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Abstract

Epigenetic changes, especially DNA methylation at CpG loci have important implications in 

cancer and other complex diseases. With the development of next-generation sequencing (NGS), it 

is feasible to generate data to interrogate the difference in methylation status for genome-wide loci 

using case-control design. However, a proper and efficient statistical test is lacking. There are 

several challenges. First, unlike methylation experiments using microarrays, where there is one 

measure of methylation for one individual at a particular CpG site, here we have the counts of 

methylation allele and unmethylation allele for each individual. Second, due to the nature of 

sample preparation, the measured methylation reflects the methylation status of a mixture of cells 

involved in sample preparation. Therefore, the underlying distribution of the measured methylation 

level is unknown, and a robust test is more desirable than parametric approach. Third, currently 

NGS measures methylation at over 2 million CpG sites. Any statistical tests have to be 

computationally efficient in order to be applied to the NGS data. Taking these challenges into 

account, we propose a test for differential methylation based on clustered data analysis by 

modeling the methylation counts. We performed simulations to show that it is robust under several 

distributions for the measured methylation levels. It has good power and is computationally 

efficient. Finally, we apply the test to our NGS data on chronic lymphocytic leukemia. The results 

indicate that it is a promising and practical test.

Keywords

DNA methylation; differential methylation test; next-generation sequencing

*Correspondence to: Hongyan Xu, Department of Biostatistics and Epidemiology, Georgia Health Sciences University, 1120 15th 
Street, Augusta, GA 30912-4900. hxu@gru.edu. 

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2018 April 12.

Published in final edited form as:
Genet Epidemiol. 2013 May ; 37(4): 377–382. doi:10.1002/gepi.21726.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Genetic association studies, especially large-scale genome-wide association studies have 

become very popular in recent years due to the rapid advancement of genotyping 

technologies and the completion of the Human Genome Project. Several hundreds of disease 

susceptibility loci have been identified through genome-wide association studies. Despite 

this progress, the genetic variants identified so far only explain a small proportion of the 

phenotypic variation for most complex diseases [Eichler et al., 2010]. Another potential 

source of phenotypic variation is epigenetic changes such as DNA methylation.

DNA methylation refers to the addition of a methyl group to the 5′ of cytosine in a CpG 

dinucleotide. DNA methylation in the promoter region can suppress expression of the gene. 

It has been shown that DNA methylation changes have been involved in many human 

diseases, especially cancer [Kulis and Esteller, 2010; Spisák et al., 2012]. Hypermethylation 

of CpG dinucleotides is an important hallmark for the inactivation of tumor suppresor genes. 

In contrast, hypomethylation of normally methylated genes could lead to activation of 

oncogenes. Genome-wide epigenetic patterns are being investigated through the Human 

Epigenome Project [Satterlee et al., 2010].

With the development of biotechnology, it is now possible to generate methylation data at 

genome-wide CpG sites through next-generation sequencing (NGS). In these experiments, 

DNA samples are treated with bisulfite, which converts unmethylated cytosines to uracils 

and leaves methylated cytosines intact. NGS results in counts of the number of molecules 

with a cytosine (methylated) and number of molecules with a uracil (unmethylated) at each 

CpG site for each subject or sample.

One naive approach to test for differential methylation between groups (e.g., cases and 

controls) based on the counts from NGS is to sum the counts across subjects within a group 

for a given CpG site, resulting in a 2 × 2 contingency table (methylated/unmethylated × 

case/control). Pearson’s chi-squared test of independence is then used with this table. This 

approach is problematic because the sequencing coverage (larger numbers of total molecules 

measured) for each individual could be different, leading to individuals with large 

sequencing coverage having undue influence on the test statistic. Further, this test does not 

take into account between-subject variability in methylation levels.

Another approach is to first estimate the methylation proportion (β) at each CpG site for 

each individual, β = nmethy/(nmethy + nunmethy). A t-test can then be applied to β. This 

approach removes the problem of unequal coverage as in the previous approach, and this test 

also accounts for between-subject variability in methylation levels. However, there are 

several problems with this approach. First, unlike data obtained from methylation microarray 

experiments [Teschendorff et al., 2010], where methylation proportion is directly measured, 

the methylation proportion is estimated from count data with NGS. Differences in 

sequencing coverage will lead to estimates of β that differ in their accuracy, with subjects 

with larger sequencing coverage having smaller standard errors for the estimate of β. Such 

heteroscedasticity can be problematic for t-tests. Further, the normality assumption of the t-
test may not hold for NGS methylation data. In addition to the effects of sequencing 
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coverage, the methylation proportion could be affected by many factors such as library 

preparation, and batch effects. These additional factors affect the distribution over samples 

or subjects of the true β, and as such this distribution is unknown. Therefore, a robust 

alternative to the t-test is needed. Another concern for analyzing methylation proportion 

using a t-test is that the t-test is defined over −∞ to ∞ while methylation proportion is 

restricted between 0 and 1. In real data, we observe a substantial proportion of samples and 

