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Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian
retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few
amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells
labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive
contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses
with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types
show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1
synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolariza-
tions during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha
ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway
inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-
by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with
opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/
inhibition balance in the two circuits.
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A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the
function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina.
Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell
type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their
high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance
of excitation and inhibition. j
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ganglion cell types, each of which encodes a different feature of
the visual scene (Demb and Singer, 2015; Baden et al., 2016). At
its core, each parallel circuit comprises one or more of the ~15
types of excitatory bipolar cell converging on the ganglion cell
(Helmstaedter et al., 2013; Sanes and Masland, 2015; Baden et al.,
2016). Bipolar cells are glutamatergic interneurons depolarized

Introduction
The mammalian retina implements the first stage of visual pro-
cessing via ~35 parallel circuits that drive the same number of
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by either light increments (ON bipolar cells) or decrements (OFF
bipolar cells) (Wissle et al., 2009; Euler et al., 2014; Shekhar et al.,
2016; Franke et al., 2017). Bipolar cell outputs are shaped by >30
types of amacrine cells, which make synapses with bipolar cell
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axon terminals and ganglion cell dendrites (MacNeil and Masland,
1998; Demb and Singer, 2015; Diamond, 2017). Amacrine cells are
primarily inhibitory, releasing either GABA or glycine (Zhang and
McCall, 2012). In addition, many types corelease a neuromodu-
lator, peptide, or fast excitatory neurotransmitter (Bagnoli et al.,
2003; Lee et al., 2014; Zhu et al., 2014; Hirasawa et al., 2015).

The functional roles of only a few types of amacrine cells are
well established. These types include the starburst amacrine cell,
which mediates a direction-selective computation (Vaney et al.,
2012), and the AIl and A17 amacrine cells, which play important
roles in night vision (Grimes et al., 2010; Demb and Singer, 2012;
Diamond, 2017). Additional amacrine cell types now can be stud-
ied functionally using Cre-transgenic mouse lines (Taniguchi et
al., 2011; Lee et al., 2014; Zhu et al., 2014; Akrouh et al., 2015;
Krishnaswamy et al., 2015; Park et al., 2015; Tien et al., 2016).

Two types of amacrine cell were identified in the corticotropin-
releasing hormone (CRH)-ires-Cre-transgenic mouse (Zhu et al.,
2014). One of these, CRH-1, makes synapses with a suppressed-
by-contrast (SbC) ganglion cell that exhibits suppressed firing in
response to either positive or negative contrast (Sivyer et al.,
2010; Jacoby et al., 2015; Tien etal., 2015; Lee et al., 2016). CRH-1
provides GABAergic inhibition to suppress SbC firing during
positive contrast (Jacoby et al., 2015). Another well studied gan-
glion cell type, the ON alpha cell, costratifies with CRH cells,
suggesting that it also receives synaptic input from them. How-
ever, unlike the SbC cell, the ON alpha cell responds to positive
contrast with increased firing. Here, we identify a third type of
CRH cell and show that two CRH types (CRH-1 and CRH-3)
make synapses with ON alpha cells. Outputs from CRH cells and
OFF-pathway amacrine cells converge at ON alpha cells to con-
trol the gain of responses to tonic excitation from continuously
active bipolar cell synapses. CRH-1 output diverges to two cir-
cuits, SbC and ON alpha ganglion cells, with opposite responses to
positive contrast, demonstrating that a single inhibitory interneu-
ron can contribute to diverse retinal outputs. The distinct con-
trast responses of SbC and ON alpha ganglion cells are explained
by differences in the balance of excitation and inhibition in the
two circuits.

Materials and Methods

Animals. All animal procedures were approved by the Institutional
Animal Care and Use Committees at Yale University or the University of
Maryland and were in compliance with National Institutes of Health
guidelines. Mice of either sex, maintained on C57BL/6] backgrounds,
were studied at ages between 2 weeks and 6 months.

In CRH-ires-Cre mice [B6(Cg)-CRH tm1(ere)Zjb /1. The Jackson Labora-
tory #012704, RRID:IMSR_JAX:012704], expression of Cre recombinase is
driven by endogenous CRH regulatory elements (Taniguchi et al., 2011). In
nNOS-CreER mice (B6; 129S-Nos1 f1-H(ere/ERT2)/Zjh 1. The Ja ckson Labora-
tory #014541, RRID:IMSR_JAX:014541), expression of Cre recombinase
is driven by endogenous Nosl regulatory elements (Taniguchi et al.,
2011). For nNOS-CreER mice, Cre expression was induced by tamoxifen
(2 mg delivered on 2 consecutive days) administered by either intraperi-
toneal injection or gavage at approximately postnatal day 30 (P30) at
least 2 weeks before the experiment.

Cre-expressing cells were labeled by mating a Cre mouse described
above with one of two reporter strains: Ail4 mice (B6;129S6-Gt(ROSA)
26Sor MIH(CAG-dTomato)Hze 1. The Jackson Laboratory #007914, RRID:
IMSR_JAX:007914) express a Cre-dependent red fluorescent protein
(tdTomato; Madisen et al., 2010) and Ai32 mice (B6;129S-Gt(ROSA)
26Sor M32(CAG-COPAHI4R/EYFP)Hze 1. The Jackson Laboratory #024109,
RRID:IMSR_JAX:024109) express a Cre-dependent channelrhodopsin-2
(ChR2)/enhanced yellow fluorescent protein (EYFP) fusion protein
(Madisen etal., 2012). Mice studied were heterozygous for one of the Cre
alleles and either Ail4 or Ai32 reporter alleles.
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Electrophysiology. For most experiments, a mouse aged between 1 and
6 months was dark adapted for 1 h and, after death, the eye was enucle-
ated and prepared for recording in Ames medium (Sigma-Aldrich) un-
der infrared light using night vision goggles connected to a dissection
microscope (Park et al., 2015). In the recording chamber, the retina was
perfused (~4—-6 ml/min) with warmed (31-34°C), carbogenated (95%
0,-5% CO,) Ames medium (light response and optogenetic experiments).
The retina was imaged using a custom-built two-photon fluorescence
microscope controlled with ScanImage software (RRID:SCR_014307; Polo-
gruto et al., 2003; Borghuis et al., 2011, 2013). Fluorescent cells were
targeted for whole-cell patch-clamp recording with a Coherent Technol-
ogies Ultra II laser tuned to 910 nm (Park et al., 2015). For paired-
recording experiments, dissection was performed in normal room light
and the retina was maintained in artificial CSF as described previously
(Jarsky et al.,, 2011). Cells were visualized using transmitted light and
fluorescent Cre-expressing amacrine cells were identified by epifluores-
cent illumination.

