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Summary

The application of sophisticated analytical methods to intensive longitudinal data, collected with 

ecological momentary assessments (EMA), has helped researchers better understand smoking 

behaviors after a quit attempt. Unfortunately, the wealth of information captured with EMAs is 

typically underutilized in practice. Thus, novel methods are needed to extract this information in 

exploratory research studies. One of the main objectives of intensive longitudinal data analysis is 

identifying relations between risk factors and outcomes of interest. Our goal is to develop and 

apply expectation maximization variable selection for Bayesian multistate Markov models with 

interval-censored data to generate new insights into the relation between potential risk factors and 

transitions between smoking states. Through simulation, we demonstrate the effectiveness of our 

method in identifying associated risk factors and its ability to outperform the LASSO in a special 

case. Additionally, we use the expectation conditional-maximization algorithm to simplify 

estimation, a deterministic annealing variant to reduce the algorithm’s dependence on starting 

values, and Louis’s method to estimate unknown parameter uncertainty. We then apply our method 

to intensive longitudinal data collected with EMA to identify risk factors associated with 

transitions between smoking states after a quit attempt in a cohort of socioeconomically 

disadvantaged smokers who were interested in quitting.
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1. Introduction

Ecological momentary assessment (EMA) is a sampling method that allows researchers to 

collect a rich stream of repeated assessment data which can help determine the 

psychological and environmental factors associated with an individual’s behavioral change, 

in their natural environment (Shiffman et al., 1997). EMAs capture an individual’s 

experiences close to their occurrence at a high temporal resolution using various assessment 

tools, such as smart phone apps. Consequently, a larger number of moments are observed 

than in traditional longitudinal studies, which may provide a more accurate depiction of an 

individual’s behavior over time. EMA data are referred to as intensive longitudinal data 

(Walls and Schafer, 2005). One of the main objectives of intensive longitudinal data analysis 

is to identify or re-affirm complex relations between risk factors and behavioral outcomes 

over time (Walls and Schafer, 2005).

In both intensive and traditional longitudinal studies, researchers often monitor individuals 

as they transition through discrete behavioral states, such as smoking status. In practice, 

assessments rely on compliance. As a result, assessments are sometimes missing, unequally 

spaced, and the exact time of transition between states is unknown (i.e., transition times are 

interval-censored). For traditional longitudinal studies, this type of data structure is 

commonly analyzed using multistate, continuous-time Markov models (MSMs) (Kay, 1986; 

Kalbfleisch and Lawless, 1985; Jones et al., 2006; Marshall and Jones, 1995; Saint-Pierre et 

al., 2003; Pan et al., 2007; Ma et al., 2015). MSMs can offer insights into behavioral 

processes (Saint-Pierre et al., 2003). By including covariates in these models, researchers are 

able to assess which risk factors are associated with an individual’s transition between 

behavioral states (Saint-Pierre et al., 2003). For instance, in an exploratory study monitoring 

an individual’s smoking behaviors after a planned quit date, a two-state Markov model could 

help identify which risk factors are associated with transitioning from a non-smoking to 

smoking state or from a smoking to non-smoking state. Even though MSMs are a versatile 

and convenient approach to analyzing traditional longitudinal data (Farewell and Tom, 2014) 

and are an available tool for identifying complex relations between potential risk factors and 

behavioral outcomes over time, they have yet to be applied to intensive longitudinal data.

The main objective of this study is to identify risk factors associated with transition between 

discrete smoking states using a MSM for intensive longitudinal data with interval-censoring. 

Currently, MSMs for interval-censored data lack an efficient, practical approach for 

selecting risk factors associated with transition rates. For traditional longitudinal data 

analyses, variable selection in MSMs has been conducted using goodness-of-fit tests and 

comparison methods (Marshall and Jones, 1995; Saint-Pierre et al., 2003; Pan et al., 2007; 

Jones et al., 2006; Aguirre-Hernández and Farewell, 2002; Farewell and Tom, 2014). This 

approach is suitable when the number of potential covariates is relatively small. However, 

for a process with k possible transitions and p potential risk factors, there are 2kp possible 

models to compare. Additionally as k and p increase, MSMs’ likelihood functions become 

complicated to compute and parameter estimates become unstable during estimation (Saint-

Pierre et al., 2003). While larger sample sizes associated with intensive longitudinal data 

help mitigate parameter instability compared with traditional longitudinal data, multiple 

comparison methods remain impractical for variable selection in large model spaces and 
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inflate type I error. Model spaces are reducible by intuitively constraining regression 

coefficients (Marshall and Jones, 1995), however this approach is suggested for more 

confirmatory research settings testing hypotheses about a behavioral process as opposed to 

exploratory research settings when the process being modeled is less understood. Thus, the 

question remains as to which covariates to select for the model.