CpG sites have methylation proportion equal 0 or 1. In this paper, we propose a test for 

detecting differentially methylated CpG sites based on clustered data analysis by directly 

modeling the methylation counts. We then performed simulations to show that the proposed 

test is robust under several distributions for the measured methylation levels.

Methods

Model

Here we model the methylation counts in a case-control study design. Suppose there are nA 

individuals in the case group and nU individuals in the control group. We have NGS 

genome-wide methylation data at k CpG sites. Let mAij be the count of methylated reads for 

individual i at CpG site j in cases, cAij be the coverage for individual i at CpG site j in cases, 

and βAij be the true methylation level for individual i at CpG site j in cases, we model mAij 

with a binomial distribution

mAij B(cAij, βAij), i = 1, …nA, j = 1, …k . (1)

Similarly, we define mUij, cUij, and βUij be the corresponding quantities in controls, and we 

have

mUij B(cUij, βUij), i = 1, …, nU, j = 1, …k . (2)

The key here is to treat the NGS reads as clusters within each individual and the problem 

becomes to compare two proportions in the presence of clustered data. These clusters are a 

natural result of the experimental design and the nature of the binomial data being measured 

on each subject within each group. We adopt a method from clustered data analysis for this 

purpose [Rao and Scott, 1992]. This approach first calculates a design effect, which is then 

used to adjust the methylation proportions in cases and controls.

Specifically, we first calculate the overall methylation counts at CpG site j in cases and 

controls, respectively, ignoring the clustering within individuals as in the naive contingency 

table approach mentioned above. That is, we have mA j = ∑i = 1
nA mAij and mU j = ∑i = 1

nU mUij. 

The sample methylation proportions in cases and controls are given by
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βA j =
mA j
CA j

, βU j =
mU j
CU j

,

where CA j = ∑i = 1
nA cAij and CU j = ∑i = 1

nU cUij. The variances of the sample methylation 

proportions are given by

V(βA j) =
nA ∑

i = 1

nA
(mAij − cAijβA j)

2

(nA − 1)CA j
2 ,

and

V(βU j) =
nU ∑

i = 1

nU
(mUij − cUijβU j)

2

(nU − 1)CU j
2 .

Without clustering, the variances of the sample methylation proportion from a binomial 

distribution would be given by

VB(βA j) =
βA j(1 − βA j)

CA j
, VB(βU j) =

βU j(1 − βU j)
CU j

.

Therefore, the design effects because of clustering are given by

dA j =
V(βA j)

VB(βA j)
, dU j =

V(βU j)

VB(βU j)
.

The design effects are then used to adjust the methylation counts, and total coverage in cases 

and controls. That is,

m∼A j =
mA j
dA j

, m∼U j =
mU j
dU j

, and

C
∼

A j =
CA j
dA j

, C
∼

U j =
CU j
dU j

.

The adjusted overall methylation level at CpG site j is given by
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β
∼

j =
m∼A j + m∼U j
C
∼

A j + C
∼

U j
.

The test statistic is an adjusted chi-squared statistic, given by

χA
2 =

(m∼A j − C
∼

A jβ
∼

j)
2

C
∼

A jβ
∼

j(1 − β
∼

j)
+

(m∼U j − C
∼

U jβ
∼

j)
2

C
∼

U jβ
∼

j(1 − β
∼

j)
,

which follows a χ2 distribution with one degree of freedom.

Simulation Study

Simulations were performed to study the properties of the proposed test. Since the 

distribution of true methylation level is unknown and likely varies from site to site, we 

generate methylation levels βAij and βUij from several distributions to study the robustness 

of the proposed test. We considered three distributions: (a) beta, (b) normal, and (c) mixed 

normal distributions. Specifically, in scenario (a), the methylation proportion for individual i 
at CpG site j was sampled from

βAij beta(aA j, bA j)

in cases and sampled from

βUij beta(aU j, bU j)

in controls. In scenario (b), methylation proportions were sampled from N(μA j, σA j
2 ) in cases 

and from N(μU j, σU j
2 ) in controls. Since methylation proportion is a value between 0 and 1, 

simulated values < 0 were set to 0 and values > 1 were set to 1. In scenario (c), methylation 

proportions were sampled from two-component mixture normal distributions, one for 

methylated sequences and the other for unmethylated sequences. That is, 

βAij pA jN(μ1 j, σ1 j
2 ) + (1 − pA j)N(μ2 j, σ2 j

2 ) and βUij pU jN(μ1 j, σ1 j
2 ) + (1 − pU j)N(μ2 j, σ2 j

2 ). 

