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Abstract

Background: Drug repositioning is the process of identifying new uses for existing drugs. Computational drug
repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the
relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into
small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for
repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug
repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein
and drug-side effect relationships.

Results: The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous
profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices
based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug
repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare
our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference
to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual
Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing
methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to
produce useful cluster separations when using graph clustering algorithms while our approach is able to identify
useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results
(Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably
used to infer ATC code and drug repositioning.

Conclusion: The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables
heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to
ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering
algorithms and with high confidence have a higher possibility of being effective repositioning candidates.
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Background
Producing new drugs and marketing them with a com-
plete drug profile is a challenging task as it is a long pro-
cess and requires a large investment of time and money.
Drug repositioning or drug repurposing is the process of
identifying new therapeutic uses for existing drugs. It can
reduce the time, costs and risks of the traditional drug
discovery process [1–4]. The main goal of drug reposi-
tioning is to increase the therapeutic use of the existing
drugs in the clinical and medical domain. It is believed
that drugs having similar profiles are more likely to share
similar behavior in presence of similar targets (e.g. pro-
teins) [1, 3–7]. There is also evidence that computational
drug repositioning can be improved by heterogeneous
data analysis [1, 5, 7–9]. In contrast to laborious in-
vivo and in-vitro experiments, computational methods for
drug repositioning have become popular as effective and
efficient approaches for drug repositioning [1, 3–6]. These
methods focus on identifying new uses for existing drugs
and finding new associations between other contributing
entities like proteins, genes, diseases and side effects to
approach this problem.
There are two main concepts behind drug reposi-

tioning: new target recognition and new indication
recognition. Figure 1 illustrates a general view of these
two drug repositioning concepts. Figure 1a shows the
known interactions where each of the drugs is associated
with at least one target protein and vice versa; each of the
targets is also associated with at least one disease and vice
versa. Figures 1b and c show new target recognition and
new indication recognition, respectively. In new target
recognition, the objective is to identify novel molecular
targets for a given drug while in new indication recog-
nition, the objective is to identify new diseases that may
be impacted by one of the existing targets of the drug.
Computational methods like network based inferencing
[1, 5, 6, 8, 10], machine learning [2, 11, 12], and text
mining approaches [13, 14] are widely used for drug
repositioning. In recent computational approaches, the
Anatomical Therapeutic Chemical (ATC) classification
system [15] is considered as an intermediate source to
identify useful drug repositioning candidates where the
ATC therapeutic classes are used to identify reposition-
ing candidates [9, 11, 16]. Every repositioning candidate
identified by computational models may not be directly
applicable in clinical practice. However, the outcomes
of the computational models may enable prioritizing
repositioning candidates for in-vivo/in-vitro analysis.
Pharmacological data can be represented in homo-

geneous or heterogeneous graphs/networks. Therefore,
most of the drug repositioning approaches can be seen
as hybrid methods of graph/network theory concepts
and machine learning [5, 8–10, 12]. Graph clustering is
such hybrid approach where graphs of homogeneous and

heterogeneous objects can be grouped into small clus-
ters based on their associations. Since pharmacology net-
works are large and complex, partitioning large networks
produces an abstraction which simplifies their complex
interaction structure. Realizing the importance of simpli-
fying drug-data network, research [2, 8, 10, 17, 18] has
approached partitioning pharmacological networks using
various graph theory concepts.
Yildirim et al. [8] focused on combining heterogeneous

data using drug-target and disease-gene interactions
employing bipartite graph projections while Hartsperger
et al. [19] demonstrated the importance of fuzzy cluster-
ing for arranging the biological entities like disease, gene
and proteins in a meaningful weighted k-partite graph.
Moreover, Klamt et al. [20] demonstrates graph transfor-
mations such as graph projection methods would lead to
information loss. In contrast, Yaminishi et al. [5] investi-
gated a supervised bipartite graph inferencing approach
by integrating chemical and pharmacological properties.
Campillos et al. [18] suggested a probability theoretic
approach to integrate chemical and pharmaceutical prop-
erties.
Napolitano et al. [2] proposed useful drug reclassifi-

cations for ATC classification using supervised machine
learning. They integrated drug-chemical, drug-gene and
drug-protein representations and obtained classification
accuracy of 78%. But, integrating pharmacological con-
cepts is also important when focusing drug repositioning
using ATC classification. In general, taking second/higher
order derivatives of objects is a popular method for high-
lighting special features. Lee et al. [9] proposed that
drug groups (DG) having common DG-DG interaction
partners would share similar drug mechanisms and they
have proposed Molecular Complex Detection (MCODE)
algorithm for module detection in DG-DG interaction
network. They investigated clustering DG-DG interac-
tions in relation to ATC classification and they believe
DG-DG interactions would be useful in describing the
mechanisms and the features of drugs.

The importance of heterogeneous data integration In
preliminary investigations of drug repositioning, compu-
tational models for pharmacological data have been devel-
oped using homogeneous components such as disease,
symptoms, side effects, chemical structures, proteins and
genes. But, each homogeneous component has its own
pros and cons [1]. Although many findings acknowledge
the benefits of phenome space properties like disease and
side effects [18, 21], chemical structures are also impor-
tant to make predictions. Different drug characterizations
may lead to identifying various repositioning candidates
based on different aspects. Hence, combining the results
of different drug characterizations can lead to identify-
ing reliable repositioning candidates. Recent studies have
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Fig. 1 A generalized illustration of two alternative approaches involving in drug repositioning; (a), (b) and (c) represent the known interactions, New
Target Recognition and New Indication Recognition, respectively. (The notations 1*-1* and m-n indicate one-or-many and many-to-many
relationships, respectively)

focused on the development of novel, efficient and reliable
computational models to improve the final predictions
using heterogeneous data integration [1, 2, 5, 8, 9].
In early research, symptom similarities have been

employed to analyze disease similarities and in turn to
identify new uses for existing drugs [22]. However, it was
realized that symptom-based similarities alone are inad-
equate to predict new therapeutic uses for existing drugs.
Consequently, mRNA expression and protein-protein
interaction networks have been used in investigating
disease similarities [6]. Campillos et al. [18] demonstrated
the significance of using side effect similarity for drug
repositioning. Even though side effect similarities can be
used to link the interactions between drugs and targets,
there are certain limitations as well. Some side effects
arise due to hormonal changes of the body. Also, side
effects may require a long time to observe and construct
a strong drug-side effect profile. Hence, it cannot be
directly applied to the newly arrived drugs without an
explicit drug profile. Since many side effects are com-
mon among various drugs, data redundancy is another
problem in the side effect domain.
Campillos et al. [18] and Dudley et al. [1] have also

investigated the impact of chemical similarities for drug
repositioning. They found that using chemical struc-
tural similarities alone is insufficient as drugs undergo
metabolic transformations and pharmacokinetic transfor-
mations. Therefore, studying themechanism of action of a
drug is encouraged. Using connectivity maps to construct
the molecular activity profiles based on gene expression
has been considered as a better approach as it simplifies
drug comparisons. However, a molecular activity simi-
larity based approach may not be very accurate as many
disease conditions involve in more than one molecu-
lar activity. Moreover, gene expression profiles may be
generated under different conditions such as different
doses, time durations, different disease stages and ages.