While variable selection methods for MSMs with exact transition times are available 

(Reulen and Kneib, 2016, 2015), no variable selection methods have been developed for 

MSMs with interval-censored data. Expectation maximization variable selection (EMVS), a 

deterministic Bayesian variable selection method inspired by stochastic search variable 

selection (Ročková and George, 2014; George and McCulloch, 1993), is a promising method 

for MSMs because it is efficient at identifying associated covariates and is capable of 

accommodating various outcome data structures (Ročková and George, 2014; Koslovsky et 

al., 2016; Zhao and Lian, 2016; McDermott et al., 2016). Since this method performs 

selection on all covariates simultaneously, it does not face issues of multiple comparisons, 

which increases modeling efficiency and controls type error rates (Gelman et al., 2014). In 

contrast to stochastic search variable selection, where inference is drawn from the fully 

sampled posterior distribution using Markov Chain Monte Carlo, EMVS simply estimates 

the posterior modes with the expectation maximization (EM) algorithm (Dempster et al., 

1977). It is known that the EM algorithm is sensitive to starting values. By adding a 

deterministic annealing variant, its dependency on initial values is reduced (Ueda and 

Nakano, 1998). As a result, EMVS outperforms stochastic search variable selection in a 

fraction of the time (Ročková and George, 2014). However, efficiency gains come at a price, 

as EMVS lacks any intrinsically defined procedures to estimate unknown parameter 

variances. While there are several methods available for estimating variances when applying 

the EM algorithm (McLachlan and Krishnan, 2007), previous EMVS research has ignored 

variance estimation, only focusing on its performance at selecting associated covariates. As 

a result, researchers are unable to measure uncertainty in the final model when using EMVS. 

This limits the practicality of the method, since unbiased model interpretation relies on 

accurately accounting for model uncertainty (Chatfield, 2006).

In this paper, we take advantage of EMVS’s validated performance in selecting covariates, 

efficiency, and flexibility to various data structures, by developing it for MSMs to identify 

relations between risk factors and smoking behaviors using interval-censored, intensive 

longitudinal data collected using EMA to investigate smoking cessation attempts by a cohort 

of 146 socioeconomically disadvantaged individuals who were interested in quitting 

(Kendzor et al., 2015). At each EMA, individuals responded to a set of core items regarding 

their cognitions, affect, behaviors, environment, as well as their smoking status (non-

smoking or smoking) since the last assessment. Thus, we chose a two-state Markov model to 

analyze transitions between smoking states. Additionally, we provide closed-form 

expressions for the asymptotic variance estimates of the model’s unknown parameters which 

incorporates parameter estimation as well as variable selection uncertainty to facilitate 

unbiased interpretation of the model and increase the usefulness of this method in practice. 

The main focus of our application is to demonstrate how the proposed method could be used 

to identify which risk factors, from a pool of EMA items and baseline measures, are 

associated with smoking transition rates after the scheduled quit attempt. This insight may 
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help public health researchers design effective, real-time smoking cessation interventions. 

By targeting individuals at high risk moments, these interventions could help decrease 

smoking lapse and ultimately prevent relapse.

The remaining sections of this paper are organized as follows. In Section 2, we develop 

EMVS with a deterministic annealing variant for a two-state, continuous-time Markov 

model and provide closed-form expressions for the asymptotic variance estimates of 

unknown parameters. In Section 3, we conduct simulation studies to assess the performance 

of our method. In Section 4, we use EMVS for MSMs to identify risk factors associated with 

transitioning between smoking states in a cohort of socioeconomically disadvantaged 

smokers in a smoking cessation trial. In Section 5, we provide a discussion of our method’s 

development.