Electrophysiological measurements were made by whole-cell record-
ings with patch pipettes (tip resistance 4—11 M(}). Membrane current or
potential was amplified, digitized at 10-20 kHz, and stored (MultiClamp
700B amplifier; ITC-18 or Digidata 1440A A-D board) using either
pClamp 10.0 (Molecular Devices) or IGOR Pro software (Wavemetrics).
For light-evoked responses and optogenetic experiments, pipettes con-
tained the following (in mm): 120 Cs-methanesulfonate, 5 TEA-CI, 10
HEPES, 10 BAPTA, 3 NaCl, 2 QX-314-Cl, 4 ATP-Mg, 0.4 GTP-Na,, and
10 phosphocreatine-Tris,, pH 7.3, 280 mOsm, for voltage-clamp record-
ing and 120 K-methanesulfonate, 10 HEPES, 0.1 EGTA, 5 NaCl, 4 ATP-
Mg, 0.4 GTP-Na,, and 10 phosphocreatine-Tris,, pH 7.3, 280 mOsm, for
current-clamp recording. For paired-cell recording experiments,
pipettes contained the following (in mm): 90 Cs-methanesulfonate, 20
TEA-CI, 1 4-AP, 10 HEPES, 1 BAPTA, 4 ATP-Mg, 0.4 GTP- Na,, and 8
phosphocreatine-Tris,.

Either Lucifer yellow (0.1%) or red fluorophores (sulfarhodamine,
10 u™m or Alexa Fluor 568, 60 um) were added to the pipette solution for
visualizing the cell. All drugs used for electrophysiology experiments
were purchased from Tocris Biosciences, Alomone Laboratories, or
Sigma-Aldrich. Excitatory and inhibitory currents were recorded at
holding potentials near the estimated reversal for either chloride (E,
—67 mV) or cations (E_,,,, 0 mV) after correcting for the liquid junc-
tion potential (—9 mV). Series resistance (~10-50 M()) was compen-
sated by up to 50%. After the recording, an image of the filled cell was
acquired using the two-photon microscope.

ON alpha ganglion cells were targeted based on a soma size of ~20-25
um diameter (Pang et al., 2003; Murphy and Rieke, 2006; Estevez et al.,
2012; Borghuis et al., 2013). Cell identity was confirmed by the character-
istic spike response to light stimuli (loose-patch recording, Ames-filled
pipette) and by the dendritic morphology imaged after the whole-cell re-
cording (Margolis and Detwiler, 2007; Borghuis et al., 2014). For opto-
genetic experiments, ON alpha cell identity was additionally confirmed
in most cases by measuring a slow melanopsin-mediated excitatory cur-
rent in response to a blue ChR2-activating stimulus in the presence of
synaptic blockers (Ecker et al., 2010; Estevez et al., 2012; Beier et al.,
2013).

Light stimuli were presented using a modified video projector (peak
output, 397 nm; full-width-at-half-maximum, 20 nm; Borghuis et al.,
2013, 2014) focused onto the retina through the microscope condenser.
The stimulus wavelength stimulates rod photoreceptors and also approx-
imately equally stimulates cone photoreceptors along the retina’s dorsal/
ventral gradient (Borghuis et al., 2014), which coexpress varying ratios of
middle- and short-wavelength-sensitive opsins (Applebury et al., 2000;
Nikonov et al., 2006; Wang et al., 2011; Baden et al., 2013). Therefore,
amacrine and ganglion cells were recorded at variable positions in the
retina and assumed to have a similar level of cone stimulation. Stimuli
were presented within a 4 X 3 mm area on the retina. Stimuli included
contrast-reversing spots of variable diameter to measure spatial tuning
(Zhang et al., 2012). For most experiments, stimuli were presented with
1 Hz temporal square-wave modulations (100% Michelson contrast)
relative to a background of mean luminance that evoked ~10* photoi-
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Amacrine cells in the CRH-ires-Cre mouse line express CRH and costratify with ON alpha ganglion cells. A, Left, CRH-ires-Cre mouse line crossed to a ChR2/YFP reporter line (Ai32) labels

mostly amacrine cell bodies (arrows) in the GCL, along with sparse labeling of ganglion cells (arrowhead). Images show average of three confocal sections in a z-stack (1 p.m spacing; 40X air lens,
NA = 0.75). Center, Antibody labeling for CRH protein. Right, Antibody labeling overlaps with the majority of YFP-expressing amacrine cells. B, Same format as Al illustrating overlap between YFP
dendrites and CRH expression. Images show a single confocal section (40X air lens, NA = 0.75). , Filled ON alpha ganglion cell (GC). Shown is a collapsed image of multiple confocal sections (20X
air lens, NA = 0.8). Dashed box shows area expanded in D. D, Expanded area from € showing an ON alpha ganglion cell dendrite (red) overlaid with CRH amacrine cell dendrites labeled in the
(RH-ires-Cre::Ai32 retina (green). Image shows a single confocal section (40>} oil lens, NA = 1.4). E, Fluorescence profile of ON alpha dendrites (n = 4 cells) with YFP * processes in the
(RH-ires-Cre::Ai32 retina normalized to the positions of peak fluorescence for the inner and outer ChAT bands (i.e., processes labeled by antibody against ChAT; see Materials and Methods).
Fluorescence was normalized to the maximum value in the range of the inner plexiform layer (IPL) (— 1.2 to 1.8 in normalized units of the x-axis) before averaging across cells. Error bars indicate =
SEM of normalized fluorescence across cells. The approximate locations of the GCL and inner nuclear layer (INL) are illustrated (gray bars) and align with peaks in the ChAT label (near —2 and +2
normalized units), reflecting the position of ChAT * cell bodies. A small peak in the CRH-Cre signal around -+ 0.8 reflects the position of OFF alpha ganglion cell dendrites, which are labeled sparsely

in this Cre line (Zhu et al., 2014).

somerizations (R*) cone ' sec "' (Borghuis et al., 2014). In some cases,
the contrast and/or mean luminance was reduced.

Optogenetics. ChR2-mediated responses were recorded in the presence
of drugs to block conventional photoreceptor-mediated light responses.
Recordings were made in a mixture containing the following (in um):
L-AP4 (20); either UBP310 (50) or ACET (1-5); DNQX (50-100); and
D-AP5 (50-100) (Park et al., 2015). ChR2 was activated by a high-power
blue LED (A 450 or 470 nm; maximum intensity of ~5 X 10"
photons s ~' cm ~?) focused through the condenser onto a square (220
pum side) or circular (400 um diameter) area as described previously
(Park et al., 2015).

Histology. For immunohistochemistry, the animal was perfused at age
2-9 weeks, except in two cases in which an older animal was used (28

weeks). The retinas were dissected and fixed with 4% paraformaldehyde
for 1 h at 4°C. For whole-mount staining, retinas were incubated with 6%
donkey serum and 0.5% Triton X-100 in PBS for 1 h at room temperature
and then incubated with 2% donkey serum and 0.5% Triton X-100 in
PBS with primary antibodies for 1-4 d at 4°C, and with secondary anti-
bodies for 1-2 h at room temperature. For morphological analysis of
recorded cells, the retina was fixed for 1 h at room temperature and
reacted as described previously (Manookin et al., 2008).

Primary antibodies were used at the following concentrations: goat
anti-ChAT, 1:200 (Millipore AB144P, RRID:AB_2079751); rabbit anti-
Lucifer yellow, 1:2000 (Thermo Fisher Scientific A-5750, RRID:AB_2536190),
rabbit anti-human/rat CRH serum, 1:40,000 (Code #PBL rC68; gift from
Dr. Paul Sawchenko, Salk Institute), and rabbit anti-nNOS, 1:500 (Thermo
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Fisher Scientific 61-7000, RRID:AB_2533937). A
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Secondary antibodies were conjugated to Alexa
Fluor 488, Cy3, and Cy5 (Jackson ImmunoRe-
search) and diluted at 1:500.