Similar to scenario (b), simulated values outside [0, 1] were set to the nearest boundary. In 

each scenario, the parameters for the distribution of methylation levels were set to be equal 

for simulations under H0 to evaluate type I error rate. They were set to be different for 

simulations under HA to evaluate power.

In each scenario, we simulated counts of methylated molecules according to Equations (1) 

and (2) for cases and controls, respectively, using the methylation proportions simulated as 

above. We allowed the coverage cAij and cUij to vary by sampling from a normal distribution 
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N(30, 13) with a minimum of 5, which is the minimum number of reads used on the actual 

data that we analyze below.

Results

We performed simulations under H0 to study the type I error rate of the proposed test. As 

detailed in the previous section, we considered three scenarios for the distributions of 

methylation levels. For each scenario, we simulated methylation counts for equal number of 

individuals in cases and controls. We set nA = nU to varying numbers from 10 to 500 to 

study the effect of sample size. We performed 100,000 replicates for each sample size in 

each scenario. Table I gives the empirical type I error rate evaluated at several α levels for 

scenario (a), where individual methylation levels were generated from a beta distribution. 

Similarly, Table II gives the empirical type I error rate for scenario (b), where individual 

methylation levels were generated from a normal distribution and Table III gives the 

empirical type I error rate for scenario (c), where individual methylation levels were 

generated from a mixture normal distribution. As can be seen from these tables, type I error 

rate approaches the nominal α level as sample size increases. This is the case for all the α 
levels and all three distributions of methylation levels. Compared among the three simulation 

scenarios, the inflation of the type I error is lower when methylation levels follow a normal 

distribution than it is in the scenarios where methylation level follows either beta or mixture 

normal distribution. The inflation is highest when methylation level follows mixture normal 

distribution in scenario (c).

In comparison, we applied t-test and the naive contingency table approach to the same 

simulated data sets under H0. The results of type I error rate are given in Tables I–III, 

respectively, for simulation scenario (a), scenario (b), and scenario (c). The type I error rate 

is inflated for t-test relative to the proposed test under all three simulation scenarios. The 

type I error rate for the naive contingency table approach is inflated even further.

Because the design effect distinguishes our proposed test with the naive test, we performed 

simulations under H0 to explore factors that might affect the magnitude of the design effect. 

In the first set of simulations, individual sequencing coverage was generated from normal 

distributions with constant SD of 15 and varying mean values. As can be seen from Figure 1, 

the design effect increases as the mean value for sequencing coverage increases, and sample 

size does not have much effect on the design effect. In the second set of simulations, 

individual sequencing coverage was generated from normal distributions with constant mean 

of 30 and varying SD values. As can be seen from Figure 2, the design effect increases as the 

variability of sequencing coverage increases and sample size has much less effect on the 

design effect. These results suggest that larger corrections to the naive test are required as 

sequencing coverage increases, and larger sample sizes do not reduce the design effect.

We next performed simulations under HA to study the power of the proposed test, assuming 

that methylation levels in cases and controls were drawn from distributions with different 

means. Figure 3 shows the power curves evaluated at α = 0.0001 for the three simulation 

scenarios. In the figure, effect size is represented by Cohen’s d and calculated as the mean 

difference divided by the standard deviation set in the simulations. As shown in these 
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figures, power of the proposed test increases rapidly with effect size. Compared among the 

three simulation scenarios, the power curves in scenario (a) and scenario (b) are almost 

identical, while the power is reduced in scenario (c) compared with scenarios (a) and (b).

We next analyzed genome-wide methylation data from a study of chronic lymphocytic 

leukemia (CLL), a B-cell lymphoma mainly of adults that is a very heterogeneous disease. 

Mutations within Ig VH genes are known to be associated with the aggressiveness of the 

cancer, with patients lacking mutations having a poorer prognosis [Hamblin et al., 1999; 

Damle et al., 1999]. CD38 levels are known to be associated with both Ig VH mutation 

status [Damle et al., 1999] and prognosis [Del Poeta et al., 2001], with patients having lower 

levels progressing more slowly.

