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Abstract

Background: The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate
water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of
processes including water transport, growth, stress response, and fruit development. In this study, we characterize
the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome
duplication events leading to the family structure and characterizing the family’s tissue and developmental specific
expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network
(GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for
cis-regulatory element structure in order to provide insight into their transcriptional regulation.

Results: A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which
all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified
for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the
expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental
expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed.
Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP
genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a
strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization
and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their
associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs.

Conclusions: Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and
cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional
regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its
strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible
for its regulation.
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Background
Aquaporins are channel-forming transmembrane proteins
present in plasma and intracellular membranes in all eu-
karyotes and most prokaryotes [1]. Initially, aquaporins’
water transport capabilities were discovered and function-
ally characterized in human red blood cells [2–4] and later
in plants (Arabidopsis thaliana) with the functional
characterization of a vacuolar water-transporting protein,
γ-TIP [5]. After the discovery of plant aquaporins, many
studies have been conducted in order to elucidate their
structure, function, and regulation across numerous plant
species [6–8]. Aquaporins were first characterized as
water channels, but they are also recognized to contribute
to the transport of other small neutral molecules (e.g.,
glycerol, urea, boric acid, silicic acid), gases (e.g. CO2, am-
monia), and even ions under certain circumstances [7–10].
Aquaporins fall within an ancient superfamily of mem-

brane proteins called the major intrinsic proteins (MIPs).
The MIP family consists of a large number of homologs,
and can be subdivided into four major subfamilies based
on sequence similarity, which may also indicate their
sub-cellular localizations [11, 12]. The plasma mem-
brane intrinsic proteins (PIPs), the tonoplast intrinsic
proteins (TIPs), and the nodulin26-like intrinsic proteins
(NIPs), comprise the major subfamilies [6, 8, 13]. These
three groups of aquaporins have been intensively studied
and well-documented. The small basic intrinsic proteins
(SIPs) include only a few isoforms localized in the ER
(e.g., 3 homologs in Arabidopsis) [9, 14]. In addition
to these four well-conserved subfamilies present in all
plant species, several additional novel types of aqua-
porins have been distinguished but with a less
ubiquitous presence among plant species. For example, the
uncategorized X intrinsic proteins (XIPs) were recently dis-
covered but are absent in some higher plants, including
Arabidopsis [15–17]. The GlpF-like intrinsic proteins and
the hybrid intrinsic proteins were discovered in moss and
algae, but are absent in vascular plants [9, 13].
Aquaporins facilitate water transport through plant

cells and tissues and play critical rolls in numerous
physiological processes. At the cell level, aquaporins act
in osmoregulation, reactive oxygen species signaling, and
intracellular transport and storage processes [9]. At the
tissue and organ level, aquaporins contribute to plant
water uptake in roots [18] and facilitate changes in leaf
hydraulic conductance [19]. Additionally, aquaporins
modulate changes in plant water relations in response to
abiotic stress, including drought, salt, and temperature
[9]. In fleshy fruit, there is evidence that aquaporins may
contribute to ripening processes in tomato [20] and
grape [21, 22].
The structure of the MIP gene family, like many plant

gene families, has undergone numerous gene duplications
resulting in groups of closely related isogenes [11, 23].

These closely related isogenes can have overlapping
patterns of expression, or can have undergone sub-
functionalization taking on specific developmental and/or
tissue related expression patterns [24]. This is certainly
the case for MIP family members where many isogenes
display tissue and/or developmentally specific expression
patterns. Tissue specific expression of MIP isogenes has
been observed in numerous species including poplar [25],
corn [1, 26, 27], rice [10, 28], Arabidopsis [29], and tomato
[20] among other species. On an even finer scale specific
isogenes have been associated with specific cell types
within organs [19, 30], although most previous studies
were not comprehensive across all MIP family members
or across organs/tissues.
Grapevine is a plant species of economic and cultural

importance and one of the first to have its genome
sequenced [31]. This information allowed for the
characterization of large gene families such as the MIP
family, and indeed this genome information was immedi-
ately utilized to integrate cDNA and genome information
in characterizing the MIP family members in grapevine
[32]. Since then the original Pinot noir genome has been
greatly improved and there has been a wealth of micro-
array and RNAseq studies examining a plethora of condi-
tions (organ specificity, developmental stages, biotic and
abiotic stresses, agronomical practices, etc.). Furthermore,
new tools and approaches have been developed for
analyzing the nature of genome duplications [33], as well
as gene expression and cis-regulatory element structure
[34]. These improvements allow for a more comprehen-
sive analysis of the grapevine MIP gene family.
In the current study we utilized new tools and ap-