Therefore, considering gene expression alone may result
in poor performance.
Yamanishi et al. [5] have demonstrated the impor-

tance of spanning chemical, genomic and pharmaco-
logical space features in discovering new drug-target
interactions using supervised bipartite graph inference.
They found that pharmacological effect similarities more
strongly correlate with new predictions than chemical
similarities. Moreover, they proposed a two-step strategy
to combine chemical, genomic and pharmacological prop-
erties using supervised bipartite graph learning and hence
obtained reliable drug-target associations.
In-silico drug repositioning has become very popular

during the last decade as it contributes to accelerating
drug development and drug discovery. Moreover, recent
research has identified heterogeneous data integration
as important for obtaining reliable predictions. However,
introducing heterogeneous data types increases the com-
plexity of data representation and the number of features.
Therefore, network partitioning or clustering methods
can be used to simplify large and complex pharmacology
data and predictions can be efficiently made on identi-
fied subgroups [8–10, 19, 23]. Consensus clustering is a
method used for ensemble clustering [24]. It has been
introduced to overcome the limitations of basic cluster-
ing algorithms. It can also be considered as a method
to integrate multiple sources. However, the existing con-
sensus clustering algorithms require the number of clus-
ters to be defined in advance. In this study, we propose
a two-tiered clustering approach for drug repositioning
inspired by consensus clustering. Here, we selected clus-
tering algorithms which could be employed without any
prior knowledge about drug clusters.
Pharmacology networks are large and heterogeneous;

drugs can be considered as the main hubs in these net-
works. The main objective of this study is to construct a
consistent computational model for drug repositioning
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through heterogeneous data integration. Drug-chemical,
drug-gene, drug-protein, drug-disease and drug-side
effect relationships are useful to represent different
aspects of drugs such as chemical, biological and phe-
nome characteristics, respectively. We therefore cluster
drugs based on their heterogeneous associations. Specif-
ically, we apply clustering of drugs to simplify the large
drug-centric pharmacology networks. In this study, we
propose a two-tiered clustering approach, an unsuper-
vised learning approach for drug repositioning via ATC
classification. This proposed approach enables clustering
drugs based on heterogeneous data integration which is
used as the drug similarity model for drug repositioning.
Hence, the final clustering is an overall solution that
groups similar drugs using a variety of drug character-
istics. The identified drug clusters are compared against
already published ATC classification to infer useful repo-
sitioning candidates. The identified drug clusters can be
used as a source to understand drug-drug similarities as
well as drug-group similarities.
As illustrated in Fig. 1, new target recognition and

new indication recognition are two typical ways of
approaching drug repositioning. Even though the use of
ATC classification is popular in the input space to deter-
mine anatomical/therapeutic/chemical features of drugs
[25–27], little research directly focuses on drug reposi-
tioning by ATC classification [2, 16, 28]. Recent research
[2, 28] limited their studies only for the drugs that already
possess an ATC code. Recently, Sun et al. [16] proposed a
semi-supervised learning approach based on a physarum-
inspired prize-collecting steiner tree approach, for drug

repositioning. It applies to infer a single subnetwork at a
time, where ATC-C class is used to reposition drugs for
Cardiovascular diseases.
This paper fills the gap with a purely unsupervised

learning approach by heterogeneous data integration
where ATC classification is employed for large-scaled
drug repositioning of drugs with and without assigned
ATC class. This study also presents a confidence measure
which is used to determine the significance of the inferred
repositioning candidates. Moreover, the significance of
findings arising from this study is twofold; (i) correctly
profile and suggest therapeutic indication for drugs that
do not possess the ATC code; (ii) flag potential of some
drugs to be used for other therapeutic purposes. Fur-
thermore, we provide clinical evidence for four predicted
results (Chlorthalidone, Indomethacin, Metformin and
Thioridazine) to support that our proposed approach can
be reliably used to infer ATC code and drug repositioning.

Methods
As explained in “Background” section, drug repositioning
candidates can be identified by analyzing drug-drug sim-
ilarities. This study proposes an unsupervised two-tiered
clustering model to identifying drug similarities based on
heterogeneous drug characteristics. Figure 2 illustrates
the main steps of the proposed approach. A two-tiered
clustering approach is proposed to build the drug simi-
larity model for drug repositioning. In Drug Clustering
Tier 1, clustering is performed based on drugs’ chemical,
therapeutic, gene, protein and side effect associations sep-
arately to illustrate how close two drugs are, along each

Fig. 2 The proposed approach
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dimension. Drug clustering Tier 2 is a heterogeneous data
integration phase, in which the results of Drug Cluster-
ing Tier 1 are combined to produce an overall similarity
that considers all aspects of the drug similarity. Drug repo-
sitioning is carried out employing ATC classification for
the drug clusters identified at Drug Clustering Tier 2.
The therapeutic classification of the ATC classification is
used to label each cluster from which we identify plausible
repositioning candidates.
The particular drug profile leading to identifying simi-

lar therapeutic uses may vary from drug to drug; choosing
an appropriate representation for drug repositioning is
challenging. Therefore, making a similarity decision based
on heterogeneous drug profiles such as chemical, disease,
genes, proteins and side effect is worthwhile. Moreover,
some dimensions can be incomplete. If the data in one
drug profile is inaccurate or incomplete, it may be com-
pensated by better data in other drug profiles. Therefore,
making the final conclusions based on consolidated het-
erogeneous data enables less errors. ATC classification
is used as the gold standard reference classification. We
expect that drugs that are in the same ATC class should be
clustered together and hence we can use this to validate
our clusters.
In “Data” section, the drug data and their ATC clas-

sification codes used in this study are explained. In
“The proposed approach” section, we explain the selected
clustering algorithms, the proposed two-tiered clustering
approach, the evaluation process for the identified drug
clusters and the computation of confidence measure.

Data
Drug profiles
We use five different homogeneous drug profiles where
four of them are obtained from DyDruma [29] database:
drug-chemical, drug-therapeutic, drug-protein and drug-
side effect profiles.We obtained the KEGG gene data used
in Wu et al. [10] to represent drug-gene relationships.
This allows us to link drug associations in the genomic
space, adding a fifth homogeneous drug dimension. These
drug profiles are represented as binary associations where
values 1 and 0 represent the presence and absence of a
particular feature, respectively.

• drug-chemical features [881]: Each drug is
associated to relevant chemical fingerprints, based on
the 881 fingerprints (2D chemical structures) defined
by PubChem [30]. We assume one feature for each
fingerprint. If a drug contains a given structural
fingerprint, the corresponding feature will have a
value of 1.

• drug-therapeutic features [719]: The therapeutic
uses of the drugs have been obtained by extracting
treatment relationships between drugs and diseases

from the Unified Medical Language System (UMLS)
[31]. These are the treatment relationships between
drugs and diseases from the National Drug
File-Reference Terminology.

• drug-protein features [775]: The target protein
information of drugs has been obtained from
Drugbank [32] and they have been mapped using
UniProt Knowledgebase [33].

• drug-side effect features [1385]: The drug-side
effect information has been extracted from the
SIDER database [34] which uses UMLS library to
map the side effect keywords.

• drug-gene features [1504]: We constructed a drug-
gene binary profile for the 1504 KEGG gene data used
in Wu et al. [10] to represent drug-gene relationships.

These five sources have 417 drugs in common. The
drug profiles of the selected drugs are available at https://
github.com/fathimanush786/two_tiered_clustrering_
data.

