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Abstract
The human visual cortex extracts both spatial and temporal visual features to support perception

and guide behavior. Deep convolutional neural networks (CNNs) provide a computational frame-

work to model cortical representation and organization for spatial visual processing, but unable to

explain how the brain processes temporal information. To overcome this limitation, we extended a

CNN by adding recurrent connections to different layers of the CNN to allow spatial representa-

tions to be remembered and accumulated over time. The extended model, or the recurrent neural

network (RNN), embodied a hierarchical and distributed model of process memory as an integral

part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos

to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli

than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable

model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive

window, dynamics of process memory, and spatiotemporal representations. These results support

the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth

computational understanding of dynamic natural vision.
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1 | INTRODUCTION

Human behavior depends heavily on vision. The brain’s visual system

works efficiently and flexibly to support a variety of tasks, such as

visual recognition, tracking, and attention, to name a few. Although a

computational model of natural vision remains incomplete, it has

evolved from shallow to deep models to better explain brain activity

(Khaligh-Razavi, Henriksson, Kay, & Kriegeskorte, 2017; Kriegeskorte,

2015), predict human behaviors (Canziani & Culurciello, 2015; Fragkia-

daki, Levine, Felsen, & Malik, 2015; Mnih, Heess, & Graves, 2015), and

support artificial intelligence (AI) (LeCun, Bengio, & Hinton, 2015; Silver

et al., 2016). In particular, convolutional neural networks (CNNs)—

trained with millions of labeled natural images (Russakovsky et al.,

2015)—have enabled computers to recognize images with human-like

performance (He, Zhang, Ren, & Sun, 2015). CNNs bear similar

representational structures as the visual cortex (Cichy, Khosla, Pantazis,

Torralba, & Oliva, 2016; Khaligh-Razavi & Kriegeskorte, 2014) and

predict brain responses to natural stimuli (Eickenberg, Gramfort, Varo-

quaux, & Thirion, 2017; G€uçl€u & van Gerven, 2015a; Wen et al.,

2017a; Wen, Shi, Chen, & Liu, 2017b; Yamins et al., 2014). It thus pro-

vides new opportunities for understanding cortical representations of

vision (Khaligh-Razavi et al., 2017; Yamins & Di Carlo, 2016).

Nevertheless, CNNs driven for image recognition are incomplete

models of the visual system. CNNs are intended and trained for analy-

ses of images in isolation, rather than videos where temporal relation-

ships among individual frames carry information about action. In

natural viewing conditions, the brain integrates information not only in

space (Hubel & Wiesel, 1968) but also in time (Hasson, Yang, Vallines,

Heeger, & Rubin, 2008). Both spatial and temporal information is proc-

essed by cascaded areas with increasing spatial receptive fields (Wan-

dell, Dumoulin, & Brewer, 2007) and temporal receptive windows

(TRWs) (Hasson et al., 2008) along the visual hierarchy. That is, neurons

at progressively higher levels of visual processing accumulate past

information over increasingly longer temporal windows to account for
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their current activity. In such a hierarchical system for spatiotemporal

processing, Hasson, Chen, and Honey (2015) proposed a notion of

“process memory.” Unlike the traditional view of memory being

restricted to a few localized reservoirs, process memory is hypothe-

sized to be intrinsic to information processing that unfolds throughout

the brain on multiple timescales (Hasson et al., 2015). However, CNNs

only model spatial processing via feedforward-only computation,

lacking any mechanism for processing temporal information.

An effective way to model temporal processing is by using recur-

rent neural networks (RNNs), which learn representations from sequen-

tial data (Goodfellow, Bengio, & Courville, 2016). As its name indicates,

an RNN processes the incoming input by also considering the RNN’s

internal states in the past. In AI, RNNs have made impressive progress

in speech and action recognition (Donahue et al., 2015; Greff,

Srivastava, Koutník, Steunebrink, & Schmidhuber, 2016; Jozefowicz,

Zaremba, & Sutskever, 2015), demonstrating the potential to match

human performance on such tasks. In addition, RNN can be designed

with an architecture that resembles the notion of “process memory” to

accumulate information in time as an integral part of ongoing sensory

processing (Hasson et al., 2015). Therefore, RNN is a logical step for-

ward from CNN toward modeling and understanding the inner working

of the visual system in dynamic natural vision.

In this study, we designed, trained, and tested an RNN to model

and explain cortical processes for spatial and temporal visual process-

ing. This model began with a static CNN pre-trained for image recogni-

tion (Simonyan & Zisserman, 2014). Recurrent connections were added

to different layers in the CNN to embed process memory into spatial

processing, so that layer-wise spatial representations could be remem-

bered and accumulated over time to form video representations. While

keeping the CNN intact and fixed, the parameters for the recurrent

connections were optimized by training the entire model for action rec-

ognition with a large set of labeled videos (Soomro, Zamir, & Shah,

2012). Then, we evaluated how well this RNN model matched the

human visual cortex up to linear transform. Specifically, the RNN was

trained to predict functional magnetic resonance imaging (fMRI)

responses to natural movie stimuli. The prediction accuracy with the

RNN was compared with that of the CNN, to address whether and

where the recurrent connections allowed the RNN to better model

cortical representations given dynamic natural stimuli. Through the

RNN, we also characterized and mapped the cortical topography of

temporal receptive windows and dynamics of process memory. By

doing so, we attempted to use a fully observable model of process

memory to explain the hierarchy of temporal processing, as a way to

directly test the hypothesis of process memory (Hasson et al., 2015).