proaches to characterize the structure and transcriptional
regulation of the MIP gene family in grapevine. We reas-
sessed the MIP family members with the updated genome
information describing the putative genome duplication
events leading to the current family structure. The expres-
sion of family members was then assessed across numer-
ous preexisting microarray and RNAseq datasets in order
to determine their tissue and developmental specific ex-
pression patterns. Co-expression analyses were carried out
across these datasets to determine relevant co-regulation
patterns within the MIP gene family and within the tran-
scriptome as a whole. Finally, the promoters of each family
member were analyzed for cis-regulatory element struc-
ture in order to provide insight into the possible transcrip-
tional regulation of each member.

Methods
Dendrogram construction and gene duplication
classification
The grapevine MIP gene family sequences were re-
trieved from the ORCAE 12× grapevine annotation
V2 (http://bioinformatics.psb.ugent.be/orcae/) through
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a combination of keyword and BLAST searches (using de-
fault parameters). For the truncated sequences the sur-
rounding regions were visually inspected for sequence
homology to ensure the predicted open reading frames
were correct. Gene nomenclature was created following
the guidelines established in Grimplet et al. 2014 [35].
Orthology assignment between predicted grapevine MIPs
with Arabidopsis proteins was performed using the
Conditional Reciprocal Best (CRB)-BLAST method using
default settings [36].
Multiple sequence alignments and dendrogram con-

structions were carried out with Phylogeny.fr [37]. The
family was split into sub-families for alignments in order
to avoid artifacts caused by aligning large groups [38].
Sequences were aligned with MUSCLE (v3.8.31) using
the highest accuracy default settings. After alignment
gaps and/or poorly aligned regions were removed using
Gblocks (v0.91b) using the following parameters: mini-
mum length of a block after gap cleaning = 5, no gap po-
sitions were allowed in the final alignment, all segments
with contiguous nonconserved positions bigger than 8
were rejected, minimum number of sequences for a
flank position = 55%. Dendrograms were reconstructed
using the maximum likelihood method implemented in
the PhyML program (v3.1/3.0 aLRT) using default set-
tings. Reliability for internal branch was assessed using
the bootstrapping method (100 bootstrap replicates).
Dendrograms were drawn with TreeDyn (v198.3).
Analysis of genome structure and duplication analysis

was performed using MCScanX [33] using previously
established parameters [39]. Information pertaining to
the gene duplication type (i.e. singleton, dispersed,
proximal, tandem, and segmental; for definition see
http://chibba.pgml.uga.edu/mcscan2/), detected collinear
pairs, and tandem/proximal gene duplicate groups were
further analyzed. Briefly, all genes are initially assigned
as ‘singletons’ and ranked (in ascending order) following
their positions along chromosomes. Next, all-vs-all
BLASTP is performed and results evaluated. The genes
with BLASTP hits to other genes are assigned with ‘dis-
persed’ duplicates. Any two genes are assigned ‘proximal’
duplicates if the difference between gene ranks are < 20
while a rank = 1 between two genes are assigned as
‘tandem’ duplicates. Anchor genes within collinear blocks
are assigned as ‘WGD/segmental’ duplicates. In the event
where a gene have multiple BLASTP hits, assignment of
duplication mode will be in the order of priority beginning
with WGD/segmental followed by tandem, proximal, and
finally dispersed duplication.

RNA-seq data analysis
Publicly available grapevine next generation sequencing
datasets were downloaded from NCBI Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra). Raw fastq

reads (single- and paired-end) were extracted using SRA
toolkit fastq-dump. Read trimming and quality filtering
of reads (single- and paired-end) were performed with
Trimmomatic v0.36 [40], with the following parameters;
LEADING:20, TRAILING:20 SLIDINGWINDOW:4:20,
MINLEN:40, AVGQUAL:20. Alignment of filtered reads
towards the 12× grapevine reference genome [31] was
performed using HISAT2 v2.0.5 [41] with default param-
eters. Gene-level count summarization was performed
using featureCounts [42] using the grapevine 12× v1
(http://genomes.cribi.unipd.it/) reference annotation and
subsequent transcript abundance, expressed as frag-
ments per kilobase of transcript per million mapped
reads (FPKM), estimated with edgeR [43].