ATC classification
As defined byWorld Health Organization, the Anatomical
Therapeutic Chemical (ATC) classification [15] captures
the pharmacodynamic properties of drugs. This resource
uses active ingredients of drugs as well as their anatomical,
therapeutic and chemical properties when constructing
the classification system. ATC is a five level classifica-
tion system. The first level classification is based on the
anatomical group; it contains 14 groups. The second level
classification is based on pharmacological/therapeutic
subgroups. The third and fourth levels denote chemi-
cal/pharmacological/therapeutic subgroups and the fifth
level refers to the chemical substance. Some drugs have
been categorized into multiple classes. These classifica-
tionsmay also be updated based on new research findings.
We obtained ATC classes for 405 drugs out of the 417
selected drugs and 12 drugs had not yet been assigned
into ATC classification. We focus on classifying only up
to the second (therapeutic) level as our broader goal is to
infer new therapeutic uses for existing drugs. We observe
66 unique classes at ATC second level classification for
these 405 drugs. These 66 classes are used as the reference
clustering to evaluate the performance of the drug clus-
ters identified by our method. The ATC classification of
the selected 417 drugs are available at https://github.com/
fathimanush786/two_tiered_clustrering_data.

The proposed approach
Our two-tiered unsupervised clustering model is pro-
posed as a similarity model to identify drugs with closer
relationships. Unsupervised clustering is an approach
to grouping similar objects together without any prior
knowledge of their class labels. Objects that are in a

https://github.com/fathimanush786/two_tiered_clustrering_data
https://github.com/fathimanush786/two_tiered_clustrering_data
https://github.com/fathimanush786/two_tiered_clustrering_data
https://github.com/fathimanush786/two_tiered_clustrering_data
https://github.com/fathimanush786/two_tiered_clustrering_data
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given cluster should demonstrate higher similarity to each
other and relatively higher dissimilarity with the objects
in other clusters. In general, clustering is popular as a
powerful technique which can identify useful patterns in
an unsupervised learning environment. There are numer-
ous clustering algorithms that have been proposed. But,
there is no acknowledged single preferred algorithm. Each
algorithm has its own pros and cons. However, scalabil-
ity, robustness, handling high dimensional features, speed,
intrinsic nature, adaptability and preserving topological
order like properties are some interesting characteristics
which we have considered in this context.
In the context of drug data, we can apply clustering

algorithms by adopting a representation of each drug
that allows drug similarity to be computed. We propose
a two-tiered clustering approach to cluster drugs into
smaller groups based on heterogeneous data integration.
We employ four clustering algorithms for partitioning
the pharmacology network. We employ Growing Self
Organizing Map (GSOM) [35, 36] which is a vector-
based clustering algorithm and three state-of-the-art
graph clustering algorithms: Markov Clustering (MCL)
algorithm [37, 38], Clustering with Overlapping Neigh-
borhood Expansion (ClusterONE) [39] and Molecular
Complex Detection (MCODE) [40]. In general, these
selected clustering algorithms can be applied without any
prior knowledge about the number of classes, which is
more useful in this context. We compare the performance
of clusters identified by each algorithm to the classes of
the ATC classification. We demonstrate the performance
evaluation of drug clustering using internal and external
evaluation measures. The identified drug clusters are
used for drug repositioning via ATC classification.

Selected clustering algorithms
GSOM Growing Self Organizing Map (GSOM) [35, 36]
is an extended version of Self-organization map (SOM)
[41] which is a popular vector-based clustering algorithm,
capable of handling large-scale and high dimensional fea-
tures. It is popular for its growing nature while preserving
the topological order. It also demonstrates an emergent
nature where it starts with one node and it assigns data
points considering the shortest Euclidean distance. Spread
factor is the parameter which controls the granularity of
the cluster map. Smaller spread factor results in a fewer
number of nodes in the GSOM map while larger spread
factor enables a high growth of the GSOMmap.

ClusterONE Clustering with Overlapping Neighbor-
hood Expansion (ClusterONE) [39] is a graph partitioning
algorithm initially proposed for identifying overlapping
protein modules in protein-protein interaction network
and also used in a drug repositioning application [10].
It uses a seeded growing concept where it starts with

one vertex and it adds or removes vertices in greedy
approach to achieve better cluster separations with high
cohesiveness.

MCL Markov Clustering (MCL) [37, 38] algorithm is
another graph clustering algorithm which is also widely
used as a protein module detection algorithm for large
protein networks. It has been used in a recent drug repo-
sitioning application as well [23]. It is popular for its
scalability, fast, intrinsic, adaptable and emergent nature.
It uses a stochastic flow simulation based concept to par-
tition graphs/networks. It’s parameter ‘inflation’ can be
used to control the number of clusters where smaller
inflation produces lower granularity with large clusters.

MCODE The Molecular Complex Detection (MCODE)
[40] algorithm includes three stages: vertex weighting,
complex prediction and optionally post-processing to fil-
ter or add inputs in the resulting complexes by certain
connectivity criteria (haircut and fluffing). MCODE uses
a method based on clustering coefficient when assigning
weights for vertices. The vertex weight threshold param-
eter can be used to define the density of the resulting
complex. A threshold that is closer to the weight of the
seed vertex identifies a smaller, denser network region
around the seed vertex.

Drug Clustering Tier 1
According to the fundamental graph theory concepts,
any drug-feature/drug-drug associations can be repre-
sented in two ways; (i) graph representation and (ii) vec-
tor/matrix representation. Therefore, we can obtain an
adjacency matrix to represent the drug-feature associa-
tions as shown in Fig. 3. An adjacency matrix demon-
strates which vertices/nodes of a graph/network are
adjacent to which other vertices/nodes. In this manner,
we have adjacency matrices (data matrices) of 417×881,
417×719, 417×1504, 417×775 and 417×1385 for each
drug-chemical, drug-disease, drug-genes, drug-protein
and drug-side effect associations, respectively. Then, we
cluster drugs with respect to these independent homoge-
neous features using GSOM algorithm.

Drug Clustering Tier 2
The clustering solutions obtained from Drug Clustering
Tier 1 are used to derive drug-drug relation (DDR) matri-
ces. Hence, we produce one DDR matrix per dimension
considering their Tier 1 cluster assignments. We then
cluster drugs based on combining these individual DDR
matrices in order to capture overall drug similarities of
aggregated features used in Tier 1. Figure 4 illustrates
the mechanism for deriving the DDR matrix using drug
clusters (from Drug Clustering Tier 1). We construct five
DDRmatrices for chemical, disease, gene, protein and side
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Fig. 3 Drug-feature associations could capture in a bipartite graph as shown on (a) and its corresponding adjacency matrix is shown on (b). D(1,2,3)
denotes the drugs while F(1,2,3,4) denotes the features such as chemical, disease, protein and side effect

effects separately, based on the individual Tier 1 clustering
for each type of feature.We then integrate the DDRmatri-
ces of Tier 1 clustering into a single relation matrix by
averaging the individual DDRmatrices. The averaged rela-
tion matrix is used to cluster drugs. By performing this
second round of clustering, we aim to improve the reliabil-
ity of the drug clustering. We employ ClusterONE, MCL,
MCODE as well as GSOM in Drug Clustering Tier 2.

Alternative approaches
Concatenating all features into a single vector
A straightforward approach to integrating heteroge-
neous features is to concatenate all individual features
into a single vector [16, 42]. Let D be a set of drugs
{D1,D2,D3, . . . ,Dn} where C={C1,C2,C3, . . .Ck} be the
binary vector of chemical features of drug Di and
T={T1,T2,T3, . . . ,Tl} be the binary vector of thera-
peutic features of drug Di. Then, we can construct a
heterogeneous data representation (Hy) of chemical and

therapeutic features by concatenating features from differ-
ent domains where Hy={C1,C2,C3, ...Ck ,T1,T2,T3, ...,Tl}
be the heterogeneous data integrated binary vector of
drug Di, for i ∈ 1, 2, 3, . . . , n. Similarly, we can extend this
to integrate drug profiles of multiple domains.