2 | METHODS AND MATERIALS

2.1 | Experimental data

The experimental data were from our previous studies (Wen et al.,

2017a, 2017b; Wen, Shi, Chen, & Liu, 2017c), according to a research

protocol approved by the Institutional Review Board at Purdue

University. Briefly, we acquired fMRI scans from three healthy subjects

while they were watching natural videos. The video-fMRI data was split

into two datasets to train and test the encoding models, respectively,

for predicting fMRI responses given any natural visual stimuli. The

training movie contained 12.8 h of videos for Subject 1, and 2.4 h for

the other subjects (Subjects 2 and 3). The testing movie for every sub-

ject contained 40 min of videos presented 10 times during fMRI (for a

total of 400 min). These movies included a total of �9,300 continuous

videos without abrupt scene transitions, covering a wide range of real-

istic visual experiences. These videos were concatenated and then split

into 8-min movie sessions, each of which was used as the stimuli in a

single fMRI experiment. Subjects watched each movie session through

a binocular goggle (20.38320.38) with their eyes fixating the center of

the screen (red cross). Although the fixation was not ensured, our prior

study has demonstrated the ability to use this video-fMRI dataset to

map the retinotopic organization in early visual areas (Wen et al.,

2017a), lending indirect support to stable eye-fixation. Whole-brain

fMRI scans were acquired in 3-T with an isotropic resolution of 3.5mm

and a repetition time of 2s. The fMRI data were preprocessed and

co-registered onto a standard cortical surface (Glasser et al., 2013).

More details about the stimuli, data acquisition, and preprocessing are

described in Wen et al. (2017a, 2017b).

2.2 | Convolutional neural network (CNN)

Similar to our prior studies (Wen et al., 2017a, 2017b, 2017c), a

pretrained CNN, also known as the VGG16 (Simonyan & Zisserman,

2014), was used to extract the hierarchical feature representations of

every video frame as the outputs of artificial neurons (or units). This

CNN contained 16 layers of units stacked in a feedforward network

for processing the spatial information in the input. Among the 16

layers, the first 13 layers were divided into five blocks (or submodels).

Each block started with multiple convolutional layers with Rectified Lin-

ear Units (ReLU) (Nair & Hinton, 2010), and ended with spatial max-

pooling (Boureau, Ponce, & LeCun, 2010). To simplify terminology,

hereafter we refer to these blocks as layers. The outputs from every

layer were organized as three-dimensional arrays (known as feature

maps). For the first through fifth layers, the sizes of feature maps were

64 3 112 3 112, 128 3 56 3 56, 256 3 28 3 28, 512 3 14 3 14,

and 512 3 7 3 7, where the first dimension was the number of

features, the second and third dimensions specified the width and the

height (or the spatial dimension). From lower to higher layers, the num-

ber of features increased as the dimension per feature decreased. This

CNN was implemented in PyTorch (http://pytorch.org/).

2.3 | Recurrent neural network (RNN)

An RNN was constructed by adding recurrent connections to the four

out of five layers in the CNN. The first layer was excluded to reduce

the computational demand as in a prior study (Ballas, Yao, Pal, &

Courville, 2015). The recurrent connections served to model distrib-

uted process memory (Hasson et al., 2015), which allowed the model

to memorize and accumulate visual information over time for temporal

processing.
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Figure 1a illustrates the design of the RNN for extracting layer-

wise feature representations of an input video. Let the input video be a

time series of color (RGB) frames with 224 3 224 pixels per frame. For

the video frame xt at time t, xt 2 R332243224. The internal states of the

RNN at layer l, denoted as Hl
t, was updated at each moment, according

to the incoming information xt and the history states Hl
t21, as

expressed in Equation 1.

Hl
t5 12Gl

t

� �
o Hl

t211Gl
t o ul xtð Þ (1)

where ul �ð Þ was the spatial features encoded at layer l in the pre-

trained CNN, so ul xtð Þ was the extracted feature representations of

the current input xt. Importantly, Gl
t was the so-called “forget gate”

essential to learning long-term temporal dependency (Pascanu, Miko-

lov, & Bengio, 2013). As its name indicates, the forget gate determined

the extent to which the history states should be “forgotten,” or

reversely the extent to which the incoming information should be

“remembered.” As such, the forget gate controlled, moment by

moment, how information should be stored into vs. retrieved from pro-

cess memory. Given a higher value of the forget gate, the RNN’s cur-

rent states Hl
t were updated by retrieving less from its “memory” Hl

t21,

but learning more from the representations of the current input ul xtð Þ.
This notion was expressed as the weighted sum of the two terms in

the right-hand side of Equation 1, where o stands for Hadamard

product and the weights of the two terms sum to 1. In short, the RNN

embedded an explicit model of “process memory” (Hasson et al., 2015).

Note that the forget gate Gl
t was time dependent but a function of

the time-invariant weights, denoted as xl, of the recurrent connections,

expressed as below:

Gl
t5r xl � cat Hl

t21; maxpool Hl21
t

� �
; ul xtð Þ

� �� �
(2)

where r �ð Þ is the sigmoid function whose output ranges from 0 to 1.

As expressed in Equation 2, the forget gate Gl
t was the weighted

sum of three terms: the RNN’s previous output Hl
t21, the CNN’s cur-

rent output ul xtð Þ, and the RNN’s current input from the lower layer

maxpool Hl21
t

� �
. Here, maxpool(�) stands for the max-pooling opera-

tion, which in this study used a kernel size of 2 3 2 and a stride of 2 to

spatially subsample half of the RNN’s output at layer l-1 and fed the

result as the input to layer l in the RNN. Note that the weighted sum-

mation was in practice implemented as convolving a 3 3 3 kernel (with

a padding of 1) across all three input terms concatenated together, as

expressed by cat(�) in Equation 2. This reduced the number of

unknown parameters to be trained. In other words, xl 2 RM3N3333,

where M and N were the numbers of output and input feature maps,

respectively.