Dendritic tree size and stratification analysis.
Confocal imaging was performed using Zeiss
laser scanning confocal microscopes (510, 710,
or 800 models). For filled cells, a whole-mount

ON alpha

200

image of the dendritic tree was acquired using a g OQ s "20m 2 : 1017 control

20X air objective (numerical aperture, NA = 8 D

0.8); in some cases, multiple images were com- %_ omv

bined as a montage. Dendritic tree diameter DSGC |s0pA E 1007 so—T 1

was determined using ImageJ by measuring the ‘ g o 1 200 DA
area of a convex polygon that included all den- § D66 ne 58 Jf|7 P
drites; below, we report the diameter of a circle 8 CRH-1

with an area equivalent to the polygon. A high- | 50 pA N

resolution z-stack of the ChAT bands (i.e., cho-  OFF delta P 100 + ON alpha
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their relative depth in the inner plexiform layer Qs'em 2 x 10"

using a 40X oil objective (NA = 1.4). Analysis 500 ms

of CRH and nNOS antibody labeling was per- ) . ) . ) ] )
formed either with the 40X oil objective, a 40X Figure2. CRHamacrine cells make GABAergic synapses with ON alpha ganglion cells. 4, Optogenetic experiment showing that

air objective (NA = 0.75) ora 63X oil objective
(NA = 1.4).

Custom software written in MATLAB (The
MathWorks) was used to determine dendrite
stratification relative to the ChAT bands. The
program and methods used were similar to
those described previously (Manookin et al.,
2008; Farrow et al., 2013; Siimbiil et al., 2014;
Park et al., 2015; Beaudoin et al., 2017). The
depth of labeled processes is reported relative
to the fluorescence peaks of the ChAT bands, in
the z dimension, aligned to 0 (peak of inner
ChAT band) and 1 (peak of outer ChAT band) in normalized units.

Experimental design and statistical analysis. Based on conventions in
the field and our previous experience, most experiments tested between
four and eight cells from at least two animals of either sex. Experiments
were performed on specific cell types that could be identified based on
genetic labels or well defined anatomical or physiological properties, as
described in the Results. Data are reported as mean = SEM and statistical
comparisons were based on two-tailed t tests. We report exact p-values
up to the level of p < 10 7.

gray bar.

Results

Cells labeled in the CRH-ires-Cre line express CRH and
costratify with ON alpha ganglion cells

We first evaluated the overlap between a Cre-dependent reporter
and CRH expression in the CRH-ires-Cre-transgenic mouse ret-
ina. The Cre line was crossed with the Cre-dependent ChR2/YFP
Ai32 reporter line. At P14, CRH antibody marked regions in
both somas (Fig. 1A) and dendritic processes (Fig. 1B) of YFP-
expressing (YFP ™) cells. In the ganglion cell layer (GCL), 94.2%
of YFP ' amacrine cell somas (n = 130/138 cells, two retinas)
were labeled by the CRH antibody. The antibody did not overlap
the sparse YFP ™ ganglion cell bodies (1 = 0/7 cells; Fig. 1A),
which were identified based on their axons in the nerve fiber layer.
Therefore, most Cre ™ amacrine cells in the GCL express CRH and
are referred to as CRH cells below.

The dendrites of CRH cells stratify with ON alpha ganglion
cells, as revealed by dye-filling individual ON alpha ganglion cells
(n = 4) in the CRH-ires-Cre::Ai32 retina (Fig. 1C). We compared
the fluorescence profiles of YFP-labeled CRH cell processes and
ON alpha cell dendrites in a confocal z-stack (Fig. 1D). Two
bands of cholinergic starburst amacrine cell processes were also

CRH cells make synapses with ON alpha cells. A blue light (450 nm peak, 5.3 X 10" quanta [Q] s ~" cm ~2) was presented to
stimulate ChR2 expressed in CRH cells while recording inhibitory current (V,;,4 = 0 mV) in an ON alpha ganglion cell. Responses
were averaged over the time period indicated by the gray bar. The IPSCwas blocked by SR95531 (50 um). There were no responses
in a direction-selective ganglion cell (DSGC) or an OFF delta ganglion cell. B, Optogenetically evoked current increased with light
intensity for ON alpha cells, but not DSGC (middle row) or OFF delta ganglion cells (bottom row). Error bars indicate == SEM across
cells. ¢, SR95531 blocked the response in four ON alpha cells. Data from individual cells are shown in both conditions connected by
aline. Error bars on the average data points indicate == SEM across cells. D, Paired-cell recording of a CRH-1 cell and an ON alpha
cell. Top trace shows the voltage command in the CRH-1 cell. Middle trace shows the CRH-1 cell current, which includes a transient
inward Ca current after depolarization to 0 mV and a sustained outward leak current. Bottom trace shows the IPSCin an ON alpha
cell (V14 = Eq)) during and after the depolarizing voltage step. The response was measured over the time period indicated by the

labeled, as markers of stratification depth, using an antibody
against choline acetyltransferase (ChAT) bands (see Materials
and Methods). The dendrites of ON alpha ganglion cells stratified
between the inner ChAT band and the GCL and costratified with
CRH cell processes (Fig. 1E), leading us to evaluate whether the
CRH cells provide synaptic input to ON alpha cells.

CRH cells make GABAergic synapses with ON alpha cells

We first assessed connections between CRH amacrine cells and
ON alpha ganglion cells using optogenetics. ChR2-mediated
responses were studied in the CRH-ires-Cre::Ai32 retina in the
presence of a drug mixture (20 um L-AP4; 1-5 uM ACET, or 50
uM UBP310; 100 um DNQX; 100 wm D-AP5) that suppresses
photoreceptor-mediated input to retinal circuitry (see Materials
and Methods; Park et al., 2015). Blue ChR2-stimulating light
evoked IPSCs in ON alpha cells at V4 = 0 mV (Fig. 24, top);
IPSCs increased in amplitude systematically with increasing light
intensity (Fig. 2B, top) and were blocked by the GABA , receptor
antagonist SR95531 (gabazine, 50 um; Fig. 2C). Two other gan-
glion cell types, ON-OFF direction-selective cells and OFF delta
cells, did not respond to ChR2 stimulation, demonstrating the
specificity of the ON alpha cell response and the effectiveness of
photoreceptor output blockade (Fig. 2A,B).