Averaging summarized pairwise similarities
Another way of integrating heterogeneous features is to
average the similarity measure for each member of a
drug pair according to each individual type of feature,
to obtain a single summary similarity score [2]. Jaccard
coefficient is widely used to obtain the similarity measure
between two drugs. Let SimC(Di,Dj) and SimT (Di,Dj)
be the chemical and therapeutic similarity measures of
a pair of drugs Di and Dj, respectively. Then, we can
construct a heterogeneous data representation (Hz) by
averaging SimC and SimT where Hz = SimC+SimT

2 which
would lead to provide a nxn square DDR matrix (where n
is the number of drugs). We can extend this to integrate

Fig. 4 a illustrates drug clusters while (b) illustrates its corresponding drug-drug associations. D(1,2,3) and C(1,2) denote the drugs and the clusters,
respectively
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drug profiles in terms of more than two dimensions of
similarity.

Evaluation
Internal evaluation
The objective of internal validation is to examine the
compactness/cohesion and the separation of the clusters
[43]. There are various internal validation measures
and they are variations of these two. But, there is no
acknowledged measurement of choice. Silhouette anal-
ysis is used as an internal evaluation technique to assess
the consistency within a cluster/class because it takes
both compactness/cohesion and separation into account.
Moreover, Silhouette can be interpreted using visual aids
for in-depth analysis.
Silhouette analysis is used as an internal evaluation

technique to assess the consistency within a cluster/class
[44, 45]. It measures the similarity of an object to its own
cluster/class compared to the other clusters/classes. If the
object has a greater similarity to its own cluster/class than
to its other clusters/classes, the Silhouette value would be
+1 and if the object has greater dissimilarity to its own
cluster/class than to the other clusters/classes, the Silhou-
ette value would be -1. The following equation defines the
Silhouette measure for an object i:

Silhouette(i) = b(i) − a(i)
max{a(i), b(i)} (1)

where a(i) and b(i) are the dissimilarity of the object i to
its own cluster/class and the dissimilarity of the object i to
the other clusters/classes.

External evaluation
We employed ATC classification to compare the per-
formance of our two-tiered clustering approach as well
as the performance the clustering algorithms used in
this study. We selected adjusted measures: Normalized
Mutual Information (NMI) [24] and Standardized Mutual
Information (SMI) [46] to evaluate the identified clusters
with reference to ATC classification. These are informa-
tion theoretic measures derived based onmutual informa-
tion. NMI provides a normalized measure using mutual
information where it ranges between 0 and 1. SMI pro-
vides a statistical adjustment for the mutual information
which is beneficial in adjusting selection bias and to
increase the interpretability. SMI further reduces the bias
in clustering comparisons towards selecting clusterings
with more clusters and where clustering involves fewer
data points. The upper bound of SMI varies based on the
used reference clustering, however, higher SMI value indi-
cates better clustering. The equations for NMI [24] and
SMI [46] to compare clustering solutions U and V are

shown below:

NMIsqrt(U ,V ) = (MI(U ,V ))√
H(U)H(V )

(2)

SMI(U ,V ) = MI(U ,V ) − E [MI(U ,V )]√
var(MI(U ,V ))

(3)

where MI is the mutual information, H is the associ-
ated entropy value, E is the expected value and var is the
variance.

Assigning confidencemeasure
Since a drug can belong to more than one ATC class,
identifying drug clusters with 100% pure ATC class is chal-
lenging. Therefore, we identify the majority class for each
drug cluster and assign a confidence measure for each
identified majority class. Then, we predict the identified
majority class as a reclassification for the drug/s belongs
tominority class/s with the confidencemeasure as defined
by the following equation:

confidencei = number of drugs belong to the major ATC class of cluster i
total number of drugs of cluster i

(4)

where i is the cluster number/id. Hence, we can employ
the confidence measure to filter the most useful reposi-
tioning candidates.

Drug repositioning via ATC therapeutic classes
As explained in “ATC classification” section, ATC classifi-
cation consists of five levels where the second level deter-
mines drug’s therapeutic uses/properties. In this study, we
approach drug repositioning by identifying plausible new
ATC therapeutic (second level) classes for existing drugs.
Identifying the drug’s second level classification implies
its therapeutic uses. We believe reclassification of drugs
into ATC therapeutic (second level) class would enable
inferring repositioning candidates.
The use of unsupervised clustering methods enables

grouping of drugs without any prior knowledge of ATC
classes. We expect that drugs in the same cluster will
demonstrate similar characteristics while being relatively
dissimilar to drugs in other clusters. Therefore, new drug-
drug similarities can be identified by analyzing the drug
clusters. The identified new drug-drug similarities lead
to propose classification of drugs into new ATC thera-
peutic (second level) classes. These proposals are inferred
based on the majority ATC class associated with each
cluster. Classes with higher confidence (see “Assigning
confidencemeasure” section) can be prioritized for reclas-
sification. Since we compare the drug clustering solutions
with reference to ATC therapeutic (second level) classes,
this reclassification step enables inference of repositioning
candidates via ATC therapeutic classes.
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Results
Drug Clustering Tier 1
First, we clustered drugs based on their individual, homo-
geneous properties; chemical, disease, gene, protein and
side effects. We employed GSOM to cluster drugs in Drug
Clustering Tier 1 because it is a vector based clustering
algorithm. In this study, we used the GSOM implementa-
tion of Chan et al. [47] because of its convenient visual aids
for cluster analysis. As mentioned in “GSOM” section, we
tuned the parameter, spread factor (SF), to obtain GSOM
maps of different sizes. As a result, we obtained GSOM
maps of 68 (SF = 0.0001), 69 (SF = 0.25), 66 (SF = 0.8),
63 (SF = 0.2) and 63 (SF = 0.001) nodes for chemical, dis-
ease, gene, protein and side effects profiles, respectively.
Out of 417 drugs, 405 drugs have already classified into at
least one ATC class. Moreover, we noticed 66 unique ATC
classes (2nd level ATC classification) relating these 405
drugs. We evaluated drug clustering solutions for these
405 drugs with reference to the ATC classification.
Table 1 shows NMI and SMI values for Drug Clustering

Tier 1. Accordingly, the NMI varies between 0.46 and 0.68
and SMI varies between 2.91 and 39.33. As of ATC classifi-
cation, anatomical and therapeutic features are considered
in its first two classification levels. Hence, drug clustering
using disease and protein profiles demonstrate relatively
higher NMI and SMI. The NMI and SMI of chemical and
side effect profiles are relatively lower than disease and
protein profiles as they are considered in the third, fourth
and fifth levels of ATC classification. On the other hand,
clustering solution on gene profiles shows the least close-
ness to ATC classification as this type of information is
not considered in ATC classification system. Unlike NMI
where the upper bound is always 1.0, the upper bound
for SMI depends on the choice of reference clustering;
the upper bound for ATC reference clustering is 98.18.
Notably, the ranking order of these clustering solutions is
consistent for both NMI and SMI.
Approximately 16% of the drugs (out of 405 drugs)

are assigned to multiple classes. Therefore, we randomly
selected one ATC class for those drugs having multi-
ple classes when constructing the reference class list.
Additional file 1: Figure S1 corresponds to the Silhouette
analysis for chemical, disease, gene, protein and side effect
profiles, respectively. It is clear that most of the drugs