2.4 | Training the RNN for action recognition

The RNN was trained for video action recognition by using the first

split of the UCF101 dataset (Soomro et al., 2012). The dataset included

9,537 training videos and 3,783 validation videos from 101 labeled

action categories, which included five general types of human actions:

human–object interaction, body motion, human–human interaction,

playing musical instruments, and sports. See Appendix for the list of all

action categories. All videos were resampled at 5 frames per second,

and preprocessed as described elsewhere (Ballas et al., 2015), except

that we did not artificially augment the dataset with random crops.

FIGURE 1 The recurrent model of vision. (a) The architectural design of the RNN. (b) The model training strategy. The gray blocks indicate
the CNN layers; the orange blocks indicate the RNN layers. The CNN was pretrained and fixed, while the RNN was optimized on the task
of action recognition [Color figure can be viewed at wileyonlinelibrary.com]
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To train the RNN with labeled action videos, a linear softmax clas-

sifier was added to the RNN to classify every training video frame as

one of the 101 action categories. As expressed by Equation 3, the

inputs to the classifier were the feature representations from all layers

in the RNN, and its outputs were the normalized probabilities, by which

a given video frame was classified into predefined categories (Figure

1b).

ŷt5softmax avgpool Hl
t

� �h i
8l
d

� �
(3)

where avgpool Hl
t

� �
reduced Hl

t from a 3-D feature array to a 1-D fea-

ture vector by averaging over the spatial dimension (or average pool-

ing); �½ �8l further concatenated the feature vectors across all layers in

the RNN; d 2 RPx101 was a trainable linear function to transform the

concatenated feature vector onto a score for each category; softmax

�ð Þ converted the scores into a probability distribution, ŷt, to report the

result of action categorization given each input video frame.

The loss function for training the RNN was defined as below:

L xl
� �

8l; d
� �

52
1
T

XT

t51

log p ytjxt; d; xl
� �

8l
� �

(4)

where yt stands for the true action category labeled for the input xt.

Here, the learning objective was to maximize the average (over T sam-

ples) log probability of correct classification conditioned on the input

xtf g8t and parameterized by linear projection d and the recurrent

parameters xl
� �

8l.

The RNN was trained by using mini-batch gradient descent and

back-propagation through time (Werbos, 1990). The parameters xl
� �

8l
were initialized as random values from a uniform distribution between

20.01 and 0.01. For the training configurations, the batch size was set

to 10. The sequence length was 20 frames, so that the losses were

accumulated over 20 consecutive frames before back-propagation. A

dropout of 0.7 was used to train d. The gradient vector was normalized

to 5. The gradient descent algorithm was based on the Adam optimizer

(Kingma & Ba, 2014) with the learning rate initialized as 1e-3. The

learning rate was decayed by 0.1 every 10 epochs, while the learning

iterated across all training videos in each epoch.

To evaluate the RNN on the task of action recognition, we eval-

uated the top-1 accuracy given the validation videos, while being top-1

accurate meant that the most probable classification matched the label.

In addition, we also trained a linear softmax classifier based on the fea-

ture representations extracted from the CNN with the same training

data and learning objective, and evaluated the top-1 accuracy for

model comparison.

2.5 | Encoding models

For each subject, a voxel-wise encoding model (Naselaris, Kay, Nishi-

moto, & Gallant, 2011) was established for predicting the fMRI

response to natural movie stimuli based on the features of the movie

extracted by the RNN (or the CNN for comparison). A linear regression

model was trained separately for each voxel to project feature repre-

sentations to voxel responses, similar to prior studies (Eickenberg et al.,

2017; G€uçl€u & van Gerven, 2015a, 2015b; Wen et al., 2017a, 2017b,

2017c). As described below, the same training methods were used

regardless of whether the RNN or the CNN was used as the feature

model.

Using the RNN (or the CNN), the feature representations of the

training movie were extracted and sampled every second. Note that

the feature dimension was identical for the CNN and the RNN, both

including feature representations from four layers with exactly matched

numbers of units in each layer. For each of the four layers, the number

of units was 401408, 200704, 100352, and 25088. Combining features

across these layers ended up with a very high-dimensional feature

space. To reduce the dimension of the feature space, principal compo-

nent analysis (PCA) was applied first to each layer and then to all layers,

similar to our prior studies (Wen et al., 2017a, 2017b, 2017c). The prin-

cipal components (PCs) were identified based on the feature represen-

tations of the training movie, and explained 90% variance. Such PCs

defined a set of orthogonal basis vectors, spanning a subspace of the

original feature space (or the reduced feature space). Applying this

basis set as a linear operator, B, to any representation, X, in the original

feature space, converted it to the reduced feature space, as expressed

by Equation 5; applying the transpose of B to any representation, Z, in

the reduced feature space, converted it to the original feature space.

Z5XB (5)

where X 2 RT3q stands for the representation of the RNN (or the

CNN) with T samples and q units; B is a q-by-p matrix that consists of

the PCs identified with the training movie; and Z 2 RT3p stands for the

p-dimensional feature representations after dimension reduction

(p< q).

The feature representations after dimension reduction (i.e. columns

in Z) were individually convolved with a canonical hemodynamic

response function (HRF) (Buxton, Uluda�g, Dubowitz, & Liu, 2004) and

downsampled to match the sampling rate for fMRI. Then, Z was used

to fit each voxel’s response during the training movie through a voxel-

specific linear regression model, expressed as Equation 6.

yv5Zwv1ev (6)

where wv is a columnar vector of regression coefficients specific to

voxel v, and Ev is the error term. To estimate wv , L2-regularized least-

squares estimation was used while the regularization parameter k was

determined based on fivefold cross-validation.