2. Methods

2.1 Model Formulation

We demonstrate how EMVS can be developed for a Bayesian MSM with interval-censored 

data to identify risk factors related to transitions between smoking states. We illustrate our 

method on a two-state, continuous-time Markov model, which coincides with our 

application. Let Yi(tij) represent the smoking state of an individual, i = 1, 2, … m, at a given 

assessment time, tij. At each time point, we observe individuals in one of two discrete states, 

defined as non-smoking (N) or smoking (S). Let j = 1, …, ni represent the potentially 

unbalanced number of recurrent assessments for each individual, i. Under the assumption of 

a homogeneous Markov process, the transition rate matrix, Q, for a two-state model is 

defined as (Cox and Miller, 1977):

Next State
N S

Q = Current N
State S

−λ
μ

λ
−μ

,

where λ and μ are the positive transition rates from N → S and S → N, respectively. The 

transition probability matrix, P(δij) = exp(Qδij), is defined as :

Next State
N S

P(δi j) = Current N

State S

PNN(δi j)

PSN(δi j)

PNS(δi j)

PSS(δi j)
,

where δij = ti,j − ti,j−1. This illustrates the transition probability for an increment of time, δij, 

between assessments. The transition probabilities are obtainable in closed-form, where

PNS(δi j) = 1 − PNN(δi j) = λ
λ + μ [1 − exp ( − (λ + μ)δi j)] (1)
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and

PSN(δi j) = 1 − PSS(δi j) = μ
λ + μ [1 − exp ( − (λ + μ)δi j)] . (2)

Pinsky and Karlin (2010) provide a detailed proof of the transition probabilities’ derivation.

Our method is focused on identifying the relation between transition rates and a set of risk 

factors or covariates (e.g., negative affect, cigarette availability). Thus, we introduce 

individual i’s observed covariates at assessment j, xi j′ = (xi j1, …, xijp), into the model by 

redefining the transition rates λ and μ in Equations (Eq.) 1 and 2 with 

λ = λi j = exp (λ0 + xi j′ βλ) and μ = μi j = exp (μ0 + xi j′ βμ), similar to (Jones et al., 2006). Here, 

exp(λ0) and exp(μ0) represent baseline hazard rates (xij = 0) for transitioning between 

smoking states. Each term in the two regression coefficient vectors, βλ′ = (βλ, 1, …, βλ, p) and 

βμ′ = (βμ, 1, …, βμ, p), is interpreted as a log-hazard ratio (Cox, 1972). This formulation allows 

each covariate, xijr, to uniquely affect both transition rates through βλ,r and βμ,r. Transition 

rates are parameterized with an exponential form since it provides a likelihood function that 

has a higher chance for parameter convergence (Pan et al., 2007). We assume that covariate 

values remain constant between consecutive assessments, but immediately at the jth 

assessment, the covariate value changes from the value at assessment j − 1 (Jones et al., 

2006). If the covariates remain constant over the assessment window, we can use one p × 1 

vector of covariates, xi, to calculate each individual’s transition rates. However, we may 

observe a different set of covariates at each assessment. So for each individual’s ni − 1 

observed transitions, ni − 1 different xij could be used to compute their transition rates.

Since we assume that data from different individuals are independent, the likelihood 

function for these data is calculated as the product of each of the m individuals’ ni − 1 

observed transition probabilities, conditioned on their respective covariates. In this analysis, 

we are primarily interested in the effect of each covariate on transition rates, so we treat the 

probability of starting out in any state as constant, similar to (Li and Chan, 2006; Saint-

Pierre et al., 2003). The likelihood function is then defined as

L(βλ, βμ, λ0, μ0 ∣ y) = ∏
i = 1

m
∏
j = 2

ni
Pyi(ti, j − 1), yi(ti, j)

(δi j ∣ xi, j − 1) . (3)