Table 1 Performance assessment of Drug clustering Tier 1

Drug profiles NMI SMI

Chemical 0.59 20.09

Disease 0.68 39.33

Gene 0.46 2.91

Protein 0.63 30.38

Side Effect 0.58 21.07

show negative Silhouette values, illustrating higher vari-
ations within ATC classes. The mean Silhouette value of
ATC classification based on chemical, disease, gene, pro-
tein and side effects are − 0.31, − 0.06, − 0.49, − 0.25
and− 0.33, respectively. However, disease profiles provide
relatively greater consistency with the ATC classification
compared to other drug profiles.
Moreover, the Silhouette analysis on GSOM identified

drug clusters demonstrates relatively higher Silhouette
values than ATC classification where the mean Silhouette
value for chemical, disease, gene, protein and side effect
using GSOM algorithm are 0.13, 0.09, 0.22, 0.15 and -0.07,
respectively which are relatively higher than ATC classifi-
cation (see Additional file 1: Figure S2 for the Silhouette
analysis).
Furthermore, we examined the closeness of the clus-

tering solutions between different drug properties used
in this study. In Tables 2 and 3, we show the clustering
comparison between different drug profiles using NMI
and SMI, respectively. In these tables, we compare the
drug clusters generated by one type of drug profile with
the drug clusters generated by another type of drug pro-
file. For instance, drug clusters generated using chemical
properties are compared against drug clusters generated
by disease, gene, protein and side effect profiles. Accord-
ing to Table 2, NMI of 0.55, 0.48, 0.59 and 0.56 have
been observed between drug clusters generated by chem-
ical profile and drug clusters generated by disease, gene,
protein and side effect, respectively. Similarly, accord-
ing to Table 3, SMI of 12.71, 0.50, 20.85 and 9.98 have
been observed between drug clusters generated by chem-
ical profile and drug clusters generated by disease, gene,
protein and side effect, respectively.
According to NMI, drug clusters of chemical profiles,

disease profiles, protein profiles and side effect profiles
show relatively closer similarities where they vary between
0.55 and 0.59. On the other hand, the highest SMI is
noticed between clusters of disease and protein profiles.
Notably, drug clusters of gene profiles are relatively far
away from other drug clustering solutions. This devia-
tion might have caused due the highly sparse nature of
the gene profiles. Moreover, the clusters identified by gene
profiles lie relatively very far away from ATC classification
than the other clusters. Therefore, we selected chemical,

Table 2 Drug clustering comparison between drug profiles
based on Normalized Mutual Information (NMI)

Disease Gene Protein Side effect

Chemical 0.55 0.48 0.59 0.56

Disease 0.45 0.59 0.55

Gene 0.45 0.47

Side effect 0.56
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Table 3 Drug clustering comparison between drug profiles
based on Standardized Mutual Information (SMI)

Disease Gene Protein Side effect

Chemical 12.71 0.50 20.85 9.98

Disease 1.08 22.06 14.89

Gene 2.58 0.89

Side effect 16.43

disease, protein and side effect profiles for further anal-
ysis to identify drug repositioning candidates using ATC
classification.
We identified a set of 26 pairs of drugs (see Additional

file 2) which occur together in each drug cluster, generated
based on individual chemical, disease, protein and side
effect profiles. 25 out of these 26 drug pairs are assigned
to the same ATC class (second level), indicating mean-
ingfulness of the identified drug clusters. Fluphenazine
and Thioridazine are also identified in the same cluster in
all four clustering solutions. However, Thioridazine does
not belong to any of the ATC classes while Fluphenazine
belongs to ATC class N05 (-psycholeptics). Therefore, we
believe Thioridazine may share similar drug profile as of
Fluphenazine andwe propose to classify Thioridazine into
N05 (-psycholeptics).

Drug Clustering Tier 2
As explained above, we employed the four drug clus-
terings generated based on chemical, disease, protein
and side effect profiles in Drug Clustering Tier 2. We
constructed four DDR matrices based on these four
identified drug clustering solutions (as explained in “Drug
Clustering Tier 1” section in “Methods” section). We
propose merging of these DDR matrices into a single
matrix as a way of heterogeneous data integration. The
merged DDR matrix can be constructed by giving equal
importance to each of the drug clusterings or by ranking
the drug clusterings based on different evaluation mea-
sures such as NMI and SMI. However, there is no single
type of homogeneous drug characteristics identified to
provide an efficient and effective drug classification or
drug repositioning [1]. Giving equal importance to each
of the drug clusterings, we constructed a heterogeneous
DDR matrix by averaging the four DDR matrices.
We used the averaged DDR matrix to identify drug

clusters, employing the graph clustering algorithms: Clus-
terONE, MCODE and MCL as well as the GSOM algo-
rithm. In this study, we used ClusterONE, MCL and
MCODE implementations available in MATLAB Systems
Biology and Evolution Toolbox (SBEToolbox) [48]. We
obtained a GSOM map of 63 nodes when SF is 0.2. We
identified 64 clusters using MCODE when the thresh-
old parameter is set to 0.9. Increasing the threshold from

(0, 0.9] increased the number of clusters. We identified
66 clusters using MCL when inflation parameter is set to
0.048. The number of clusters increases when the infla-
tion parameter is increased. We obtained two clustering
solutions; CL1I and CL1II employing ClusterONE. CL1I
is obtained when the density parameter is set to 0.6 and
‘nodes’ is used as the seed method while CL1II is obtained
when the density parameter is set to 0.8 and ‘unused-
nodes’ is used as the seed method. CL1I resulted in 61
clusters including all 417 drugs while CL1II resulted in 58
clusters including only 405 drugs. In ClusterONE, choos-
ing ‘nodes’ as the seed method enables every node to be
used as a seed and subgroups smaller than a given density
are thrown away.
Table 4 summarizes NMI and SMI values for Drug Clus-

tering Tier 2 using GSOM, MCL, CL1I and MCODE. The
GSOM results are relatively higher, measuring NMI and
SMI with reference to the ATC classification. The NMI
and SMI values of Drug Clustering Tier 2 are 0.66 and
36.11 while they are 0.68 and 39.33 for disease profiles in
Drug Clustering Tier 1. However, NMI and SMI values of
Drug Clustering Tier 2 are relatively higher than other four
drug profiles. Since we employed ATC therapeutic class as
the reference cluster, the results in Drug Clustering Tier 1
are more favorable towards disease profiles.
We predicted new ATC therapeutic classes based on the

identified majority ATC classes in the corresponding clus-
ters which led to reclassification of the existing drugs. In
order to filter the most reliable repositioning candidates,
we assigned a confidence measure for each prediction (see
“Assigning confidence measure” section). We therefore
filter the repositioning candidates with high confidence as
reliable drug repositioning candidates. The highest con-
fidence measures of the identified major classes are 0.85,
0.83, 0.75 and 0.5 for MCL, ClusterONE, MCODE and
GSOM, respectively.