ŵv5argmin
wv

kyv2Zwvk221kkwvk22 (7)

To train this linear regression model, we used the fMRI data

acquired during the training movie. The model training was performed

separately for the two feature models (the RNN and the CNN) using

the same training algorithm. Afterwards, we used the trained encoding

models to predict cortical fMRI responses to the independent testing

movie. The prediction accuracy was quantified as the temporal correla-

tion (r) between the observed and predicted responses at each voxel.

As in our previous studies (Wen et al., 2017a, 2017b, 2017c), the sta-

tistical significance of the prediction accuracy was evaluated voxel-by-

voxel with a block-permutation test (Adolf et al., 2014) corrected at the

false discovery rate (FDR) q < 0:01.
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Given the dimension reduction of the feature space, ŵv described

the contributions to voxel v from individual basis vectors in the

reduced feature space (i.e., columns of B in Equation 5). As the dimen-

sion reduction was through linear transform, the voxel-wise encoding

models (Equation 6) could be readily rewritten with the regressors spe-

cific to individual units (instead of basis vectors) in the RNN (or the

CNN). In this equivalent encoding model, the regression coefficients,

denoted as b̂v , reported the contribution from every unit to each voxel,

and could be directly computed from ŵv as below.

b̂v5Bŵv (8)

For each voxel, we further identified a subset of units in the RNN

that contributed to the voxel’s response relatively more than other

units. To do so, half of the maximum in the absolute values of b̂v was

taken as the threshold. Those units, whose corresponding regression

coefficients had absolute values greater than this threshold, were

included in a subset (denoted as Iv ) associated with voxel v.

2.6 | Model evaluation and comparison

After training them using the same training data and the same training

algorithms, we compared the encoding models based on the RNN and

those based on the CNN. For this purpose, the encoding performance

was evaluated as the accuracy of predicting the cortical responses to

every session of the testing movie. The prediction accuracy was meas-

ured as the temporal correlation (r) and then was converted to a z score

by Fisher’s z-transformation. For each voxel, the z score was averaged

across different movie sessions and different subjects, and the difference

in the average z score between the RNN and the CNN was computed

voxel by voxel. Such voxel-wise difference (Dz) was evaluated for statisti-

cal significance using the paired t test across different movie sessions

and different subjects (p<0.01). The differences were also assessed at

different ROIs, which were defined based on the cortical parcellation

(Glasser et al., 2016), and evaluated for statistical significance using the

paired t test across voxels (p< .01). For the voxels where RNN signifi-

cantly outperformed CNN, we further divided them into the voxels in

early visual areas, dorsal-stream areas, and ventral-stream areas. We

evaluated whether the improved encoding performance (Dz) was signifi-

cantly higher for the dorsal stream than the ventral stream. For this pur-

pose, we applied two-sample t test to the voxel-wise Dz value in the

dorsal versus ventral visual areas with the significance level at 0.01.

We also compared the encoding performance against the “noise

ceiling,” or the upper limit of the prediction accuracy (Nili et al., 2014).

The noise ceiling was lower than 1, due to the fact that the measured

fMRI data contained ongoing noise or activity unrelated to the external

stimuli, and thus the measured data could not be entirely predictable

from the stimuli even if the model were perfect. As described else-

where (Kay, Winawer, Mezer, & Wandell, 2013), the response (evoked

by the stimuli) and the noise (unrelated to the stimuli) were assumed to

be additive and independent and follow normal distributions. Such

response and noise distributions were estimated from the data. For

each subject, the testing movie was presented ten times. For each

voxel, the mean of the noise was assumed to be zero; the variance of

the noise was estimated as the mean of the standard errors in the data

across the 10 repetitions; the mean of the response was taken as the

voxel signal averaged across the 10 repetitions, and the variance of the

response was taken as the difference between the variance of the data

and the variance of the noise. From the estimated signal and noise dis-

tributions, we conducted Monte Carlo simulations to draw samples of

the response and the noise, and to simulate noisy data by adding the

response and noise samples. The correlation between the simulated

response and noisy data was calculated for each of the 1,000 repeti-

tions of simulation, yielding the distribution of noise ceilings at each

voxel or ROI.

2.7 | Mapping the cortical hierarchy for

spatiotemporal processing

We also used the RNN-based encoding models to characterize the

functional properties of each voxel, by summarizing the fully-

observable properties of the RNN units that were most predictive of

that voxel. As mentioned, each voxel was associated with a subset of

RNN units Iv. In this subset, we calculated the percentage of the units

belonging to each of the four layers (indexed by 1–4) in the RNN, mul-

tiplied the layer-wise percentage by the corresponding layer index, and

summed the result across all layers to yield a number (between 1 and

4). This number was assigned to the given voxel v, indicating this vox-

el’s putative “level” in the visual hierarchy. Mapping the voxel-wise

level revealed the hierarchical cortical organization for spatiotemporal

visual processing.

2.8 | Estimating temporal receptive windows

We also quantified the temporal receptive window (TRW) at each voxel

v by summarizing the “temporal dependency” of its contributing units Iv

in the RNN. For each unit i 2 Iv , its forget gate, denoted as Gi
t, con-

trolled the memory storage vs. retrieval at each moment t. For simplic-

ity, let us define a “remember” gate, Qi
t512Gi

t, to act oppositely as the

forget gate. From Equation 1, the current state (or unit activity) Hi
t was

expressed as a function of the past input xt2sj1 � s � tf g.

Hi
t5

Yt

k51

Qi
kH

i
01

Xt21

s50

uis tð Þui xt2sð Þ (9)

where uis tð Þ5Qs21
k50 Q

i
t2kG

i
t2s. In Equation 9, the first term was zero

given the initial state Hi
050. The second term was the result of apply-

ing a time-variant filter hi tð Þ5 ui1 tð Þ � � � uit21 tð Þ� �
to the time series of

the spatial representation ui xtð Þ� �
8t extracted by the CNN from every

input frame xtf g8t. In this filter, each element uis tð Þ reflected the effect

of the past visual input xt2s (with an offset s) on the current state Hi
t.