Reduced representation bisulfite sequencing (RRBS) [Meissner et al., 2005] was used to 

measure methylation levels in 11 CLL samples [Pei et al., 2012]. The RRBS technology 

provides counts of DNA molecules that are methylated and unmethylated for any CpG site 

that was sequenced with a typical run providing data for approximately 2 million CpG sites. 

The samples were categorized as low- vs. high-risk based on CD38 levels, with seven 

samples having low CD38 levels (low-risk) and four samples having high CD38 levels 

(high-risk). The RRBS data that we analyze have already been cleaned and aligned as 

described in Pei et al. [2012].

Using this approach, we obtained genome-wide methylation data on 2,442,443 CpG sites. 

The design effect of the proposed test in the high-risk group has a mean of 4.04 (SD = 7.88). 

The design effect in the low-risk group has a mean of 4.53 (SD = 12.59). The P-value 

distribution for the proposed test is shifted toward smaller P-values relative to a uniform 

distribution, as expected if a fraction of the CpG sites came from HA (Fig. 4). For 

comparison, we also applied t-test approach to the data set by first estimating methylation 

proportions from the methylation counts and then performing two-sample t-tests on the 

estimated methylation proportions. The P-value distribution for the t-test (Fig. 5) shows a 

mode toward moderate P-values with a strong peak at near P = 0.4. This distribution is not 

the shape expected under either H0 or HA and reflects that the t-test is not performing well 

with the CLL data. Importantly, the percent of CpG sites with a P-value less than 0.01 for 

the t-test was only 0.5%.

Discussion

Analysis of genome-wide methylation data have drawn much attention recently. Many 

statistical methods have been proposed. However, most of the methods are developed for 

methylation data generated from microarrays [Chen et al., 2012; Kuan et al., 2010; Sun and 

Wang, 2012; Wang, 2011]. Methylation data generated from NGS pose several challenges 

for statistical analysis. First, unlike methylation experiments using microarrays, where there 

is one measure of methylation for one individual at a particular CpG site, here we have the 

counts of the methylation allele and the unmethylation allele for each individual. Second, the 

accuracy of estimates of the methylation proportion will differ between subjects due to 

differences in sequencing coverage. Any method should appropriately account for such 

differences. Third, the distribution of the true β is unknown and will likely affect any test 
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about mean β. Fourth, currently NGS measures methylation at over 2 million CpG sites for 

each sample/subject. Any statistical test has to be computationally efficient in order to be 

applied to the NGS data. Taking these challenges into account, we propose a test for 

differential methylation based on clustered data analysis by modeling the methylation counts 

directly. Simulations results show that the proposed test is robust under several distributions 

for the measured methylation levels. The proposed test is also robust for variations in 

coverage from different individuals. Further, the proposed test is computationally efficient. 

In our real data application, it took only 5 min to perform all the tests at over 2 million CpG 

sites. The computation was performed in R using a desktop computer with 3.3 GHz CPU.

Although the proposed test works well for testing for differential methylation based on 

binomial counts, the current method cannot accommodate factors such as batch effects or 

covariates such as age and sex. Batch effects are likely to be important in any genome-wide 

study. Batch effects may enter NGS methylation studies in terms of the sequencing 

coverage. The test used here would account for such batch effects. However, any other 

random effects due to batches may not be properly accounted in the current test. 

Additionally, relative methylation levels have been shown to be strongly associated with age 

[Bell et al., 2012; Teschendorff et al., 2010] and with sex [Kibriya et al., 2011; Liu et al., 

2010]. Future work should focus on extending this method such that covariates and batch 

effects can be accommodated.

Another limitation of the proposed test is that it is a single locus test for differential 

methylation and ignores the correlation between close-by CpG sites. There is a growing 

interest in developing methods detecting differentially methylated regions (DMRs) [Hansen 

et al., 2012; Heyn et al., 2012; Jaffe et al., 2012]. It may be possible to include our proposed 

test in a hierarchical modeling approach for detecting DMRs. In conclusion, our proposed 

test is a promising and practical test for genome-wide methylation studies. Because of its 

efficiency, it is suitable for a first-round scanning for differential methylation in a genome-

wide study.
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Figure 1. 
Relationship of design effect and sample size from simulations with different mean of 

sequencing coverage.
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Figure 2. 
Relationship of design effect and sample size from simulations with different SD of 

sequencing coverage.
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Figure 3. 
Power curve from simulation at α = 0.0001.
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Figure 4. 
P-value distribution of the proposed test applied to the CLL methylation data.
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Figure 5. 
P-value distribution of t-test applied to the CLL methylation data.
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