To establish further a direct synaptic connection between
CRH cells and ON alpha ganglion cells, we performed dual patch-
clamp recordings. In 8/14 pairs, depolarizing the CRH cell with a
voltage step from —60 mV to +40 mV (Jacoby etal. 2015) elicited
an IPSC in the ON alpha cell. In ganglion cells with detectable IPSCs,
the peak amplitude was 30.1 = 5 pA (Fig. 2D). In all connected pairs,
the CRH cell had a medium dendritic field (~300 wm diameter),
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Figure3. (RHamacrine cells are divided into three cell types. A, Left, CRH-1 cell has a medium-field dendritic tree that typically exhibits an irregular branching pattern. Image shows the collapsed confocal
z-stack of a cell filled with Lucifer yellow; thisimage has been converted to grayscale with inverted contrast. Middle, CRH-1 cell responds to modulations in contrast (spot stimulus, 800 .m diameter) via graded
changes in membrane potential, with hyperpolarization to negative contrast (relative to the mean luminance) and depolarization to positive contrast. Right, Average depolarizing and hyperpolarizing responses
fora population of cells. Responses were measured in a 50 ms time window near the peak depolarizing or hyperpolarizing response before averaging across cells. Error bars indicate == SEM across cells. B, Same
format as A for CRH-2 cells. Left, Image showing a drawing of the large-field of processes based on confocal images. Some processes extended off the field of view. Middle, CRH-2 cell fires action potentials to
positive contrast. Right, Firing rate to positive and negative contrast measured across cells. €, Same format as B for CRH-3 cells. i, Dii, Confocal image (single sections, 40 X oil, NA = 1.4) showing inner (Di) and
outer (Dii) processes of the CRH-2 cell in B, which costratify with ON and OFF bipolar cell terminals, respectively. Scale bar applies to both images. E, Confocal image showing processes of the CRH-3 cell in C.
F, Dendritic tree versus stratification for CRH-1, CRH-2, and CRH-3 cells and the four ON alpha cells from Figure 1. Stratification was defined by the peak fluorescence, as in Figure 1. CRH-1, CRH-3, and the inner
processes of CRH-2 cells stratified at a similar depth in the inner plexiform layer (IPL) between the inner ChAT band and the GCL. CRH-2 outer processes are stratified near the INL. The dendritic tree diameter for
(RH-2 and CRH-3 cells was not measured accurately because of incomplete fills in most cases, but all cells were apparently > 1000 um diameter. G, Small number of YFP * cells in the CRH-ires-Cre::Ai32 line
were colabeled by the nNOS antibody (arrow) and were presumed to be CRH-2 cells (Zhu et al., 2014).

consistent with the CRH-1 type described earlier (Zhu et al., 2014).  phology. In agreement with previous studies, the population in-
These paired recordings confirm direct synaptic transmission be-  cluded, most commonly, a medium-field (~300 wm diameter),
tween CRH-1 and ON alpha ganglion cells. In six connected pairs, = monostratified cell (CRH-1, Fig. 3A) and a rarer wide-field,
maximal stimulation of ChR2 with blue light evoked compound = axon-bearing cell (>1 mm diameter, CRH-2, Fig. 3B) with a few
IPSCs in ON alpha cells of 190 = 34 pA, or ~6X larger than the = processes near the soma, which extended to the OFF sublaminae
response from depolarizing a single CRH-1 cell, suggesting that ON  adjacent to the inner nuclear layer (INL; Fig. 3Di,Dii); CRH-2 is

alpha cells receive inputs from several CRH-1 cells. therefore bistratified proximal to its soma (Zhu et al., 2014; Ja-
coby et al., 2015).
CRH cells comprise at least three cell types In addition, we identified a third type of cell, CRH-3, as a

To better interpret the optogenetic experiment described above, ~ monostratified axon-bearing cell (Fig. 3C,E). Both CRH-2 and
we identified CRH cell types based on light responses and mor- ~ CRH-3 fire action potentials in response to positive contrast,
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whereas CRH-1 responds with graded membrane potential changes
(Fig. 3A—C) (see Jacoby et al., 2015). All three exhibited ON re-
sponses that increased with spot size and therefore are tuned to
large stimuli (Fig. 3A—C) and all three hyperpolarized or reduced
firing during the OFF phase of a contrast-modulated spot, sug-
gesting that their GABAergic output would be reduced during
periods of negative contrast (Fig. 3A-C).

Processes from all CRH cells stratified with ON alpha ganglion
cell dendrites (Fig. 3F; see also Fig. 1E). In addition, the outer den-
drites of bistratified CRH-2 were found between the OFF ChAT
band and the INL (Fig. 3F). Because CRH-2 expresses neuronal
nitric oxide synthase (nNOS; Zhu et al., 2014), we sought to deter-
mine the relative abundance of this cell type by immunohistochem-
ical labeling of YFP™ neurons in the CRH-ires-Cre:Ai32 with a
nNOS antibody. We found that CRH-2 is relatively rare: only 6/463
YFP * cells (or 1.30%; 3 retinas) were nNOS ™ (Fig. 3G). nNOS ¥,
reporter-expressing (tdTomato *) cells were slightly more common
in the CRH-ires-Cre::Ail4 retina: 32/789 cells (4.06%; 3 retinas; data
not shown). Therefore, CRH-2 appears to comprise a small fraction
of the total cell population labeled in the CRH-ires-Cre line.

CRH-3 but not CRH-2 provides input to the ON alpha
ganglion cell

To assess the contributions of the spiking CRH-2 and CRH-3 to
ChR2-evoked IPSCs recorded in the ON alpha ganglion cells, we
repeated the optogenetic experiment and tested the effects of block-
ing voltage-gated Na channels (TTX, 1 um) on the IPSCs. Blocking
voltage-gated Na channels attenuated the IPSC by 140 * 48 pA or
42 * 6.5% (t = 2.88, p = 0.034, n = 6; Fig. 4A), suggesting partial
dependence on a spiking mechanism. This spiking-dependent
mechanism would not include CRH-1 cells because their graded
membrane response was not blocked by TTX (n = 3; Fig. 4B),
implicating instead CRH-2 and/or CRH-3 cells.

Given the scarcity of CRH-2 in the CRH-ires-Cre::Ai32 retina,
it would seem that the majority of the TTX-sensitive IPSC reflects
transmission from CRH-3. To confirm this, we performed the
optogenetic experiment in nNOS-ires-CreER::Ai32 mice. The
nNOS-ires-CreER line labels multiple amacrine cell types includ-
ing nNOS-1, which is a bistratified, axon-bearing amacrine cell
apparently identical to CRH-2 (Zhu et al., 2014). YFP-labeled
processes in the nNOS-Cre-ER::Ai32 retina costratified with the
dendrites of ON alpha cells (Fig. 4C). Stimulation of ChR2
evoked a depolarization and spiking in CRH-2/NOS-1 cells (n =
5), but failed to evoke IPSCs in ON alpha ganglion cells (n = 4;
Fig. 4D). Therefore, CRH-2/NOS-1 does not make synapses with
ON alpha cells. The collected results from optogenetic experi-
ments indicate that ON alpha ganglion cells receive GABAergic
inputs from CRH-1 and CRH-3.