As it varied in time, we averaged the filter hi tð Þ across time, yielding �h
i

to represent the average temporal dependency of each unit i.

From the observable temporal dependency of every unit, we

derived the temporal dependency of each voxel by using the linear

unit-to-voxel relationships established in the encoding model. For each

voxel v, the average temporal dependency was expressed as a filter �h
v
,
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which was derived as the weighted average of the filters associated

with its contributing RNN units �h
iji 2 Iv

n o
, as in Equation 10.

�h
v
5

P
i2Iv jbi

v j�h iP
i2Iv jbi

v j
(10)

Of �h
v
, the elements �u

v
s delineated the dependency of the current

response at voxel v on the past visual input with an offset s prior to

the current time. The accumulation of temporal information was meas-

ured as the sum of �uvs across different offsets in a given time window.

The window size that accounted for 95% of the accumulative effect

integrated over an infinite past period was taken as the TRW for voxel

v. In the level of ROIs, the TRW was averaged across voxels within

each predefined ROI. The difference in TRW between different ROIs

was evaluated using two-sample t tests (p< .01).

2.9 | Spectral analysis of forget gate dynamics

We also characterized the temporal fluctuation of the forget gate at each

unit in the RNN. As the forget gate behaved as a switch for controlling,

moment by moment, how information was stored into versus retrieved

from process memory, its fluctuation reflected the dynamics of process

memory in the RNN given natural video inputs.

To characterize the forget-gate dynamics, its power spectral den-

sity (PSD) was evaluated. The PSD followed a power-law distribution

that was fitted with a descending line in the double-logarithmic scale.

The slope of this line, or the power-law exponent (PLE) (Miller, Soren-

sen, Ojemann, & Den Nijs, 2009; Wen & Liu, 2016), characterized the

balance between slow (low-frequency) and fast (high-frequency)

dynamics. A higher PLE implied that slow dynamics dominated fast

dynamics; a lower PLE implied the opposite. After the PLE was eval-

uated for each unit, we derived the PLE for each voxel v as a weighted

average of the PLE of every unit i that contributed to this voxel (i 2 Iv ),

in a similar way as expressed in Equation 10.

3 | RESULTS

3.1 | RNN learned video representations for action

recognition

We used a recurrent neural network (RNN) to model and predict corti-

cal fMRI responses to natural movie stimuli. This model extended a

pretrained CNN (VGG16) (Simonyan & Zisserman, 2014) by adding

recurrent connections to different layers in the CNN (Figure 1). While

fixing the CNN, the weights of recurrent connections were optimized

by supervised learning with >13,000 labeled videos from 101 action

categories (Soomro et al., 2012). After training, the RNN was able to

categorize independent test videos with 76.7% top-1 accuracy. This

accuracy was much higher than the 65.09% accuracy obtained with the

CNN, and close to the 78.3% accuracy obtained with the benchmark

RNN model (Ballas et al., 2015).

Unlike the CNN, the RNN explicitly embodied a network architec-

ture to learn hierarchically organized video representations for action

recognition. When taking isolated images as the input, the RNN

behaved as a feedforward CNN for image categorization. In other

words, the addition of recurrent connections enabled the RNN to rec-

ognize actions in videos, without losing the already learned ability for

recognizing objects in images.

3.2 | RNN better predicted cortical responses to

natural movies

Accompanying its enriched AI, the RNN learned to utilize the temporal

relationships between video frames, whereas the CNN treated individ-

ual frames independently. We asked whether the RNN constituted a

better model of the visual cortex than the CNN, by evaluating and

comparing how well these two models could predict cortical fMRI

responses to natural movie stimuli. The prediction was based on voxel-

wise linear regression models, through which the representations of

the movie stimuli, as extracted by either the RNN or the CNN, were

projected onto each voxel’s response to the stimuli. Such regression

models were trained and tested with different sets of video stimuli

(12.4 or 2.4 h for training, 40 min for testing) to ensure unbiased model

evaluation and comparison. Both the RNN and the CNN explained sig-

nificant variance of the movie-evoked response for widespread cortical

areas (Figure 2a,b). The RNN consistently performed better than the

CNN, showing significantly (p< .01, paired t test) higher prediction

accuracy for nearly all visual areas (Figure 2d), especially for cortical

locations along the dorsal visual stream relative to the ventral stream

(p< .01, two-sample t test) (Figure 2c). The response predictability

given the RNN was about half of the “noise ceiling”—the upper limit by

which the measured response was predictable given the presence of any

ongoing “noise” or activity unrelated to the stimuli (Figure 2d). This find-

ing was consistently observed for each of the three subjects (Figure 3).

3.3 | RNN revealed a gradient in temporal receptive

windows (TRWs)

Prior studies have shown empirical evidence that visual areas were

hierarchically organized to integrate information not only in space (Kay

et al., 2013) but also in time (Hasson et al., 2008). Units in the RNN

learned to integrate information over time through the unit-specific

“forget gate,” which controlled how past information shaped processing

at the present time. Through the linear model that related RNN units

to each voxel, the RNN’s temporal “gating” behaviors were passed

from units to voxels in the brain. As such, this model allowed us to

characterize the TRWs, in which past information was carried over and

integrated over time to affect and explain the current response at each

specific voxel or region.