To illustrate: say individual i logs an assessment at times ti,1, ti,2,… ti,ni. At time ti,1, we 

observe him/her in state N, and at time ti,2 the individual is observed in state S. Then, the 

contribution to the likelihood for this individual’s transition from non-smoking at time ti,1 to 

smoking at time ti,2 is represented by PNS(δi2|xi,1).
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As for any Bayesian model’s formulation, the posterior distribution is proportional to the 

likelihood contribution of the data multiplied by the unknown parameters’ prior 

distributions. First, we set the log baseline hazard rates, λ0 and μ0, to follow a normal prior 

distribution with mean 0 and diffuse variance v1. The prior distributions of the two 

regression coefficient vectors, βλ′ = (βλ, 1, …, βλ, p) and βμ′ = (βμ, 1, …, βμ, p), regulate the 

variable selection procedure within EMVS. We set

π(βλ ∣ γλ, v0, v1) = N p(0, Dγλ
),

where 0 is a p-dimensional vector of zeros, and v0 and v1 are pre-set variances of exclusion 

and inclusion, respectively (Ročková and George, 2014; George and McCulloch, 1993). 

Setting v0 small drives unassociated covariate regression coefficients to zero and v1 large 

allows associated covariate regression coefficients to be freely estimated. Dγλ is a p × p 
diagonal matrix with each Drr term equal to (1 − γλ,r)v0+γλ,rv1. The prior for βμ is defined 

similarly. The 2p-dimensional inclusion parameter vector, γ′ = (γλ′ , γμ′ ), where 

γλ′ = (γλ, 1, …, γλ, p), γμ′ = (γμ, 1, …, γμ, p), and γ ∈ {0, 1}, is treated as missing and follows the 

iid Bernoulli distribution,

π(γ ∣ θ) = θ
∑r = 1

p (γλ, r + γμ, r)
(1 − θ)

2p − ∑r = 1
p (γλ, r + γμ, r)

,

where γλ,r (or γμ,r) = 1 indicates the inclusion of covariate xλ,r (or xμ,r) in the model. We set 

the prior distribution of the sparsity parameter θ ∈ [0, 1] to a weakly informative, conjugate 

beta(a, b), with a = b = 2, to remove any boundary issues during estimation, as identified in 

Koslovsky et al. (2016). Note that we parameterize θ as an overall sparsity parameter for 

both γλ,r and γμ,r. Here, we assume that the covariates’ inclusion is exchangeable, which 

places no restrictions on the complexity for the two transition rates, λij and μij. Alternative 

prior specifications that can accommodate structural information regarding the covariates are 

available (Ročková and George, 2014).

To execute our method, we iteratively determine the conditional expectation of the log 

posterior distribution, termed the Q-function, with respect to the conditional distribution of 

the missing γ|β(k), λ0
(k), μ0

(k), θ(k), y (E-step), and then maximize with respect to the 

parameters, Φ′ = (β, λ0, μ0, θ), (M-step) until convergence, where β′ = (βλ′ , βμ′ ).

2.2 E-Step

The Q-function, for iteration k + 1, is defined as
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Q[Φ ∣ Φ(k)] = Eγ ∣ · log π (Φ, γ ∣ y) ∣ Φ(k), y = ∑
γ

log π (Φ, γ ∣ y) × π(γ ∣ β(k), θ(k)),

(4)

where π(Φ, γ|y) is the complete posterior distribution and Eγ|Φ(k),y = Eγ|β(k),θ(k), which we 

denote as Eγ|·. Here, π(γ|β(k), θ(k)) is the posterior probability distribution for inclusion, 

which is equivalent to the complete posterior divided by the observed posterior. Explicitly, 

Eq. 4 is defined as

Q [Φ ∣ Φ(k)] = C + ∑
i = 1

m
∑

j = 2

ni
log Pyi(ti, j − 1), yi(ti, j)

(δi j ∣ xi, j − 1) − 1
2v1

(λ0
2 + μ0

2)

+ ∑
r = 1

p
− 1

2 βλ, r
2 Eγ ∣ ·

1
v0(1 − γλ, r) + v1γλ, r

+ βμ, r
2 Eγ ∣ ·

1
v0(1 − γμ, r) + v1γμ, r

+ Eγ ∣ ·[γλ, r + γμ, r] log θ
1 − θ + (a − 1) log θ + (b + 2p − 1) log (1 − θ)

where C is a constant term.