CRH-1 and CRH-3 cells respond over a range of contrast and
mean luminance levels

CRH-1 and CRH-3 cells costratify with ON alpha cells (Figs. 1, 3).
All three types exhibit sustained responses to positive contrast,
suggesting that at least some of the excitatory input to the CRH
and ON alpha cells originates with common presynaptic bipolar
cells. Therefore, we expected that CRH cells, like ON alpha cells,
respond to a wide range of luminance levels and exhibit high
contrast sensitivity (Grimes et al., 2014; Ke et al., 2014). We mea-
sured responses of CRH-1 and CRH-3 cells to 25-100% contrast
modulation of a spot (0.4 to 1 mm diameter) at a mean lumi-
nance of either ~10* R* cone ~! s 1, as above, to stimulate pri-
marily cones, or 10® R* cone ™' s !, stimulating both rods and
cones (Wang et al., 2011). Lower mean levels were avoided be-

Park et al. o Circuit Function of CRH Amacrine Cells

A | ON alpha,n=6
f’é 600 —
[}
©
2 400 1
o
L
[
o 200
(2]
c
o
@
g 07
L
control
B CRH-1,n=3
— ; ]
f‘ z 10
g >
“ M 5mV S o o
| \ S
. e {fo—o
-50 _W ............
mv 3 *—o
2
3
—_ 0 T
control
nNOS-CreER::Ai32
C D 1

‘ZOmV

CRH-2/NOS-1
| 50 pA

PN AN g ot A rmpris
ON alpha —_
100 ms

Figure 4. Evidence that ON alpha cells make synapses with CRH-3 but not CRH-2 cells.
A, Optogenetically evoked IPSCs in ON alpha cells in the CRH-ires-Cre::Ai32 line are partially
sensitive to blocking sodium channels with TTX (1 ). Responses to blue light stimulation
(53%10"7Qs "cm ) were averaged over a 50 ms time window near the peak (gray bar).
Results from six ON alpha cells are shown at right. Individual cells are shown with lines connect-
ing the control and TTX conditions. Population data show mean = SEM. B, CRH-1 cell voltage
responses, measured over a 50 ms time window (gray bar), were not affected by TTX. Results
from three CRH-1 cells are shown at right (same format as A). ¢, An ON alpha cell dendrite (red)
costratifies with YFP ™ processes in the nNOS-CreER::Ai32 retina. The ganglion cell was filled with
Lucifer yellow (LY) followed by reaction with LY primary antibody and a Cy5 secondary antibody
(converted to red); the double labeling of the ganglion cell dendrite reflects colabeling with Lucifer
yellow and Cy5 (single confocal section, 40 oil, NA = 1.4). D, Optogenetic stimulation (5.3 X 107
Qs " cm ) drove depolarization and spiking in a CRH-2/N0S-1 cell recorded in current-clamp (top
trace), but failed to evoke an IPSCin an ON alpha ganglion cell (bottom trace).

cause the targeting of CRH cells using pulsed IR-laser stimulation
decreases the sensitivity of rods and affects high-sensitivity rod
pathways (Borghuis et al., 2013). Responses (peak-to-trough am-
plitudes) of both CRH-1 and CRH-3 cells increased as a function
of contrast, with clear responses at 25% contrast (Fig. 5A-D).
Responses of CRH-1 cells were very similar at the two levels of mean
luminance, whereas responses of CRH-3 cells showed higher con-
trast sensitivity at the lower mean luminance (Fig. 5C,D). In CRH-3
cells, mean luminance did not alter the increased firing rate during
positive contrast steps (i.e., the ON response), but we did observe
atrend toward decreased firing rate during negative contrast (i.e.,
the OFF response) at high mean luminance (25% contrast: t =
—2.2,p =0.09, n = 5; Fig. 5E). In summary, these results suggest
that CRH-1 and CRH-3 cells primarily signal the contrast of the
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CRH-1 and CRH-3 cells respond over a range of stimulus conditions. A, Responses of a CRH-1 cell to two levels of stimulus contrast presented at two levels of mean luminance. The

stimulus was a contrast-modulated spot (0.4 mm diameter), and the responses show an average of two trials. B, Same format as 4 for a CRH-3 cell (1 mm diameter spot; single trials). C, Average
contrast response function for a sample of CRH-1 cells (1 = 5). Response were quantified by measuring the peak-to-trough amplitude of voltage modulations, with extreme depolarizing and
hyperpolarizing periods averaged over 200 ms time windows. Error bars indicate SEM across cells. D, Same as € for CRH-3 cells (n = 5). Responses were quantified by measuring the modulation of
thefiring rate and subtracting aminimum rate from a maximum rate averaged over 500 ms time windows. CRH-3 response amplitudes were more sensitive to contrast at the lower mean luminance.
E, Same as D showing the firing rate at positive contrast (ON response; open symbols) and negative contrast (OFF response; filled symbols). The rate plotted at 0% contrast (gray-filled symbols)

indicates baseline firing at mean luminance.

stimulus independently of the mean luminance and contribute to
retinal function across a range of stimulus conditions (Troy and
Enroth-Cugell, 1993).

ON alpha ganglion cells receive tonic inhibition during
negative contrast when CRH responses are suppressed

We next wanted to understand whether CRH cells provide the
majority of inhibition to the ON alpha ganglion cell. To answer
this question, we compared the time course of the light-evoked
voltage response of CRH cells with the synaptic conductance of
ON alpha cells. We presented contrast-modulated spots (1.0 mm
diameter) at 2 temporal frequencies (0.5 and 5 Hz), followed by a
switch from the mean luminance to a dark background. The dark
background hyperpolarized CRH-1 cells by 9.8 * 1.5 mV, to
—64 = 3mV from —55 * 2 mV at the mean luminance (n = 6)
and hyperpolarized CRH-3 cells by 9.4 = 1.6 mV, to —67.5 = 3.0
mV from —58.1 = 1.9 mV at the mean luminance; it also sup-
pressed spiking (n = 4). We refer to the maximum hyperpolar-
ization at the switch to darkness as the dark potential. For the
OFF response to negative contrast, we calculated a negative mod-
ulation index (NMI) by normalizing the response relative to the
resting potential at mean luminance (0) and the dark potential
(1.0) as follows:

NMI = [Vrcst - ROFF]/[Vrest - Vdark]

where Rqpp is the OFF response to negative contrast, Vg, is the
dark potential, and V., is the resting potential at mean lumi-

nance. For both CRH-1 and CRH-3 cells, the OFF response was a
hyperpolarization close to the dark potential for both 0.5 and 5
Hz temporal modulation (Fig. 6 A, B), resulting in NMIs near one
(Fig. 6E). Therefore, the CRH membrane potential could be hy-
perpolarized near the dark potential during the OFF response at
both temporal frequencies, although the hyperpolarization was
less complete (i.e., NMI < 1) at 5 Hz relative to 0.5 Hz for both
CRH-1 and CRH-3 cells (Fig. 6 A, B,E).

To determine whether hyperpolarization during the OFF re-
sponse was mediated by suppressed excitation versus increased in-
hibition, we performed a voltage-clamp analysis. For both CRH-1
and CRH-3 cells, the OFF response was dominated by a suppres-
sion of excitatory current rather than an increased inhibitory
current (Fig. 6 F,G). Indeed, both CRH cell types received a feed-
forward inhibitory current at light onset (Fig. 6 F, G). Therefore,
both CRH cell types apparently receive excitatory input from an
ON bipolar cell with a high baseline release rate that is actively
suppressed during negative contrast; this resembles the excitatory
input to ON alpha cells (Margolis and Detwiler, 2007; Borghuis et
al., 2013). Suppression of excitation explains the large hyperpo-
larizations of both CRH cell types during negative contrast.