Comparing the proposed approach against existing
methods
We compared the performance of the proposed two-
tiered clustering approach against two recently used
heterogeneous data integration methods for drug repo-
sitioning (see “Alternative approaches” section). Table 5
shows the performance assessments of these three

Table 4 Performance assessment of Drug Clustering Tier 2 using
four different clustering algorithms

Algorithm NMI SMI

GSOM 0.66 36.11

MCL 0.59 26.49

ClusterONE (CL1I) 0.56 21.37

MCODE 0.52 11.57
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Table 5 Comparison of the proposed approach against two
existing methods for heterogeneous data integration

Method NMI SMI

The proposed two-tiered clustering 0.66 36.11

Concatenating all heterogeneous
features into a single vector (Hy )

0.60 22.26

Averaging summarized heteroge-
neous (pairwise) similarities (Hz )

0.64 33.59

different methods for heterogeneous data integration
using GSOM algorithm only. In Drug Clustering Tier 2,
GSOM demonstrates NMI and SMI of 0.66 and 36.11,
respectively. The all concatenated heterogeneous fea-
ture representation method (Hy) demonstrates NMI
and SMI of 0.60 and 22.26, respectively while averaging
summarized heterogeneous (pairwise) similarities (Hz)
demonstrates NMI and SMI of 0.64 and 33.59, respec-
tively. There is a significant improvement in the proposed
approach compared to the alternative method Hy. Even
though there is no significant improvement in the pro-
posed approach compared to the alternative method Hz,
Hz fails to produce useful clusters when graph clustering
algorithms are used.
It should be noted that these three heterogeneous data

integration methods did not outperform drug clusters
identified by disease characteristics where NMI and SMI
are 0.68 and 39.33, respectively. Since we employed ATC
therapeutic class as the reference cluster, the results in
Drug Clustering Tier 1 are more favorable towards disease
profiles. Our proposed approach and alternative method
Hz outperformed other three clusterings identified by
chemical, protein and side effects profiles inDrug Cluster-
ing Tier 1 whereas alternative method Hy outperformed
clusterings identified by chemical and side effects profiles
in Drug Clustering Tier 1.
The alternative method Hz, explained in this study pro-

duces a complete graph while the proposed two-tiered
clustering approach involves the removal of noisy edges,
resulting in a sparse graph for efficient graph cluster-
ing. The graph clustering algorithms used in this study
are not able to identify useful clusters on the given
complete graph where they resulted in producing only
one module at all time with all three graph cluster-
ing algorithms. Therefore, the proposed two-tiered drug
clustering approach as a heterogeneous data integration
approach demonstrates better performance and can be
considered as a reliable method for both vector-based and
graph clustering.

Drug Repositioning via ATC therapeutic class
We analyzed the drug clusters identified by MCL,
MCODE, CL1I and GSOM to infer useful drug reposi-
tioning candidates. In Table 6, we show 39 repositioning

candidates having a minimum confidence measure
of 0.5. Out of these, 4 drugs (Chlorthalidone, Thior-
idazine, Orphenadrine and Indomethacin) have not
been assigned to ATC classification yet. We infer these
unclassified Chlorthalidone, Thioridazine, Orphenadrine
and Indomethacin for ATC classes C03-diuretics (con-
fidence: 0.83), N05-psycholeptics (confidence: 0.80),
R06 -antihistamines (confidence: 0.64) and M01-
antiinflammatory and antirheumatic (confidence: 0.57),
respectively. Interestingly, in Drug Clustering Tier 1,
Thioridazine is inferred to have a similar drug profile as
of Fluphenazine which also belongs to ATC class N05-
psycholeptics. Moreover, in the predicted repositioning
list, Amlodipine is inferred to be repositioned for diseases
related to renin-angiotensin system (C09) with the high-
est confidence measure of 0.85. Even though Amlodipine
is not directly classified into C09, fixed combinations of
aliskiren,valsartan, hydrochlorothiazide, ACE inhibitors,
etc. are already classified in C09 [15].
Different algorithms may produce different clustering

solutions. However, different algorithms may have simi-
larities too. We identified 79 reclassification predictions
which are generated consistently by at least two clus-
tering algorithms or in at least two different clusters
(in ClusterONE). Table 7 summarizes 11 reclassification
candidates identified consistently by at least two cluster-
ing algorithms with relatively high confidence measures
(see Additional file 3 for the complete list). ClusterONE
algorithm produces overlapping clusters. Therefore, some
drugs are assigned to more than one cluster. Table 7
illustrates three drug reclassification candidates (Cypro-
heptadine, Droperidol and Dolasetron) that are identified
by more than one cluster in ClusterONE results.
In this study, ATC classification is considered as the gold

standard classification, therefore, we obtained clustering
performance with reference to the ATC classification. We
used only up to its second level classification as it captures
the therapeutic uses. The drugs used in this study include
12 drugs that are not yet assigned into ATC classifica-
tion. However, our method enables inferring suitable ATC
classification for them (see Additional file 4 for the com-
plete list of predictions). Moreover, the inferred new ATC
codes of other drugs can be used for drug repositioning.
“Clinical significance of our findings” section summa-
rizes some clinical evidence to support these findings.
We therefore suggest that cluster-based classification and
reclassification into the ATC classification system is a
viable method for drug repositioning.
Clustering enables partitioning the large pharmacology

network into smaller subgroups and hence simplifies the
drug repositioning process. Since drugs can be considered
as the main component of the pharmacological networks,
drug clustering provides an indirect way of clustering
the networks, where associations to related entities (e.g.,
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Table 6 The inferred repositioning candidates with higher confidence

Drug name Cluster ID Old ATC name New ATC name Confidence Algorithm

Amlodipine 403 C08 C09 0.85 MCL

Chlorthalidone 2 C03 0.83 CL1

Amantadine 51 N04 N05 0.80 CL1

Thioridazine 51 N05 0.80 CL1

Hydroxyzine 30 N05 C09 0.75 MCODE

Cyproheptadine 46 R06 N06 0.70 CL1

Amlodipine 11 C08 C09 0.70 CL1

Carvedilol 11 C07 C09 0.70 CL1

Cetirizine 11 R06 C09 0.70 CL1

Acitretin 414 D05 D10 0.67 MCL

Brinzolamide 48 S01 L02 0.67 MCODE

Orphenadrine 392 R06 0.64 MCL

Clonidine 56 C02, N02, S01 N05 0.62 CL1

Thioridazine 56 N05 0.62 CL1

Dofetilide 399 C01 L02 0.60 MCL

Cyproheptadine 35 R06 N06 0.59 CL1

Guanfacine 35 C02 N06 0.59 CL1

Dipivefrin 44 S01 N05 0.57 CL1

Indomethacin 7 M01 0.57 MCODE

Nicardipine 57 C08 N06 0.57 CL1

Cyproheptadine 4 R06 N06 0.54 CL1

Methadone 4 N07 N06 0.54 CL1

Arsenic Trioxide 4 L01 P01 0.50 MCODE

Atropine 48 A03, S01 N04 0.50 CL1

Atropine 393 A03, S01 N04 0.50 MCL

Dacarbazine 79 L01 A10 0.50 GSOM

Hexachlorophene 350 D08 D05 0.50 MCL

Isocarboxazid 50 N06 N05 0.50 MCODE

Levetiracetam 346 N03 L01 0.50 MCL

Lithium 6 N05 N06 0.50 GSOM

Mercaptopurine 4 L01 P01 0.50 MCODE

Metformin 79 A10 L01 0.50 GSOM

Moexipril 26 C09 C07 0.50 CL1

Mycophenolic Acid 342 L04 N03 0.50 MCL

Phenytoin 66 N03 C01 0.50 GSOM

Tazarotene 350 D05 D08 0.50 MCL

Tolterodine 59 G04 C01 0.50 GSOM

Topotecan 346 L01 N03 0.50 MCL

Zonisamide 342 N03 L04 0.50 MCL

Note: ATC code names are given in Additional file 5

chemical, target and phenomic) can be incorporated as a
basis for clustering. Hence, the proposed two-tiered drug-
centric drug clustering can be extended by employing all
the other related heterogeneous data at each of the cluster

levels. It enables other participating entities to present in
more than one cluster. Then, new associations between
chemical, target and phenome can be predicted for each
of the clusters as well. Moreover, it enables investigation
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Table 7 Repositioning candidates identified consistently by more than one clustering algorithm