For the E-step, we evaluate the conditional expectations within the Q-function at the current 

iteration, k. The conditional expectation of the inclusion parameter, Eγ|·[γλ,r], is defined as

Eγ ∣ ·[γλ, r] = P(γλ, r = 1 ∣ β(k), θ(k))

=
π(βλ, r

(k) ∣ γλ, r = 1)P(γλ, r = 1 ∣ θ(k))

π(βλ, r
(k) ∣ γλ, r = 0)P(γλ, r = 0 ∣ θ(k)) + π(βλ, r

(k) ∣ γλ, r = 1)P(γλ, r = 1 ∣ θ(k))
= pλ, r

∗

where P(γλ,r = 1|θ(k)) = θ(k). The other conditional expectation is the average of the 

precisions, 1/v0 and 1/v1, weighted by the expected probability of inclusion, pλ, r
∗ ,

Eγ ∣ ·
1

v0(1 − γλr
) + v1γλr

= (1 − pλr
∗ ) 1

v0
+ pλr

∗ 1
v1

.

The conditional expectations of Eγ|· [γμ,r] and Eγ ∣ ·
1

v0(1 − γμr
) + v1γμr

 are defined similarly.
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2.3 M-Step

When applying the EM algorithm, the maximization of the Q-function is often complicated 

when closed-form solutions do not exist. The expectation conditional-maximization 

algorithm (ECM) replaces the traditional M-step with multiple conditional maximization 

steps (CM-steps), conditioned on the subset of parameters being estimated (Meng and 

Rubin, 1993). This common, alternative approach simplifies and stabilizes maximization, 

because the Q-function is maximized over a lower dimension of parameters (Meng and 

Rubin, 1993). Even after conditioning each maximization step, closed-form solutions often 

are still unobtainable. Thus, researchers rely on iterative procedures, including the Newton-

Raphson algorithm. Such is the case for our method. We define the CM-steps as follows:

CM-step 1: Obtain λ0
(k + 1) and βλ

(k + 1) by maximizing Eq. 4, conditioned on μ0
(k), βμ

(k), 

and θ(k) using one step of the Newton-Raphson algorithm.

CM-step 2: Obtain μ0
(k + 1) and βμ

(k + 1) by maximizing Eq. 4, conditioned on 

λ0
(k + 1), βλ

(k + 1), and θ(k) using one step of the Newton-Raphson algorithm.

CM-step 3: Update the estimate of θ with the closed-form solution,

θ(k + 1) =
∑r = 1

p (pλ, r
∗ + pμ, r

∗ ) + a − 1
a + b + 2p − 2 .

The ECM algorithm stops when the absolute value of the difference between the log-

likelihood distribution evaluated at the current and next step of the algorithm falls below a 

set threshold (Wu, 1983). See Web Appendix A for details regarding the convergence 

stopping rule. Once the algorithm has converged, the final estimates, Φ̂, maximize Eq. 4. 

Inclusion is determined if Eγ|Φ̂[γr] ≥ 0.5 (Ročková and George, 2014). In practice, the 

performance of the EM algorithm is sensitive to initialization, and convergence is not 

guaranteed at the global mode. Thus, we use a deterministic annealing variant to reduce the 

algorithm’s dependence on initialization, similar to (Ročková and George, 2014; Koslovsky 

et al., 2016). See Web Appendix B for details of the deterministic annealing variant’s 

formulation.

2.4 Variance Estimation

To estimate variances of the unknown parameters, Φ, in our proposed method, we use 

Louis’s method (Louis, 1982), which relies on the missing information principle (Orchard et 

al., 1972),

Observed Information = Complete Information − Missing Information.

Louis’s method formulates the observed information matrix in terms of the second derivative 

of the Q-function and the variance of the first derivative of the posterior distribution with 

respect to the missing information, γ. Following the Bayesian central limit theorem, the 

posterior distribution of the unknown parameters can be estimated assuming a normal 
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distribution with mean equal to the posterior mode and variance equal to the inverse 

observed information matrix (Carlin and Louis, 2008). The estimated variance of the 

unknown parameters is expressed as

Var(Φ) = 1
Iobs(Φ)

= −
∂2Q Φ Φ

∂Φ∂Φ′ − var ∂ log π(Φ, γ ∣ y)
∂Φ Φ, y

−1
. (5)

Details of this derivation are found in Web Appendix C. To avoid any boundary issues when 

calculating 95% credible intervals for θ ∈ [0, 1], we apply a logit transformation to the 

posterior mode and assume it follows a normal distribution with mean logit(θ̂) and variance 

Var(θ )/(θ (1 − θ ))2.