Analysis of synaptic input to ON alpha cells showed distinct
patterns of the NMI for excitation and inhibition (n = 10; Fig.
6C,D). In these cases, measures of membrane current at the mean
luminance and of the initial response to darkness replaced the
related measures of membrane potential in the NMI equation
above. During the OFF response, the excitatory input to ON
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alpha cells was strongly suppressed to the
level of the dark current (NMI near one),
resembling the pattern in CRH-1 and
CRH-3 voltage responses (Fig. 6 A, B). The
same, however, was not true for the inhib-
itory input to ON alpha cells (Fig. 6D).
For inhibition, the OFF response at both
temporal frequencies showed an NMI <
0.5 on average and significantly less than
the NMIs measured in CRH-1 voltage re-
sponses (0.5Hz: t = 13.0,p < 10 ;5 Hz:
t=11.0,p < 10 —3), CRH-3 voltage re-
sponses (0.5 Hz: t =7.8,p < 10 35 Hz:
t = 8.6, p < 107?), and ON alpha cell
excitatory currents (0.5 Hz: t = 10.4, p <
10 7% 5 Hz: t = 15.4, p < 10 ; Fig. 6E).
Therefore, inhibition onto ON alpha cells
persisted during the OFF response, that is,
when CRH-1 and CRH-3 cells were strongly
hyperpolarized. In absolute terms, this tonic
inhibition during the OFF response was
290 * 38 pA, approximately the same as
the peak current response (i.e., relative to
the initial holding current) during posi-
tive contrast at either 0.5 Hz (330 * 40
pA) or 5 Hz (300 = 40 pA; n = 6). These
results show that CRH voltage responses
are not sufficient to explain the pattern of
inhibition in an ON alpha ganglion cell.

The persistent inhibition of ON alpha
cells during negative contrast suggests ei-
ther that CRH cell synapses show persis-
tent release at negative contrast despite
membrane hyperpolarization or that ad-
ditional convergent circuits inhibit ON al-
pha cells during negative contrast when
CRH cells are hyperpolarized. Both of
these mechanisms were tested and are dis-
cussed below.

CRH-1 cell synapses show low-pass
filtering

Optogenetic experiments were used to
elucidate intrinsic properties of CRH cell
synapses. We stimulated ChR2 for a 50 s
period, alternating steady light with sinu-
soidal modulation of intensity at 0.5 or 5
Hz (in alternating order separated by 10 s
of constant illumination; Fig. 7A) and re-
corded IPSCs in the ON alpha cell. Both
temporal frequencies are within the phys-
iological range of conventional light re-
sponses (Fig. 6). The switch to steady light
evoked a tonic current in ON alpha cells
that attenuated slowly over 50 s (Fig. 7A).
Modulation at both frequencies was re-
flected in the IPSCs, primarily at the
input frequency (Fig. 7A). The modula-
tion, however, was notably weaker at 5 Hz,
at which release was not suppressed to
baseline during the negative phase of
ChR2 stimulation (Fig. 7A). We quanti-
fied this by calculating an NMI compara-
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two stimuli followed by a switch to darkness. Stimulus was a contrast-modulated spot (100% contrast, 1000 wm diameter) at 2
temporal frequencies (0.5 or 5 Hz) with a background set to the mean luminance. Inset in the middle column shows an expanded
view of the 5 Hz response. Relative to the resting potential (solid horizontal line), the cell hyperpolarized near the dark potential
(dashed horizontal line; i.e., membrane potential after the switch from mean luminance to dark background measured over 50 ms)
during periods of negative contrast at both temporal frequencies. B, Same format as A for a CRH-3 cell recording. €, Same format
as A for excitatory current recorded in an ON alpha cell. The current is suppressed (i.e., moves outward) near the dark current
(dashed line) during periods of negative contrast at both temporal frequencies. D, Same format as Cfor inhibitory current recorded
in the same ON alpha cell. During periods of negative contrast, the inhibition persisted and was not fully suppressed to the level
near the dark current (dashed line). £, Summary data of NMI across cells showing that CRH-1and CRH-3 voltage and ON alpha cell
excitatory current are suppressed near the dark voltage/current in normalized coordinates (where 1 = dark current/potential; and
0 = resting current/potential). The ON alpha cell inhibitory current NMI was significantly less than the values measured in CRH-1
voltage, CRH-3 voltage, or ON alpha excitatory current at both 0.5 and 5 Hz. For 0.5 Hz stimulation, responses were measured
within a 200 ms time window positioned within 500 ms after the transition to negative contrast. For 5 Hz stimulation,
responses were measured within 15-20 ms time windows positioned within 100 ms after the transition to negative
contrast. Population data show mean == SEM across cells. F, Voltage-clamp recording of a CRH-1 cell. During negative
contrast, the tonic excitatory current was suppressed, whereas the inhibitory current did not increase above baseline.
Inhibition instead increased during positive contrast. G, Same format as F for a CRH-3 cell, which showed a similar pattern
of synaptic input as the CRH-1 cell.
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Figure7.  CRH cell GABA release onto ON alpha cells does not fully modulate at a high temporal frequency. 4, Optogenetically evoked inhibition inan ON alpha cell (V, ;.4 = 0 mV) evoked by blue
light stimulation in the CRH-ires-Cre::Ai32 retina. In this control (con) condition, drugs were applied to block glutamate signaling and thereby suppress photoreceptor-mediated responses (see
Results). The light switched from darkness to a mean level followed by sinusoidal modulation at either 5 or 0.5 Hz. Inset for trace at left shows the modulation at 5 Hz. During the negative phase at
5 Hz, the IPSCin the ON alpha cell persisted (arrowhead, dotted line) and did not modulate to the baseline level measured before stimulus onset (dashed line). Mean light intensity = 2.4 X 10"
Qs "em 2 Sinusoidal modulation varied from darkness to twice the mean. B7, Same format as A for a second cell recorded with TTX (1 um) applied to block voltage-gated Na channels and thereby
suppressing spikes in presynaptic CRH-3 cells. B2, Same format as BT but with the order of the two frequencies reversed. ¢, Same format as 4 but for a voltage recording of a CRH-3 cell. D, Same
formatas Cbut for a voltage recording of a CRH-1 cell. £, Same format as D but for an excitatory current recording of a CRH-1 cell. F, NMI calculated as in Figure 6£, where 1 = baseline current before
stimulus onsetand 0 = average current measured over 1s before the sinusoidal stimulus. The 0.5 and 5 Hz temporal frequencies (f,;;.,) were presented in two orders (blue points: 5 Hz followed by
0.5 Hz; red points: 0.5 Hz followed by 5 Hz; data from the same cell are connected by a line), which had no obvious effect on the results. Black points and error bars indicate mean == SEM across cells
(combined across both stimulus orders). For the ON alpha cell IPSC, the index is near 1 for the 0.5 Hz modulation, indicating that the synapse could completely suppress release, whereas the index
was significantly lower at 5 Hz modulation. The low NMI of ON alpha IPSCs at 5 Hz persisted with TTX application, implicating a low-pass filtering of CRH-1 synapses; this was only partially explained
at the level of CRH-1 voltage responses.

ble to the measures above for light-evoked suppression of
membrane potential or synaptic input during the OFF response.
There was a significant difference in NMI between the two tem-
poral frequencies: the postsynaptic GABA current was suppressed
almost completely at 0.5 Hz (NMI = 0.94 £ 0.04, n = 5), whereas
the reduction was less than half as large at 5 Hz (NMI = 0.35 = 0.06;
difference 0of 0.60 = 0.09, ¢ = 6.91,p = 0.0023, n = 5; Fig. 7A,F). The
experiment was repeated after blocking sodium channels with
TTX to suppress CRH-3 firing. The pattern in the NMI was sim-
ilar to the control condition (n = 4; Fig. 7B1) and did not depend
on the presentation order of the two temporal frequencies (Fig.
7B2,F). These results suggest that the inability to completely sup-
press ON alpha IPSCs at 5 Hz reflects the behavior of CRH-1 cell

synapses.

