration matrix by using the

Patel’s k, which is an index capable of describing statistically the degree

of association between nodes (Patel et al., 2006) see Section 2 for

more details). The final result is a square and symmetric matrix, which

is tantamount to the adjacency matrix A containing in its rows and col-

umns the nodes of the complex network. This is nothing but a connec-

tion matrix, from which it is possible to obtain the degree matrix D and,

thereby, derive the Laplacian matrix L, which eventually allows to con-

struct the diffusion dynamics of the complex network.

We can see clearly now that there is a strict mathematical relation-

ship between propagation pattern (causation) and co-alteration pattern,

as it is possible to obtain from co-alteration data the diffusion matrix of

the alterations. In fact, the Laplacian matrix of Equation 1 may allow us

to create a temporal description of the alterations’ spread. What we

need is just an initial node, in which alterations begin to accumulate

(start condition x0); from that point of onset we therefore could see

how alterations propagate in time and space through the sequence of

the progressively altered nodes. Still, the analysis of meta-analytical

data of co-alterations cannot permit to identify the onset of the altera-

tion process (initial nodes). Therefore, we can say that alterations diffuse

from nodes to nodes, but we cannot describe the progression of this

diffusion. This is why in the article we refer to the diffusion of altera-

tions in the terms of “distribution” rather than “spread” or “propagation”.

However, on the grounds of the mathematical considerations stated

above, we can confidently hold that the co-alteration pattern resulted

from our analyses is to be interpreted as a network-like phenomenon.

4.2 | Limitations

The meta-analysis presented here has been carefully designed. How-

ever, some critical aspects should be recognized. The first aspect
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regards the literature search, in which a good number of potential stud-

ies have been identified but others could have been missed. The sec-

ond aspect regards the heterogeneity of group subjects (different for

age and gender) that participated in the studies retrieved for this meta-

analysis, which could be a possible confounding factor.

The third aspect concerns the fact that the sample used to cal-

culate the anatomical covariance obviously differ from the sample

used to calculate the MCN; in other words, it must always bear in

mind that these analyses are derived from two different populations

and, importantly, from different types of data, native ones on the

one hand, and meta-analytical ones on the other. As meta-analytical

data are aggregated for groups of subjects, we are not able to distin-

guish possible differences due to either the healthy population or

the pathological one. However, it is very unlikely that these differen-

ces could increase the number of false positives; in contrast, it is

much more likely that they could increase the number of false

negatives.

The fourth aspect concerns the greater representativeness of

SCZD with respect to the other two spectra, which could lead to think

that our results are considerably driven by SCZD data. However, the

further analyses discussed in the paragraph “Reliability” address this

limitation and make it unlikely for the following considerations. (1)

Edges co-alteration values of ASD and OCSD are somewhat similar to

those of SCZD. (2) The MCN calculated without SCZD data is very sim-

ilar to the MCN calculated by using all the data of the three spectra. (3)

GM alterations are not specific to a particular spectrum but tend to be

subsumed into two clusters within which they distribute rather homo-

geneously (see Supporting Information, Figure S3). (4) Apart from the

inevitable differences due to the reduced sample, the MCN obtained

by equalizing the number of experiments for each psychiatric spectrum

largely overlaps the MCN obtained by using the whole original dataset

(Dice coefficient5 .7969; see Figure 15). This result is very encourag-

ing, as the new MCN overlaps for the most part the original MCN, thus

making much less likely that the analysis on the whole dataset is largely

driven by SCZD data.

Of course we cannot completely exclude that the numerousness

of the SCZD sample somehow influenced the MCN pattern but, taken

together, all the reliability results lead us to think that most of the

MCN actually represents an alteration pattern that is common to the

three neuropsychiatric spectra. Finally, it is worth noting that one of

the main goals of our work is to demonstrate that it is possible to

investigate anatomical co-alteration patterns related to neuropsychiat-

ric/neurological conditions by using techniques that are based on the

conditional probability. Given that the application of this methodology

is new, we preferred to test it on as many data as possible; the union

of these data was allowed by transdiagnostic considerations as well as

by a previous publication of our research group (Cauda et al., 2017), in

which we showed that SCZD, ASD and OCSD share a significant set of

neuronal alterations. Still, other studies are needed to confirm the

hypothesis that different psychiatric conditions share brain alteration

patterns with the help of different methodologies and other data

whose source is not meta-analytical.

5 | CONCLUSIONS

This meta-analysis was able to address the following important issues.

1. In SCZD, ASD, and OCSD GM alterations do not distribute ran-

domly across the brain but rather follow identifiable patterns of

co-alteration.

2. These patterns exhibit a network-like architecture, forming an

ensemble of co-altered areas that can be defined as morphometric

co-atrophy network or MCN, along with the structural and func-

tional pathways linking these areas, which in turn can be defined

as pathoconnectivity.

3. Within the MCN it is possible to identify certain cerebral areas,

which can be thought of as pathoconnectivity hubs according to

their network degree or level of connectivity with every other co-

altered area. The alteration of these hubs is supposed to lead to a

faster and more diffuse distribution of neuronal abnormalities

across the brain.

4. Within the MCN it is also possible to identify a “core” subnet-

work of co-altered areas, encompassing insular, prefrontal, tha-

lamic, parahippocampal, superior temporal and precentral

regions.

5. A normal pattern of anatomical covariance is also associated with

the MCN areas. In part the MCN and the anatomical covariance

pattern overlap, which suggests that brain disorders may influence

and alter the development of the anatomical covariance by modi-

fying preexisting structural covariances as well as producing other

pathological ones (co-alterations).

The new methodology of morphometric co-alteration network analysis

developed in this study, as well as the possibility to implement this

analysis on huge databases, promises to open exciting prospects for

the understanding of the pathological brain. A growing body of

research is developing around the hypothesis that the brain is altered

on the basis of its neural organization. Therefore, the development of a

valuable connectomic approach to the co-alteration of structural and

functional neuronal abnormalities is essential for understanding better

the dynamic of brain disorders (Fornito et al., 2015). Also, from the eti-

ological point of view, neuroanatomical alterations may be associated

with a pathologically increased neuroinflammatory response. Future

investigations into this line of research are promising to shed new light

on how the brain responds to illness as well as on how brain diseases

can be influenced by the cerebral structural and functional organiza-

tion. This important knowledge will help the clinical practice to achieve

a better predictive diagnostic power and improve medical care and

treatment.
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