3. Simulation Study

To evaluate the performance of our method, we apply it to multiple simulated data sets in a 

variety of research scenarios. Details of the data generation, evaluation methods, and results 

of the simulation study can be found in Web Appendices D – F, respectively. Briefly, we 

examined the performance of our method in various scenarios, with different sample sizes 

(m = 100 and m = 150), numbers of equally (randomly) spaced assessment times (ni = 30 or 

ni = 70), and exchangeable correlation structures between covariates (ρ = 0 and ρ = 0.75). 

For the special case of equally spaced assessment times, we compared our model to EMVS 

and the LASSO for logistic regression models (Koslovsky et al., 2016; Tibshirani, 1996).

We evaluated the performance of our method based on the average false positive (FP) and 

false negative (FN) rates with FPR = FP/(FP + TN) and FNR= FN/(FN+TP), where TP and 

TN are true positives and true negatives, respectively. Additionally, we assessed the bias 

(average of the posterior modes minus true values), the Monte Carlo error of the posterior 

modes (MCE), the square root of the average of the posterior variances estimated with 

Louis’s method (SE), the coverage probability (CP) of the 95% equal-tail credible intervals, 

and the average mean squared error of the steady-state probability of transition from a non-

smoking to smoking state (MSE).

We found the performance of our method with both randomly and equally spaced 

assessment times improved with larger sample sizes, larger number of assessments observed, 

and lower correlation structures. With equally spaced assessment times, our method 

outperformed or showed relatively equivalent performance to the LASSO for FPR and FNR 

in every setting and comparable performance to EMVS for logistic regression models. 

Additionally in all scenarios, our method correctly included associated covariates and 

correctly excluded unassociated covariates in about 99% of the simulations on average. 

Also, CPs fell around 92% on average. As the sample size and number of assessments 

increased, we observed the MCE approach the SE. The MSE for the steady-state probability 

of transition from a non-smoking to a smoking state was around 0.04 for all scenarios. 

Overall, our method demonstrated encouraging performance across the simulation scenarios, 
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justifying its use for identifying risk factors associated with transitions between smoking 

states in our application data.

4. Application

Our method was developed to analyze intensive longitudinal data collected with EMA from 

the PREVAIL study (Kendzor et al., 2015), which demonstrated the effectiveness of a 

contingency management (CM) treatment to promote smoking cessation. At the beginning 

of the study, 146 of 222 screened individuals met the eligibility requirements and were 

randomized into treatment groups. One group received usual smoking cessation care from a 

Dallas based, safety-net hospital (n = 71), and the other received usual care as well as the 

contingency management (n = 75), which offered small financial incentives to encourage 

abstinence. A week before the scheduled quit date, baseline measures were taken and 

individuals were taught how to complete assessments on a study provided smart phone. Each 

individual logged his/her smoking behaviors on the smart phone over a 2-week period (1 

week prior and 1 week after the scheduled smoking quit date). Individuals were prompted 

with 4 random assessments per day, which collected information regarding their urge to 

smoke, affect, social environment, abstinence self-efficacy, cigarette availability, and 

location. Since assessment times were randomly prompted by the smart phone, they were 

considered non-informative to the non-smoking/smoking process (Gruger et al., 1991).

As mentioned, our main objective in this analysis is to identify risk factors associated with 

transitioning between smoking and non-smoking states after the scheduled quit date in this 

cohort. An individual’s smoking status was deemed to be in a smoking state if they reported 

smoking since their previous assessment. Potential risk factors consist of both baseline 

measurements and EMA items (Table 1). Related analyses have summarized positive and 

negative affect items by taking the average of each set of items (Businelle et al., 2014). Here, 

we are interested in selecting individual components of positive affect (e.g., happy, calm) 

and negative affect (e.g., irritable, frustrated/angry, sad, worried, miserable) measures. Four 

individuals were dropped from the analysis because responses to the set of items in Table 1 

were missing. A total of 3091 assessments collected after quit date (on average 41 per 

individual ranging from 3 to 51) were analyzed.