Figure 4a shows the response at each given location as the accu-

mulative effect integrated over a varying period (or window) prior to

the current moment. On average, the response at V1 reflected the inte-

grated effects over the shortest period, suggesting the shortest TRW

at V1. Cortical areas running down the ventral or dorsal stream inte-

grated information over progressively longer TRWs (Figure 4a). Map-

ping the voxel-wise TRW showed a spatial gradient aligned along the

visual streams, suggesting a hierarchy of temporal processing in the
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visual cortex (Figure 4b). In the ROI level, the TRWs were significantly

shorter for early visual areas than those for higher-order ventral or dor-

sal areas; and the dorsal areas tended to have longer TRWs than the

ventral areas (Figure 4c). While Figure 4 shows the results for Subject

1, similar results were also observed in the other subjects (Supporting

Information, Figures S1 and S2). We interpret the TRW as a measure

of the average capacity of process memory at each cortical location

involved in visual processing.

3.4 | RNN revealed the slow versus fast dynamics of

process memory

In the RNN, the forget gate varied from moment to moment, indicating

how the past versus current information was mixed together to deter-

mine the representation at each moment. Given the testing movie stim-

uli, the dynamics of the forget gate was scale free, showing a power-

law relationship in the frequency domain. The power-law exponent

(PLE) reported on the balance between slow and fast dynamics: a

higher exponent indicated a tendency for slow dynamics and a lower

exponent indicated a tendency for fast dynamics.

After projecting the PLEs from units to voxels, we mapped the dis-

tribution of the voxel-wise PLE to characterize the dynamics of process

memory (Hasson et al., 2015) at each cortical location. As shown in Fig-

ure 5, the PLE was lower in early visual areas but became increasingly

larger along the downstream pathways in higher order visual areas. Such

trend was similar to the gradient in TRWs (Figure 4b), where the TRWs

were shorter in early visual areas and longer in higher order visual areas.

In general, lower PLEs were associated with areas with shorter TRWs;

higher PLEs were associated with areas with longer TRWs.

We further evaluated the correlation (across voxels) between PLE

and the improved encoding performance given RNN relative to CNN.

The correlation was marginally significant (r50.16 6 0.04, p5 .04),

suggesting a weak tendency that RNN better explained cortical

responses at the voxels with relatively slower dynamics.

3.5 | RNN revealed the cortical hierarchy of

spatiotemporal processing

CNNs revealed the hierarchical organization of spatial processing in the

visual cortex (Eickenberg et al., 2017; G€uçl€u & van Gerven, 2015a;

FIGURE 2 Prediction accuracies of the cortical responses to novel movie stimuli. (a) Performance of the CNN-based encoding model, aver-
aged across testing movie sessions and subjects. (b) Performance of the RNN-based encoding model, averaged across testing movie sessions
and subjects. (c) Significant difference in the performance between the RNN and CNN (p< .01). The values of the difference were com-
puted by subtracting (a) from (b). (d) Comparison of performance at different ROIs with noise ceilings. The accuracy at each ROI is the voxel
mean within the region, where the red bars indicate the standard error of accuracies across voxels. The gray blocks indicate the lower and
upper bounds of the noise ceilings and the gray bars indicate the mean and standard deviation of the noise ceilings at each ROI [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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Horikawa & Kamitani, 2017; Wen et al., 2017a). By using the RNN as a

network model for spatiotemporal processing, we further mapped the

hierarchical cortical organization of spatiotemporal processing. To do

so, every voxel, where the response was predictable by the RNN, was

assigned with an index, ranging continuously between 1 and 4. This

index reported the “level” that a voxel was involved in the visual hierar-

chy: a lower index implied an earlier stage of processing; a higher index

implied a later stage of processing. The topography of the voxel-wise

level index showed a cortical hierarchy (Figure 6). Locations from

striate to extrastriate areas were progressively involved in early to late

stages of processing the information in both space and time.

4 | DISCUSSION

Here, we designed and trained a recurrent neural net (RNN) to learn

video representations for action recognition, and to predict cortical

responses to natural movies. This RNN extended from a pretrained

CNN by adding layer-wise recurrent connections to allow visual infor-

mation to be remembered and accumulated over time. In line with the

hypothesis of process memory (Hasson et al., 2015), such recurrent

connections formed a hierarchical and distributed model of memory as

an integral part of the network for processing dynamic and natural vis-

ual input. Compared to the CNN, the RNN supported both image and

action recognition, and better predicted cortical responses to natural

movie stimuli at all visual areas, especially those along the dorsal

stream. More importantly, the RNN provided a fully observable compu-

tational model to characterize and map temporal receptive windows,

dynamics of process memory, and a cortical representational hierarchy

for dynamic natural vision.

4.1 | A network model of process memory

Our work was in part inspired by the notion of “process memory” (Has-

son et al., 2015). In this notion, memory is a continuous and distributed

process as an integral part of information processing, as opposed to an

encapsulated functional module separate from the neural circuits that

process sensory information. Process memory provides a mechanism

for the cortex to process the temporal information in natural stimuli, in

a similarly hierarchical way as cortical processing of spatial information

(Hasson et al., 2015). As explored in this study, the RNN uses an

explicit model of process memory to account for dynamic interactions

between incoming stimuli and the internal states of the neural network,

or the state-dependent computation (Buonomano & Maass, 2009). In

the RNN, the “forget gate” controls, separately for each unit in the net-

work, how much its next state depends on the incoming stimuli versus

its current state. As such, the forget gate behaves as a switch of pro-

cess memory to control how much new information should be stored

into memory and how much history information should be retrieved

from memory. This switch varies moment to moment, allowing memory

storage and retrieval to occur simultaneously and continuously.

As demonstrated in this study, this model of process memory

could be trained, with supervised learning, for the RNN to classify vid-

eos into action categories with a much higher accuracy than the CNN

without any mechanism for temporal processing. It suggests that inte-

grating process memory to a network of spatial processing indeed

FIGURE 3 Prediction accuracies of the cortical responses to novel movie stimuli for individual subjects. (a) Performance of the CNN-based
encoding model, averaged across testing movie sessions. (b) Performance of the RNN-based encoding model, averaged across testing movie
sessions [Color figure can be viewed at wileyonlinelibrary.com]
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makes the network to be capable of spatiotemporal processing, as

implied in previous theoretical work (Buonomano & Maass, 2009).