Drug name Cluster ID Old ATC name New ATC name Confidence Algorithm

Amlodipine 403 C08 C09 0.85 MCL

Amlodipine 11 C08 C09 0.70 CL1

Cyproheptadine 46 R06 N06 0.70 CL1

Cyproheptadine 35 R06 N06 0.59 CL1

Cyproheptadine 4 R06 N06 0.54 CL1

Cyproheptadine 56 R06 N06 0.25 MCODE

Brinzolamide 48 S01 L02 0.67 MCODE

Brinzolamide 9 S01 L02 0.17 CL1

Atropine 48 A03, S01 N04 0.50 CL1

Atropine 393 A03, S01 N04 0.50 MCL

Atropine 20 A03, S01 N04 0.46 GSOM

Metformin 79 A10 L01 0.50 GSOM

Metformin 21 A10 L01 0.33 MCODE

Mycophenolic Acid 342 L04 N03 0.50 MCL

Mycophenolic Acid 22 L04 N03 0.27 GSOM

Carbamazepine 46 N03 N05 0.43 GSOM

Carbamazepine 42 N03 N05 0.23 CL1

Carbamazepine 20 N03 N05 0.20 MCODE

Carbamazepine 46 N03 N06 0.43 GSOM

Carbamazepine 25 N03 N06 0.27 CL1

Carbamazepine 20 N03 N06 0.20 MCODE

Droperidol 28 N05 N01 0.42 GSOM

Droperidol 359 N05 N03 0.40 MCL

Droperidol 40 N05 N01 0.32 CL1

Droperidol 30 N05 N03 0.17 CL1

Fulvestrant 23 L02 A10 0.42 GSOM

Fulvestrant 13 L02 A10 0.42 CL1

Dolasetron 2 A04 A02 0.40 MCODE

Dolasetron 40 A04 A02 0.20 GSOM

Dolasetron 59 A04 L01 0.20 CL1

Dolasetron 24 A04 L01 0.12 CL1

Note: ATC code names are given in Additional file 5

of multiple links connecting drugs and may prove useful
for pathway analysis.

Clinical significance of our findings
The significance of findings arising from this study is
twofold; (i) correctly profile and suggest therapeutic indi-
cation for drugs that do not possess the ATC code; (ii)
flag potential of some drugs to be used for other ther-
apeutic purposes. More interestingly, the inferred thera-
peutic uses are significantly different to the one for which
these drugs were initially developed and trialed. This

section summarizes clinical evidence for four findings of
this study: Chlorthalidone, Indomethacin, Metformin and
Thioridazine.
Our study interestingly inferred the ATC code, C03 and

therapeutic use, diuretics, for a drug known as Chlorthali-
done (see Table 6), which until now does not belong to
the ATC classification. Chlorthalidone is a potent diuretic;
a drug that promotes water loss and is currently used in
the management of hypertension or high blood pressure
and fluid retention associated with heart failure [49]. In
fact, Chlorthalidone has better clinical outcome in terms
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of lowering blood pressure than other more commonly
prescribed diuretics [50, 51].
Furthermore, Indomethacin is another drug that does

not have an ATC code yet. According to our find-
ings, Indomethacin was indicated to be used as an anti-
inflammatory and anti-rheumatic agent (see Table 6). This
perfectly matches the clinical situations for which this
drug is used; Indomethacin is indicated for managing pain
associated with inflammation, rheumatoid arthritis as well
as osteoarthritis [52, 53].
Another interesting finding arising from our work

relates to Metformin (see Tables 6 and 7). Metformin is
used to manage type 2 diabetes and its initial classifica-
tion was an oral hypoglycaemic, drug that lowers blood
sugar level [54]. In the past ten years, Metformin was also
found to be therapeutically effective in other diseases such
as polycystic ovarian syndrome and metabolic syndrome
[55, 56]. Emerging evidence is strongly suggesting that
Metformin can now be used as an adjuvant treatment
in bowel and prostate cancer due to its antineoplastic
properties; can inhibit cancer growth [57, 58]. This is a
significant deviation from its original therapeutic use and
was correctly inferred in our study by the ATC code L01
and therapeutic class antineoplastic agent.
Furthermore, it is important to mention that our

proposed drug repositioning method accurately flagged
Thioridazine, a drug that does not possess an existing
ATC code, as being psycholeptic agent (see Table 6).
Thioridazine is clinically effective in treating patients with
schizophrenia since its discovery [59, 60], however, it was
withdrawn from the market in 2005 due to its ability to
cause toxicity to the heart [61].

Discussion
Clustering
Clustering enables partitioning the large pharmacology
network into smaller subgroups and hence simplifies the
drug repositioning process. Since drugs can be considered
as the main component of the pharmacological networks,
drug clustering provides an indirect way of clustering
the networks, where associations to related entities (e.g.,
chemical, target and phenomic) can be incorporated as a
basis for clustering. Hence, the proposed two-tiered drug-
centric drug clustering can be extended by employing all
the other related heterogeneous data at each of the cluster
levels. It enables other participating entities to present in
more than one cluster. Then, new associations between
chemical, target and phenome can be predicted for each
of the clusters as well. Moreover, it enables investigation
of multiple links connecting drugs and may prove useful
for pathway analysis.
Clustering algorithms such as k-means, SOM, GSOM

and mixture models can be employed in Drug Cluster-
ing Tier 1. But, K-means, SOM and mixture models are

not suitable for drug clustering because the number of
clusters and the cluster shapes need to be known and
specified in advance [62]. In drug clustering, we cannot
expect to have a priori knowledge about the grouping
and the cluster shapes. Moreover, higher dimensional fea-
ture space in pharmacology data could potentially hinder
the efficiency and effectiveness of the machine learning
algorithms.
GSOM is well-suited for Drug Clustering Tier 1 and 2

because it is cable of handling higher dimensional fea-
tures and the number of clusters is defined automatically.
In GSOM, the parameter spread factor is used to control
the size of the GSOMmap or the number of clusters. This
spread factor does not depend on the dimensionality of
the data. Moreover, it preserves the topological order.
MCL, MCODE and ClusterONE algorithms used in