Before performing variable selection, we assessed the feasibility of a MSM for the 

application data. Since assessments were collected frequently, we determined the MSM’s 

overall fit by plotting the observed and estimated prevalences, obtained by fitting a full 

model, of each state over time (Titman and Sharples, 2010). We tested the assumption of 

time homogeneity for the Markov process by comparing the full model to an alternative 

model with piecewise constant transition intensities using a likelihood ratio test. We tested 

the Markov assumption by comparing the full model to an alternative model that included 

the state occupied two assessments prior as a covariate using a likelihood ratio test. 

Throughout the observation window, the observed and estimated smoking and non-smoking 

prevalences fell around 20% and 80%, respectively (Web Appendix Figure 1). Additionally, 

we failed to reject the null hypotheses that the baseline hazards were constant and the 

Markov assumption was upheld at the 0.05 α-level with p-values of 0.17 and 0.42, 

respectively. To perform variable selection on the data, we initialized and parameterized our 
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model similar to the methods found in Web Appendix E. The variance of exclusion and 

inclusion were set to v0 = 0.0006 and v1 = 0.5, respectively. Continuous covariates were 

standardized to mean 0 and variance 1 before selection. Covariates were included in the 

model if the conditional expectation of their respective inclusion indicator was greater than 

or equal to 0.50. In this analysis, all included covariates had an Eγ|Φ̂[γr] = 1, and all 

excluded covariates had an Eγ|Φ̂[γr] < 0.06.

We present results based on each risk factor’s inclusion or exclusion via EMVS, however not 

all risk factor’s remained influential (95% CI for hazard ratio contains 1) after accounting 

for estimation and selection uncertainty (Table 2). We found results that were consistent with 

previous research analyzing the relation between risk factors and smoking behaviors after a 

quit attempt. CM was previously shown to be an effective means of increasing smoking 

abstinence after a quit attempt in this cohort (Kendzor et al., 2015). In this analysis, we 

found that CM was associated with a decrease in the transition rate from N → S after the 

quit date. Addiction level has previously been associated with relapse (Zhou et al., 2009). In 

this analysis, the Heaviness of Smoking Index (HSI) served as a proxy for addiction level 

and was found to be associated with a decrease in transition rates from N → S and S → N. 

Consistent with Zhou et al. (2009), we found that baseline education level was not 

associated with relapse. This analysis also did not find any association with transition rates. 

Age has been shown to be associated with a decrease in the odds of relapse (Zhou et al., 

2009). We found that age reduced the transition rate from N → S and S → N. Also, 

environmental factors, such as having cigarettes available and being around someone who is 

smoking, have been associated with smoking behaviors (Zhou et al., 2009). Here, having 

cigarettes available increased the transition rate from N → S and decreased the transition 

from S → N. Negative and positive affect as well as urge to smoke are commonly identified 

as risk factors associated with smoking lapse and relapse after a quit attempt (Piasecki, 

2006; Vasilenko et al., 2014; Shiffman et al., 2002; Zhou et al., 2009). In our analysis, we 

found that the being calm (a positive affect item) and worried (a negative affect item) were 

associated with a reduction in both transitions after the quit attempt. While urge to smoke is 

considered a defining characteristic of addiction (Kassel and Shiffman, 1992; Shiffman et 

al., 1997), its association with smoking behaviors is often inconsistent (Wray et al., 2013). 

Here, we found that urge was associated with an increase in transition between N → S and 

S → N after the quit date. Self-efficacy to abstain is commonly shown to be associated with 

smoking behaviors around a quit attempt (Smit et al., 2014; Shiffman et al., 2000). This 

analysis identified self-efficacy as being associated with a decrease in transition rate from N 

→ S. Additionally, being in a car has been associated with a reduction in the odds of 

smoking (Shiffman et al., 2002). We found it to be associated with a decrease in both 

transitions rates. During ad-lib smoking, being at work and being outside have been 

associated with a decrease and increase in smoking, respectively. However in this study, 

being at work was not found to be associated with any transition, but being outside was 

associated with an decrease in transition from N → S and S → N. For two of the risk 

factors (self-efficacy to abstain and having cigarettes available), our method was able to 

differentiate between a risk factor’s relation with transitioning from S → N and N → S. 