4.2 | From theoretical modeling to empirical evidence

of process memory

A unique contribution of this study is that computational modeling of

process memory is able to explain previous empirical evidence for pro-

cess memory. One of the strongest evidence for process memory is

that the cortex organizes a topography of temporal receptive window

(Hasson et al., 2008; Honey et al., 2012), which may be interpreted as

the voxel-wise capacity of process memory. To probe the TRW, an

experimental approach is to scramble the temporal structure of natural

stimuli in multiple timescales and measure their resulting effects on

cortical responses (Hasson et al., 2008). The TRW measured in this

way increases orderly from early sensory areas to higher order

perceptual or cognitive areas (Hasson et al., 2015), suggesting a hier-

archical organization of temporal processing. With this approach, the

brain is viewed as a “black box” and is studied by examining its output

given controlled perturbations to its input.

In this study, we have reproduced the hierarchically organized

TRW by using a model-driven approach. The RNN tries to model the

inner working of the visual cortex as a computable system, such that

the system’s output can be computed from its input. If the model uses

the same computational and organizational principles as does the brain

itself, the model’s output should match the brain’s response given the

same input (Naselaris et al., 2011; Wu, David, & Gallant, 2006). By

“matching,” we do not mean that the unit activity in the model should

match the voxel response in the brain with one-to-one correspon-

dence, but up to linear transform (Yamins & Di Carlo, 2016) because it

is unrealistic to exactly model the brain. This approach allows us to test

computational models against experimental findings. The fact that the

FIGURE 4 Model-estimated TRWs in the visual cortex of Subject 1. (a) The accumulation of information at different ROIs along ventral
and dorsal streams. Window size represents the period to the past, and temporal integration indicates the relative amount of accumulated
information. (b) The cortical map of TRWs estimated by the RNN. The color bar indicates the window sizes at individual voxels. (c) Average
TRWs at individual ROIs. The blue bars represent the early visual cortex, the green bars the ventral areas, and the red bars the dorsal areas.
The black error bars indicate the standard errors across voxels [Color figure can be viewed at wileyonlinelibrary.com]
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model of process memory explains the topography of TRW (i.e., the

hallmark evidence for process memory) lends synergistic support to

process memory as a fundamental principle for spatiotemporal process-

ing of natural visual stimuli.

4.3 | RNN extends CNN as both a brain model

and an AI

Several recent studies explored deep-learning models as predictive

models of cortical responses during natural vision (Cichy et al., 2016;

Eickenberg, et al., 2017; G€uçl€u & van Gerven, 2015a, 2015b;

Horikawa & Kamitani, 2017; Khaligh-Razavi & Kriegeskorte, 2014;

Wen et al., 2017a, 2017b, 2017c; Yamins et al., 2014). Most of the

prior studies used CNNs that extracted spatial features to support

image recognition, and demonstrated the CNN as a good model for

the feedforward process along the ventral visual stream (Eickenberg,

et al., 2017; G€uçl€u & van Gerven, 2015a; Khaligh-Razavi & Kriege-

skorte, 2014; Yamins et al., 2014). In our recent study (Wen et al.,

2017a), the CNN was further found to be able to partially explain

the dorsal-stream activity in humans watching natural movies; how-

ever, the predictive power of the CNN was lesser in the dorsal

stream than in the ventral stream. Indeed, the dorsal stream is

known for its functional roles in temporal processing and action rec-

ognition in vision (Goodale & Milner, 1992; Rizzolatti & Matelli,

2003; Shmuelof & Zohary, 2005). It is thus expected that the limited

ability of the CNN for explaining the dorsal-stream activity is due to

its lack of any mechanism for temporal processing.

Extending from the CNN, the RNN established in this study

offered a network mechanism for temporal processing, and improved

the performance in action recognition. Along with this enhanced per-

formance toward humans’ perceptual ability, the RNN also better

explained human brain activity than did the CNN (Figure 2). The

improvement was more apparent in areas along the dorsal stream than

those along the ventral stream (Figure 2). It is worth noting that when

the input is an image rather than a video, the RNN behaves as the

CNN to support image classification. In other words, the RNN extends

the CNN to learn a new ability (i.e., action recognition) without losing

the already learned ability (i.e. image recognition). On the other

hand, the RNN, as a model of the visual cortex, improves its ability in

FIGURE 5 Model-estimated memory dynamics in the visual cortex. Consistent across subjects, lower PLEs are associated early visual
areas, and higher PLEs are associated with later stages of visual processing [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Model-estimated hierarchical organization of
spatiotemporal processing. Consistent across subjects, lower layer
indices are assigned to early visual areas and higher layer indices
are assigned to later stages of visual processing. The color bar
indicates the range of layer assignment, from layer 1 to 4 [Color
figure can be viewed at wileyonlinelibrary.com]
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predicting brain activity not only at areas where the CNN falls short

(i.e., dorsal stream), but also at areas where the CNN excels (i.e., ventral

stream). As shown in this study, the RNN better explained the dorsal

stream, without losing the already established ability to explain the

ventral stream (Figure 2).

This brings us to a perspective about developing brain models or

brain-inspired AI systems. As humans continuously learn from experi-

ences to support different intelligent behaviors, it is desirable for an AI

model to continuously learn to expand capabilities while keeping exist-

ing capabilities. When it is also taken as a model of the brain, this AI

model should be increasingly more predictive of brain responses at

new areas, while remaining its predictive power at areas where the

model already predicts well. This perspective is arguably valuable for

designing a brain-inspired system for continuous learning as does the

brain itself.