Drug Clustering Tier 2, are graph clustering algorithms
that are popular in the context of pharmacology data anal-
ysis. They are also capable of handling high dimensional
features and the number of clusters is defined automat-
ically. Unlike vector-based algorithms, these graph clus-
tering algorithms are not appropriate for Drug Clustering
Tier 1 because they result in clustering drugs as well as
their corresponding features.
Interestingly, we observed relatively close number of

drug clusters in Drug Clustering Tier 1 and Drug Clus-
tering Tier 2 after tuning cluster parameters. Table sum-
marizes the parameters and their effect on generating
the clusters. The number of clusters generated by GSOM
using chemical, disease, gene, protein and side effect pro-
files are 68, 69, 66, 63 and 63, respectively. In GSOM,
parameter spread factor can be used to tune the number of
clusters. InDrug Clustering Tier 2, GSOM,MCL,MCODE
and ClusterONE, generated 63, 64, 66 and 61 clusters,
respectively. InMCODE, increasing the threshold from (0,
0.9] increased the number of clusters. However, further
incrementing the threshold parameter after 0.9 resulted in
a decrement of the number of clusters. Interestingly, we
identified 64 clusters using MCODE when the threshold
parameter is set to 0.9, strengthening our confidence that
the number of clusters lies around 64.
Overlapping clustering algorithms may be more suit-

able for drug clustering as some drugs are used to treat
multiple diseases. Moreover, overlapping clusters may
enable identifying more repositioning candidates. Clus-
terONE, MCL and MCODE algorithms used in this study
can handle overlapping algorithms. But, in the current
analysis, we observed overlapping clusters only fromClus-
terONE. It should be noted that some repositioning can-
didates identified by ClusterONE are identified by GSOM,
MCL and MCODE as well. Therefore, we believe the
repositioning candidates identified by non-overlapping
clusters could still be prospective candidates for further
in-depth analysis. The repositioning candidates identified
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by multiple clustering algorithms increase our confidence
that they might be interesting.
Since the four clustering algorithms used in this study

are capable of handling higher dimensional feature repre-
sentations, we did not employ dimensionality reduction.
Dimensionality reduction techniques may be useful to
remove noisy information. But, it is not appropriate for
MCL, MCODE and ClusterONE, graph clustering algo-
rithms as they use drug-drug/drug-feature relationships
to be the input.
GSOM typically uses Euclidean distance to compute the

pairwise distance between input vector and weight vec-
tor. The performance of GSOM may be further improved
by employing Jaccard similarity or squared Euclidean dis-
tance or taking the average distance based on multiple
metrics when binary data are used.

Heterogeneous data integration
Drugs can be explained using various characteristics such
as chemical, target and phenomic, etc. The primary objec-
tive of heterogeneous/multi-view data integration is to
more deeply understand the predictive model and to
obtain a consensus solution [63].
Multi-view data integration can be performed at

the input/intermediate/output phase [63]. The proposed
methods can be seen as a type of multi-view data integra-
tion. In the alternative methods Hy and Hz, data integra-
tion is performed at the input phase and the intermediate
phase, respectively, while our presented two-tiered clus-
tering approach performs data integration at the output
phase. In our method, the outputs from various individual
views are combined and the consensus clustering results
are obtained at the second tier. Moreover, in multi-view
data integration, a kernel matrix is typically used as an
input for kernel classification, regression and clustering
[63]. In our study, the clustering results of Drug Cluster-
ing Tier 1 are used to construct the Drug-Drug Relation
matrix which can be viewed as a type of kernel matrix.
Hence, the proposed method is compatible with existing
kernel learning approaches.
Methods such as kernelized Bayesian matrix factoriza-

tion, random walk methods can be effectively applied on
bi-partite graphs as a mean of data integration. Multi-
modal deep learning can also be applied to heterogeneous
drug data integration where output of each view can
be integrated into higher layers [63]. Deep Boltzmann
machine would be a suitable approach for drug data clus-
tering where binary data are considered.

Cluster evaluation
Since drugs can belong to more than one class, the classes
induced from the ATC classification can have distantly
related drugs which will result in a higher number of false
positives in the compared clustering solution. Some drugs

in other classes may share higher similarity though they
have distinct uses which will also result in a higher num-
ber of false positives. Moreover, many ATC classes have
very high intra-cluster variations which will result in a
higher number of false negatives. Therefore, we cannot
expect the identified drug clusters to be highly correlated
with ATC classification.
Using Silhouette values to fine tune the parameters

would be another approach that we could use when deter-
mining the number of clusters. But, it should be noted that
the mean Silhouette value of ATC classification based on
chemical, disease, gene, protein and side effects are− 0.31,
− 0.06,− 0.49,− 0.25 and− 0.33, respectively which illus-
trates the higher variations within ATC classes. Hence,
higher variationswithindrugclusters are expected. Hence fine
tuning the parameters of the clustering algorithms com-
parison to ATC classification may not be very accurate.
According to Silhouette values of ATC classification,

obtaining a clustering close to the ATC classification is
challenging due to the large variation within ATC classes,
misclassifications and missing information in the ATC
classification. The mismatches between the clustering
solution and the ATC classification arise due to the iden-
tified new drug classes (drug-drug similarities) for the
existing drugs. As explained in “Drug repositioning via
ATC therapeutic classes” section, the reclassification into
ATC therapeutic classes can be interpreted as reposition-
ing opportunities. Also, the clustering solutions enable
identifying more useful drug-drug relationships.
External clustering evaluation is an important task

though it is challenging. Consequently, various exter-
nal clustering comparison measures have been proposed.
Pair-counting based measures include RI and ARI while
MI, NMI and AMI are information theoretic based mea-
sures useful to compare clustering solutions against a
reference clustering. There is no clear evidence that one
measure is superior to another. NMI, AMI and SMI are
the adjusted measures for MI and have important benefits
[46]. Moreover, SMI is proportional to AMI. We therefore
performed clustering evaluation using NMI and SMI.
It is important that the drugs within a cluster are more

similar to each other than the other drugs. Our primary
objective of this study is not to present a model to predict
the ATC classification. Fine tuning parameters against an
external reference may not be a better option since our
broader focus is to determine the repositioning candidates
where they deviate from the current ATC class. More-
over, the false positives predicted by the clusters is not
necessarily an undesired result and optimizing clusters for
NMI and SMI measure might prevent us from detecting
interesting novel clusters or repositioning candidates.
Drug Clustering Tier 2 achieved 11.9, 4.8, and 13.8% gain

in NMI compared to chemical, protein, and side effect,
respectively of Drug Clustering Tier 1 whereas there is
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a 2.9% loss in NMI compared to disease profile of Drug
Clustering Tier 1. Since we employed ATC therapeutic
class as the reference cluster, the results inDrug Clustering
Tier 1 are more favorable towards disease profiles.
The predicted clusters that do not provide a higher

Silhouette value is not necessarily an undesired result.
Moreover, not all identified clusters may be useful for
drug repositioning. As explained in “Assigning confidence
measure” section, we defined a confidence measure so
that we can identify the highly probable repositioning can-
didates. The drug repositioning candidates that are com-
monly identified by multiple clustering algorithms also
have higher probability to be chosen as repositioning can-
didates. As explained in “Drug Clustering Tier 2” section
in “Methods” section, drug-drug relation matrix repre-
sents a kernel matrix or similarity matrix, illustrating the
similarity means of cluster relationships of drugs. Hence,
the drug-drug relational matrix can be straightforwardly
incorporated in kernel-based supervised and unsuper-
vised learning methods such as support vector machines,
spectral clustering, multiple kernel learning, etc [63, 64].

Conclusions
Computational drug repositioning provides new strate-
gies for drug development. It has been argued that using
heterogeneous features results in better drug reposition-
ing predictions. In this study, we proposed an unsuper-
vised learning approach to achieve drug repositioning
by, first, performing drug-centric drug clustering and,
second, associating inferred clusters to ATC therapeutic
classes based on known drug classifications. Moreover,
the proposed two-tiered clustering approach enables drug
clustering through heterogeneous data integration. The
drug clustering based on core drug features produces
clusters that align well with the existing ATC classifica-
tion levels. The repositioning candidates identified con-
sistently by multiple clustering algorithms and with high
confidence have a higher possibility for reliable drug repo-
sitioning. Furthermore, the identified drug clusters can be
used as an intermediate source to explore drug similari-
ties. The clinical significance of the predicted results also
suggests that the proposed two-tiered clustering approach
can be safely used to infer new ATC code as well as new
therapeutic uses based on the given drug characteristics.
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