These results demonstrate how EMVS for a MSM can reveal intricacies in complex 

behavioral processes that may elude other methods.
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5. Discussion

To our knowledge, we developed the first variable selection method for MSMs with interval-

censored data. Using EMA data, we demonstrated the usefulness of our method in practice 

by identifying potential risk factors associated with transitions between discrete smoking 

states in a cohort of socioeconomically disadvantaged individuals. In future studies, this 

method could be used to identify multiple predictor variables for lapse in real-time that 

could trigger the delivery of tailored interventions at the critical time after a quit attempt.

In this work, we show the usefulness of a variable selection method on a two-state Markov 

model, but the method is generalizable to other state spaces. However, a major challenge of 

modeling MSMs is model estimation when the number of potential transitions in the state 

space and covariates increases (Saint-Pierre et al., 2003). Extending our method to MSMs 

with larger state spaces would require adjusting the likelihood function component in the Q-

function. For three- and four-state models, we conjecture that estimation times would not 

increase significantly, since closed-formed solutions exist for the transition probabilities (Li 

and Chan, 2006; Chan, 2017). Thereafter, we expect computational cost to depend more on 

the optimization routine employed. In practice, researchers often ignore interval-censoring 

and assume that exact transition times are known, which may bias parameter estimates 

(Sutradhar et al., 2010). Therefore, variable selection methods designed for datasets in which 

the exact transition time are known are not appropriate for analyzing data structures found in 

this study. However, future work could incorporate the attractive features of these methods, 

including selection of non-linear covariate effects into the EMVS framework (Reulen and 

Kneib, 2015, 2016).

One of the main objectives of intensive longitudinal data analysis is to identify or re-affirm 

complex relations between potential risk factors and behavioral outcomes over time (Walls 

and Schafer, 2005). While EMVS for MSMs with interval-censored data shows promise for 

identifying these relations, no variable selection method is a panacea. In practice, we suggest 

using our method coupled with other intensive longitudinal data analyses approaches (Walls 

and Schafer, 2005; Tan et al., 2012) to provide a deeper perspective on the intricacies of the 

behavioral process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2
Application Results

Hazard rates and 95% equal-tail credible intervals (CI) of potential risk factors for transitioning between N → 
S and S → N states after the scheduled quit attempt.

Risk Factor
After Quit Attempt

N → S (95% CI) S → N (95% CI)

Baseline hazard 0.081 (0.062, 0.107) 0.321 (0.248, 0.416)

HSI 0.727 (0.587, 0.901)** 0.796 (0.623, 1.016)*

Education level 0.976 (0.930, 1.023) 1.010 (0.965, 1.057)

Age 0.673 (0.535, 0.845)** 0.568 (0.447, 0.723)**

Race/Ethnicity 1.002 (0.954, 1.052) 0.995 (0.948, 1.045)

CM 0.569 (0.452, 0.717)** 1.002 (0.954, 1.053)

Urge 1.565 (1.231, 1.988)** 1.264 (0.997, 1.602)*

Happy 1.000 (0.954, 1.048) 0.998 (0.952, 1.046)

Calm 0.615 (0.477, 0.791)** 0.653 (0.517, 0.824)**

Irritable 0.995 (0.949, 1.044) 1.002 (0.955, 1.050)

Frustrated 0.999 (0.952, 1.047) 0.993 (0.947, 1.041)

Sad 1.002 (0.956, 1.051) 0.995 (0.950, 1.043)

Worried 0.503 (0.381, 0.665)** 0.532 (0.409, 0.692)**

Miserable 1.007 (0.960, 1.056) 0.987 (0.942, 1.035)

Interacting w/ smoker 1.001 (0.954, 1.052) 0.998 (0.950, 1.048)

Self-efficacy 0.711 (0.631, 0.802)** 0.998 (0.950, 1.047)

Cigarettes available 1.446 (1.151, 1.819)** 0.772 (0.613, 0.972)**

Being outside 0.572 (0.357, 0.917)** 0.293 (0.180, 0.476)**

In a car/truck 0.780 (0.455, 1.338)* 0.527 (0.296, 0.938)**

At work 0.999 (0.951, 1.049) 1.001 (0.953, 1.051)

**
Risk factor selected by EMVS and CI does not contain hazard ratio equal to 1

*
Risk factor selected by EMVS and CI does contain hazard ratio equal to 1
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