Our finding that RNN outperformed CNN in explaining cortical

responses most notably in the dorsal stream might also be due to

the fact that the RNN was trained for action recognition. In fact,

action recognition is commonly associated with dorsal visual areas,

whereas object recognition is associated with ventral visual areas

(Yoon, Humphreys, Kumar, & Rotshtein, 2012). As a side exploration

in this study, we also used a meta-analysis tool (neuronsynth.org) to

map the cortical activations with visual action related tasks primarily

in supramarginal gyrus, pre-/post-central sulcus, intraparietal sulcus,

superior parietal gyrus, and inferior frontal gyrus. Such areas over-

lapped with where we found significantly greater encoding perform-

ance with RNN than with CNN. However, this overlap should not be

simply taken as the evidence that the better model prediction is due

to the goal of action recognition, instead of the model’s memory

mechanism. The memory mechanism supports the action recogni-

tion; the action recognition allows the mechanism to be parameter-

ized through model training. As such, the goal and the mechanism

are tightly interconnected aspects of the model. Further insights

await future studies.

4.4 | Comparison with related prior work

Other than RNN, a three-dimensional (3-D) CNN may also learn spa-

tiotemporal features for action recognition of videos (Tran et al.,

2015). A 3-D CNN shares the same computational principle as an

otherwise 2-D CNN, except that the input to the former is a time

series of video frames with a specific duration, whereas the input to

the latter is a single video frame or image. Previously, the 3-D CNN

was shown to explain cortical fMRI responses to natural movie stim-

uli (G€uçl€u & van Gerven, 2015b). However, it is unlikely that the

brain works in a similar way as a 3-D CNN. The brain processes vis-

ual information continuously delivered from 2-D retinal input, rather

than processing time blocks of 3-D visual input as required for 3-D

CNN. Although it is a valid AI model, 3-D CNN is not appropriate

for modeling or understanding the brain’s mechanism of dynamic

natural vision.

It is worth noting that the fundamental difference between the

RNN model in this study and that in a recently published study (G€uçl€u

& van Gerven, 2017). Here, we used the RNN as a feature model or

the model of the visual cortex, whereas G€uçl€u and van Gerven used

the RNN as the response model in an attempt to better describe the

complex relationships between the CNN and the brain. Although a

complex response model is potentially useful, it defeats our purpose of

seeking a computational model that matches the visual cortex up to lin-

ear transform. It has been our intention to find a model that shares sim-

ilar computing and organization principles as the brain. Toward this

goal, the response model needs to be as simple as possible, independ-

ent of the visual input, and with canonical or independently defined

HRF.

4.5 | Future directions

The focus of this study is on vision. However, the RNN is expected to

be useful, or even more useful, for modeling other perceptual or cogni-

tive systems beyond vision. RNNs have been successful in computer

vision (Donahue et al., 2015), natural language processing (Hinton

et al., 2012; Mikolov, Karafi�at, Burget, Cernock�y, & Khudanpur, 2010),

attention (Mnih et al., 2014; Sharma, Kiros, & Salakhutdinov, 2015; Xu

et al., 2015), memory (Graves, Wayne, & Danihelka, 2014), and plan-

ning (Zaremba & Sutskever, 2015). It is conceivable that such RNNs

would set a good starting point to model the corresponding neural sys-

tems, to facilitate the understanding of the network basis of complex

perceptual or cognitive functions.

The RNN offers a computational account of temporal processing.

If the brain performs similar computation, how is it implemented? The

biological implementation of recurrent processing may be based on lat-

eral or feedback connections (Kafaligonul, Breitmeyer, & €O�gmen, 2015;

Lamme, Super, & Spekreijse, 1998). The latter is of particular interest,

since the brain has abundant feedback connections to exert top–down

control of feedforward processes (de Fockert, Rees, Frith, & Lavie,

2001; Itti, Koch, & Niebur, 1998). However, the feedback connections

are not taken into account in this study, but may be incorporated into

the models in the future by using such brain principles as predictive

coding (Rao & Ballard, 1999) or the free-energy principle (Friston,

2010). Recent efforts along this line are promising (Canziani & Culur-

ciello, 2017; Lotter, Kreiman, & Cox, 2016) to merit further

investigation.
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APPENDIX : THE FULL LIST OF ACTION
CATEGORIES IN UCF101 DATASET

Apply eye makeup, apply lipstick, archery, baby crawling, balance beam,

band marching, baseball pitch, basketball shooting, basketball dunk,

bench press, biking, billiards shot, blow dry hair, blowing candles, body

weight squats, bowling, boxing punching bag, boxing speed bag, breast-

stroke, brushing teeth, clean and jerk, cliff diving, cricket bowling,

cricket shot, cutting in kitchen, diving, drumming, fencing, field hockey

penalty, floor gymnastics, Frisbee catch, front crawl, golf swing, haircut,

hammer throw, hammering, handstand pushups, handstand walking,
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head massage, high jump, horse race, horse riding, hula hoop, ice danc-

ing, javelin throw, juggling balls, jump rope, jumping jack, kayaking, knit-

ting, long jump, lunges, military parade, mixing batter, mopping floor,

nun chucks, parallel bars, pizza tossing, playing guitar, playing piano,

playing tabla, playing violin, playing cello, playing Daf, playing dhol,

playing flute, playing sitar, pole vault, pommel horse, pull ups, punch,

push-ups, rafting, rock climbing indoor, rope climbing, rowing, salsa

spins, shaving beard, shot put, skate boarding, skiing, skijet, sky diving,

soccer juggling, soccer penalty, still rings, sumo wrestling, surfing,

swing, table tennis shot, tai chi, tennis swing, throw discus, trampoline

jumping, typing, uneven bars, volleyball spiking, walking with a dog,

wall pushups, writing on board, and yo yo.
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