Gene co-expression network analysis
Two mutual rank (MR) [44] gene co-expression net-
works (GCN) were constructed, one based on RNA-seq
data analyzed in this study and another based on the
29 K NimbleGen whole-genome microarray data. RNA-
seq GCN was constructed using log-transformed FPKM
values of 29, 970 genes × 237 conditions obtained in this
study. Experiment accessions and publication references of
analyzed data can be found in Additional file 1: Table S11.
Microarray GCN was constructed from an updated input
matrix of Wong et al. 2016 [39] containing 29, 000 genes ×
358 conditions, an additional of 139 conditions compared
to the previous study. Gene-centric co-expression clusters
were created for each MIP gene from both RNA-seq and
microarray GCNs by considering their top 100 co-
expressed genes (ranked by MR value). Visualization of the
various MIP networks was carried out in Cytoscape v3.0
[45]. Enrichment of MapMan BIN categories within co-
expression clusters were evaluated for enrichment using
Fisher’s exact test adjusted with false discovery rate (FDR)
for multiple hypothesis correction according to Wong et
al. 2016 and 2017 [34, 39]. MapMan BIN categories were
considered significantly enriched within co-expression
clusters with a FDR < 0.05.

Cis-regulatory element analysis in promoter region
The frequencies and position information of selected cis-
regulatory elements (CREs) within 1 kb promoter region
from the transcription start site of MIP genes were obtained
from Wong et al. 2017 [34] and further analyzed for pos-
ition bias Z-score considering MIP gene family as a whole/
only [46]. The Z-score for each CRE was determined using
the equation: Z-score = (L/2 + p)/ √[((L- l + 1)^2–1)/n].
This strategy takes into account the length of the promoter,
L; length of the CRE, l; total number of CRE hits present in
all promoters, n; and mean position from all identified
CRE hits, p. Consideration of these well-established criteria
as a whole improves the likelihood of identifying bona fide
CREs in selected promoter groups [46].
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Results
Family structure
A total of 33 Vitis vinifera MIP family members were
identified (Fig. 1; Additional file 1: Table S1). Of these 33
family members we designated 4 of them (VviPIP1–2b,
VviPIP2–9, VviNIP9-1a and b) as putative pseudogenes
(shown in red in Figs. 1 and 2) because they were both
truncated and not expressed in any of the RNAseq data-
sets we analyzed. These 4 genes were excluded from
subsequent analyses in this work. Direct orthologous rela-
tionships between Vitis vinifera, poplar, and Arabidopsis
are extremely difficult to establish as evidenced by the
numerous collapsed dendrogram branches (Fig. 2). We
performed additional reciprocal BLAST analyses between
the Arabidopsis and Vitis vinifera genes to aid in orthol-
ogy identification, but again in many cases the orthology
could not be resolved (Additional file 1: Table S1; column
J “ambiguous”).
We examined the nature of duplication events

contributing to the size of the grapevine MIP gene fam-
ily (Fig. 2; Additional file 1: Table S1). A total of 27 of 29
grapevine MIP genes were successfully mapped on all 19
grapevine chromosomes. Location of the remaining two,
VviTIP2–2 and VviTIP2–3, remains unresolved based on
the current 12× genome assembly. In this study, seg-
mental (9 of 29) duplication events were identified for
five PIP (VviPIP1–2a, VviPIP1–3, VviPIP2–3, VviPIP2–4,
VviPIP2–5) and four TIP (VviTIP1–1, VviTIP1–2, Vvi-
TIP1–3,VviTIP1–4) genes, contributing to the expansion

of PIPs and TIPs in grapevine. For example, VviPIP2–4
is collinear to both VviPIP2–3 and VviPIP2–5 and Vvi-
TIP1–1 is collinear with VviTIP1–2. The PIP duplicates
are located on collinear blocks on chromosomes 2/15
and 6/8/13 while TIP duplicates are on chromosome 6/
8/13. Meanwhile, tandem duplication was observed for
VviPIP1–4 and VviPIP1–2a, where the latter is also a
segmental duplicate with VviPIP1–3. Proximal duplica-
tion was observed for VviXIP2–1 and VviXIP2–2 where
the two are separated by a disease resistance protein.
The remaining were classified as dispersed (16 of 29) du-
plicates whereby the specific mode of duplication is un-
clear (i.e. other than segmental, tandem, and proximal
duplication) and no MIPs were identified as singletons.