To test this idea further, we recorded from CRH cells directly.
In CRH-3 cells, complete modulation of presynaptic membrane
potential was observed at both 0.5 and 5 Hz stimulus frequencies
and the NMI was close to 1 in both cases (n = 5; Fig. 7C,F). In
CRH-1 cells, however, membrane potential modulation was in-
complete, with an NMI significantly <1 at 5 Hz (NMI = 0.73 =
0.05; t=5.51, p = 0.0015, n = 7; Fig. 7D, F). To test whether the
reduced NMI in the CRH-1 membrane potential could be ex-
plained at the level of ChR2 channels, we performed voltage-
clamp experiments. CRH-1 membrane currents also showed a
NMI significantly <1 at 5 Hz (NMI = 0.88 £ 0.02; t = 5.27,p =
0.0019, n = 7; Fig. 7E, F), but the NMI in membrane current was
significantly greater than the NMI in membrane potential (+ =
2.68, p = 0.020).
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Figure 8.  OFF-pathway inhibition converges with ON-pathway inhibition onto ON alpha cells. 4, Voltage-clamp measurements of excitation and inhibition in an ON alpha cell under control
conditions and after applying L-AP4 (20 wum), followed by L-AP4 + SR95531 (SR, 50 um), followed by L-AP4 + SR + strychnine (STRY, 1 wm). Traces are shown on the same current scale (y-axis).
Ahorizontal line shows the level where current is apparently most suppressed across conditions (see final drug condition). B, Same format as A except SR and STRY were added in the reverse order.
In both A and B, the inhibitory response converts from ON-dominated to OFF-dominated in the presence of L-AP4. The OFF-pathway inhibition persists in either SR (A) or STRY (B), but is blocked in
the presence of both drugs. In both A and B, a small OFF-dominant modulation of excitation is present in the final drug condition (inset). , Summary showing inhibition measured in the ON and OFF
phase in all drug conditions and for both drug orders. ON-pathway inhibition was blocked by L-AP4 and remained blocked when additional drugs were added. OFF-pathway inhibition emerged in
L-AP4 and persisted when either SR or STRY was added alone; the combination of all drugs blocked OFF-pathway inhibition. Responses were measured within a 50 —100 ms time window relative
to the holding current before stimulus onset. D, Model for pharmacology effects showing ON and OFF bipolar cells (BCs) and amacrine cells (ACs) and the recorded ganglion cell (GC) with presumed
connectivity. Excitatory synapses are black; inhibitory synapses are green. L-AP4 blocks all ON-pathway synapses by hyperpolarizing ON BCs, which apparently relieves inhibition of OFF-pathway cells
and thereby increase inhibition of the ON alpha GC during negative contrast relative to the control condition.

These experiments show that GABA release from CRH-1 cell
synapses is not suppressed fully by brief periods of membrane
hyperpolarization. This is explained partly by an intrinsic mem-
brane property, the membrane potential is not fully modulated at
5Hz (Fig. 7D, F), and it is further explained by a property of the
synapses, [PSCs are modulated more weakly than the membrane
potential (t = 4.95, p < 10 ~%; Fig. 7F). Therefore, CRH-1 syn-
apses are tuned to encode contrast modulation at low temporal
frequencies. This feature of CRH-1 synapses partially explains
why ON alpha ganglion cells experience persistent inhibition
during negative contrast at a high temporal frequency (5 Hz), but
it cannot explain the same feature of ON alpha ganglion cells at a
lower temporal frequency (0.5 Hz; Fig. 6).

CRH cells converge with OFF-pathway amacrine cells to
inhibit ON alpha cells

Light-evoked and optogenetic stimulation of CRH cell synapses
suggests that they are tuned to low temporal frequencies and can
be suppressed completely during negative contrast at 0.5 Hz
(Figs. 6,7). However, at 0.5 Hz, ON alpha cells continue to receive
tonic inhibition from presynaptic amacrine cells (Fig. 6C,D). To
better understand the mechanism for tonic inhibition in the ON
alpha cell circuit, we tested the possibility that ON alpha cells
receive so-called crossover inhibition from the OFF pathway. In-
deed, ON alpha cells apparently receive inhibitory input from an
OFF-pathway amacrine cell during negative contrast under dim
lighting conditions (van Wyk et al., 2009).
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In the presence of L-AP4, which blocks ON bipolar cell re-
sponses and isolates OFF-pathway synaptic inputs (Slaughter and
Miller, 1981), the ON inhibitory response in ON alpha cells was
blocked whereas an OFF inhibitory response to negative con-
trast persisted (Fig. 8). This OFF-pathway inhibition presum-
ably was present under control conditions and explains why
inhibition would persist at negative contrast when the ON
pathway is suppressed. With the ON pathway blocked, the
OFF-pathway inhibition at negative contrast is enhanced rel-
ative to the control condition (Fig. 8 A, B). A simple model that
explains the enhanced OFF-pathway inhibition in L-AP4 is
presented in Figure 8D.

After blocking the ON pathway, the OFF-pathway inhibition
was sensitive to blockers of both GABA, (SR95531, 50 wwm; Fig.
8A) and glycine (strychnine, 1 uM; Fig. 8B) receptors, indicating
that both GABAergic and glycinergic amacrine cells, driven by
OFF bipolar cells, converge onto ON alpha ganglion cells. L-AP4
combined with the two inhibitory blockers revealed in some ON
alpha cells a small excitatory current at light offset (Fig. 8A,B),
but this phenomenon was not studied further.

Relative to L-AP4 alone, the peak inhibitory current was un-
changed or slightly increased by either SR95531 (157 * 19%) or
strychnine (111 % 29%) alone, whereas a combination of the two
blocked inhibition entirely (Fig. 8C). This pattern reflects inhibitory
interactions between amacrine cells that give rise to nonlinear effects
of pharmacological agents. Nevertheless, the GABA ,- and glycine
receptor-mediated IPSCs in ON alpha cells recorded in the pres-
ence of L-AP4 demonstrates that at least two OFF-pathway ama-
crine cells converge, along with CRH cells and possibly other
ON-pathway amacrine cells, on ON alpha ganglion cells.