Tissue and developmental specific expression and
sub-functionalization
Tissue and developmental specific expression profiles of
the MIP family members were assessed by examining
their expression profiles across the nimblegen grapevine
expression atlas [47] (Fig. 3a; Additional file 1: Table S2)
and a wide range of existing RNA-seq datasets (Fig. 3b
and c; Additional file 1: Table S3). Grapevine MIP family
members have distinct tissue and developmental expres-
sion patterns. Hierarchical clustering revealed two pri-
mary groups (Fig. 3 groups 1 and 2) that were similar
regardless of the datasets analyzed. Comparing just the
expression atlas (Fig. 3a) with grape berry RNAseq data-
sets (Fig. 3b), the composition of several subgroups are
nearly identical (Fig. 3 sub-groups 3–6).
Generally speaking MIP family members are ubiqui-

tously expressed across tissues, although their expression
differs across developmental stages (Fig. 3a). This is true
within subfamilies as well with particular isogenes being
expressed in almost all tissues, again at specific develop-
mental stages. The inflorescence and flower parts tend
to have high levels of MIP expression across the whole
family. The primary groups described above (Fig. 3a
groups 1 and 2) generally differ in that group 1 is more
highly expressed.
Expression across berry development was examined

more closely because of the lack of information on aqua-
porins’ role in fruit development as well as the wealth of
datasets available. Of the two primary groups (Fig. 3b
groups 1 and 2), group 1 has a much more dynamic ex-
pression pattern across berry development regardless of
tissue or genotype. In most cases these family members
are highly expressed early in berry development and
down-regulated as development progresses. However,
several members of sub-groups 3 and 4 are up-regulated
at the onset of ripening and later during maturation of
the berry (Fig. 3b; e.g. VviPIP2–3, VviPIP2–5, VviTIP1–2,
VviTIP1–3). In contrast to group 1, group 2 is less dy-
namic across berry development with a few exceptions,

Fig. 1 Protein sequence relationships within the Vitis vinifera MIP
family. The six major MIP sub-families are shown: PIP1s, PIP2s, TIPs,
NIPs, SIPs, and XIPs. Red numbers represent bootstrap values (100
bootstrap replicates). Putative pseudogenes are shown in red.
Detailed accession, homology, and duplication information is
presented in Additional file 1: Table S1
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most notably a cluster of family members that exhibit
pericarp-specific expression (Fig. 3a sub-group 5).
Duplicated MIP family members exhibit sub-

functionalization, at least at the level of their transcrip-
tional regulation. For example,VviXIP2–1 and VviXIP2–2
have distinct expression patterns across a variety of data-
sets (Fig. 3). This is also true for other examples such as
for VviPIP1–4 and VviPIP1–2a. However some duplicated

family members exhibit less distinct expression patterns
such as VviTIP1–1 and VviTIP1–2.

Enriched functional categories in grapevine MIP gene
co-expression networks
To infer the most representative biological functions of
this mid-sized gene family, we queried two condition-
independent gene co-expression network (GCNs) using

Fig. 2 Protein sequence relationships between the Vitis vinifera, Arabidopsis, and poplar MIP families. Six major MIP sub-families: PIP1s (a), PIP2s
(b), TIPs (c), NIPs (d), SIPs (e), and XIPs (f). Red numbers represent bootstrap values and the tree was collapsed for all bootstrap values under
50 (100 bootstrap replicates). Linked proteins represent gene duplications for Vitis vinifera (green links) and poplar (blue links as detailed in [25]).
Putative pseudogenes are shown in red. Detailed accession, homology, and duplication information is presented in Additional file 1: Table S1
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Fig. 3 Expression of the grapevine MIP gene family across the NimbleGen grapevine expression atlas (a) and various other RNAseq datasets in
berries (b) and other organs (c; note only “control” states are compared). Colored bars group like tissues or genotypes. Heatmap represents the
Z-score according to the scale depicted. Like groupings are numbered for clarity (Groups 1& 2, numbered blue circles, Sub-groups 3–6, numbered
white circles). RNAseq experiment accessions and publication references of analyzed data can be found in Additional file 1: Table S11. Raw
Z-score values can be found in Additional file 1: File S2 and S3
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individual MIP genes as ‘guides’ separately (Additional
file 1: Table S4 and Additional file 1: Table S5) and ana-
lyzed their top 100 correlators in detail for biological
pathway enrichment (Additional file 1: Table 6 and
Additional file 1: Table S7).
In a composite microarray and RNA-seq GCN highlight-