Discussion

Here, we describe amacrine cells identified by Cre expression
driven by the CRH promoter in the mouse retina. These cells
indeed express CRH protein (Fig. 1) and comprise three mor-
phological and functional types (CRH-1, CRH-2, and CRH-3),
two of which (CRH-1 and CRH-3) provide input to the ON alpha
ganglion cell (Figs. 3, 4) and respond over a range of stimulus
conditions (Fig. 5). CRH-1, the synapses of which are tuned to

Circuit diagrams for ON alpha and SbC ganglion cells. ON alpha and ShC ganglion cells show opposite responses to
positive contrast, which is apparently explained by differing ratios of excitation (e) and inhibition (i). Synaptic inputs during
positive contrast (ON response) are shown within the dashed rectangle. Both ganglion cell types receive excitatory input from ON
bipolar cells (BCs), including type 6 BCs, and ON-pathway inhibitory input from CRH-1 amacrine cells (ACs); both types receive
additional ON-pathway inhibitory input from either the All AC (SbC) or the CRH-3 cell (ON alpha). Both ganglion cell types also
receive converging input from OFF-pathway ACs: either unknown ACtypes (ON alpha, SbC) or the VGIuT3 AC (ShC cell). The ShC cell
also receives excitatory synapses from OFF BCs (data not shown). The opposite responses to positive contrast by the ON alpha and
ShC ganglion cells are apparently explained by the different balances of excitation and inhibition in the two circuits despite their
common categories of synapticinput: ON alpha cells have relatively higher excitation (e > i), whereas ShC cells show the opposite

CRH cells diverge to two ganglion cell
circuits with opposite responses to
positive contrast

CRH-1 makes synapses with both ON al-
pha cells (Fig. 2) and SbC ganglion cells
(Jacobyetal., 2015). In both cases, CRH-1
inhibits the postsynaptic ganglion cell
during an increase in positive contrast
(Fig. 9). In addition, the synaptic output
of CRH-1 is combined at the ganglion cell
level with OFF pathway-mediated GABAergic
and glycinergic input (Jacoby et al., 2015;
Lee et al., 2016; Tien et al., 2016; Fig. 8).
However, despite having similar presynaptic inputs, ON alpha
and SbC ganglion cells exhibit opposite responses to positive con-
trast: positive contrast excites ON alpha cells (Murphy and Rieke,
2006; Krieger et al., 2017) while inhibiting SbC cells; SbC cells also
are inhibited by negative contrast (Jacoby et al., 2015; Lee et al.,
2016; Tien et al., 2016).

The ON alpha and SbC cells’ opposite responses to positive
contrast are explained by differences in the balance between ex-
citation and inhibition in the two circuits. In relative terms, ON
alpha cells receive a larger excitatory input (Fig. 6; Bleckert et al.,
2014), whereas SbC cells receive a larger inhibitory input (Jacoby
etal., 2015; Lee et al., 2016; Tien et al., 2016). Therefore, a single
retinal interneuron, CRH-1, diverges to two output circuits with
opposite responses to the same visual stimulus. There likely are
additional amacrine cells that play similar roles in other ganglion
cell circuits that share some input but diverge in output proper-
ties. This underlies the importance of understanding the strength
of synaptic connections when interpreting anatomical connecto-
mic data.

Synaptic and circuit mechanisms for tonic inhibition of ON
alpha cells

Compared with other ganglion cell types, the ON alpha cell has a
high tonic firing rate: ~20-50 spikes/s in bright background light
(Passaglia et al., 2001; Zaghloul et al., 2003; Sagdullaev and Mc-
Call, 2005; Chang et al., 2013; Grimes et al., 2014; Ke et al., 2014;
Schmidt et al., 2014; Krieger et al., 2017). A high firing rate en-
sures that the ganglion cell responds strongly around contrast
threshold, including by reducing its firing rate in response to
negative contrast (Chichilnisky and Kalmar, 2002; Zaghloul et al.,
2003).

An ON alpha cell’s excitatory input is dominated by the type 6
bipolar cell, which appears to have a high level of tonic glutamate
release at mean luminance (Murphy and Rieke, 2006, 2008; Be-
audoin et al., 2007; Schwartz et al., 2012; Borghuis et al., 2013;
Grimes et al., 2014; Ke et al., 2014). Interestingly, other ON bi-
polar cell types can substitute for type 6 bipolar cells that have
been ablated (Tien et al., 2017). The high rate of release onto ON
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alpha cells depolarizes their membrane potential by ~10 mV
relative to the reversal of leak channels and supports tonic firing
at mean luminance (Margolis and Detwiler, 2007). The signal-to-
noise ratio (SNR) of synaptic input, assuming Poisson statistics of
release (Ashmore and Copenhagen, 1983; Freed, 2000; Freed and
Liang, 2010), would be proportional to the square root of the
release rate; therefore, the high baseline rate, although expensive
metabolically, would improve the SNR (Sterling and Laughlin,
2015). Substantial tonic excitation, however, raises the risk that
additional depolarizing input will push the cell into satura-
tion, causing inactivation of Na channels and an inability to
spike. Therefore, it is necessary to balance excitation with
feedforward inhibition onto the ganglion cell (Bleckert et al.,
2014; Zhao et al., 2014). Although tonic excitation of ON
alpha cells increases with background luminance (Pang et al.,
2003, 2015; Murphy and Rieke, 2006), tonic inhibition also
becomes stronger with the background, enabling inhibition to
balance excitation across a wide operating range. Indeed, feed-
forward inhibition is a common circuit motif, although it is com-
monly associated with more transient synapses that depend on
the relative timing of bursts of excitation and inhibition (Pouille
and Scanziani, 2001; Wehr and Zador, 2003; Wilent and Contre-
ras, 2005).

The ON alpha cell seems to integrate excitatory and feedfor-
ward inhibitory synapses with high tonic rates of release. We
found that inhibition to ON alpha cells was elevated despite
ongoing changes in positive or negative contrast (Fig. 6). Tonic
inhibitory current near E_,;,, was typically ~300 pA (~4 nS).
Assuming an intrinsic E of —80 mV (Murphy and Rieke, 2006)
and a natural V., of —60 to —55 mV, the resting inhibitory
current would be ~75 to 100 pA. Assuming an ~60 M{) input
resistance, tonic inhibition could generate an ~4—6 mV mem-
brane hyperpolarization at rest.

Tonic inhibition depended partly on the convergence of ON-
and OFF-pathway amacrine cells (Figs. 6, 8), both GABAergic
and glycinergic (Fig. 8). Presynaptic glycinergic cells could in-
clude the bistratified A8 amacrine cell, which may make synaptic
contacts with ON alpha cells (Lee et al., 2015). The presence of
crossover inhibition in mouse ON alpha cells differs from the lack
of such inhibition in guinea pig ON alpha cells (Zaghloul et al.,
2003). The OFF-pathway inhibition of mouse ON alpha cells in
bright light, shown here, resembles a similar mechanism recorded
under dimmer light conditions (van Wyk et al., 2009). OFF-pathway
inhibition primarily acts during a period of negative contrast
when ON bipolar release is suppressed (Fig. 8). At the switch
to positive contrast, ON bipolar release can be fast and tran-
sient, especially after a prolonged period of negative contrast
(Jackman et al., 2009; Ke et al., 2014; Vlasits et al., 2014). At a
subsequent transition to positive contrast, inhibition from the
OFF pathway would balance the fast, transient ON-pathway
excitation until the feedforward ON-pathway inhibition can
begin to take effect.

Possible mechanisms for crossover excitation in the ON

alpha cell

We observed OFF-pathway excitation onto ON alpha cells in the
presence of a drug mixture that blocked the ON pathway (L-AP4)
and both GABAergic and glycinergic inhibition (SR95531 plus
strychnine; Fig. 8). Although we did not pursue the underlying
mechanism, we speculate that OFF bipolar cells could excite the
AII amacrine cell, which in turn would provide indirect excita-
tion to the ON alpha cell via electrical coupling to ON bipolar cell
terminals (Demb and Singer, 2012). This putative circuit might

Park et al. o Circuit Function of CRH Amacrine Cells

explain similarly unexpected OFF-pathway-mediated excitation
in ON ganglion cells under other experimental conditions (Roska
and Werblin, 2001; Ala-Laurila et al., 2011; Farajian et al., 2011;
Crook et al., 2014).
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