ing MIP genes and their high-level (BIN depth ≤ 1)
enriched functional categories (Fig. 4), BIN categories such
as transport (BIN34), cell wall (BIN10), miscellaneous en-
zyme reactions (BIN26) were commonly enriched in MIP
co-expression networks. Conversely, categories such as
stress (BIN20), cell organization (BIN31), protein metabol-
ism (BIN29), and development (BIN33) were only enriched
in specific MIP networks. Specific categories within trans-
port, especially Major Intrinsic Proteins (BIN34.19), were
enriched in 17 MIP co-expression networks. Other cat-
egories within transport such as ABC/multi-drug trans-
porter (BIN34.16), phosphate (BIN34.7), nitrate (BIN34.4),
metal (BIN34.12) were enriched in one (VviNIP7–1), one

(VviXIP2–1), two (VviTIP2–3, VviTIP2–2), and three
(VviPIP2–4,VviTIP5–1,VviNIP4–1) MIP GCNs, respectively
(Additional file 1: Table S6 and Additional file 1: Table S7).
Enrichment of cell wall (BIN10) categories observed in

many MIP co-expression networks was unexpected
(Fig. 4, Additional file 1: Table S6 and Additional file 1:
Table S7). In particular, genes encoding cell wall proteins
(BIN10.5), degrading enzymes (BIN10.6), pectin esterases
(BIN10.8), cellulose synthesis (BIN10.2), and modification
(BIN10.7) belong to categories that were enriched in three
(VviTIP5–2, VviPIP2–7, VviTIP1–1), four (VviNIP7–1,
VviNIP8–1, VviTIP5–1, VviTIP1–3), three (VviTIP5–1,
VviTIP1–1, VviTIP1–3), two (VviPIP2–7, VviPIP2–5), and
one (VviTIP1–3) MIP GCNs, respectively. The two
categories that deserve attention within the miscellaneous
(BIN26) category relate to the enrichment of glutathione-
S-transferase and peroxidase co-expressed genes in four
(VviTIP2–3, VviTIP2–2, VviPIP2–4, VviPIP1–1) and five
(VviTIP1–4, VviNIP1–2, VviTIP2–3, VviTIP2–2, VviTIP5–

Fig. 4 Enriched functional categories identified from composite microarray and RNA-seq MIP gene co-expression networks. Node color represents
the parent functional BIN category at BIN depth ≤ 1. Circle size represents the frequency of microarray and/or RNA-seq MIP gene co-expression
networks enriched with the corresponding functional BIN category. Solid and dashed edges represent enriched functional BIN category in
relevant microarray and RNA-seq MIP gene co-expression networks, respectively
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1) MIP GCNs, respectively. Meanwhile, seven MIP GCNs
(VviNIP8–1, VviXIP2–1, VviTIP1–4, VviTIP2–1, VviPIP1–
3, VviTIP2–2, VviTIP2–3) enriched with abiotic stress re-
lated genes (BIN20.2) are also of interest.

Divergence of enriched functional categories in gene
co-expression networks of grapevine MIP duplicates
As a significant proportion of grapevine MIP duplicates
showed sub-functionalization of gene expression in a
tissue-specific manner (Fig. 3), we compared the
enriched functional categories in the GCNs (Additional
file 1: Table S6 and Additional file 1: Table S7) of MIP
duplicate pairs (Additional file 1: Table S1). GCNs of
duplicates such as VviXIP2–1 and VviXIP2–2 have to-
tally distinct enriched categories. While major intrinsic
proteins (BIN34.19) and abiotic stress (BIN20.2) genes
were enriched in VviXIP2–1 GCNs, the latter two cat-
egories were absent in VviXIP2–2 GCN. Instead, genes
involved in the light reaction of photosynthesis (BIN1.1),
isoprenoid metabolism (BIN16.1), auxin metabolism
(BIN17.2), and CYP450-coding genes (BIN26.1) were
enriched in VviXIP2–2 GCNs. In another example,
GCNs of VviTIP1–3 and VviTIP1–4 duplicate pairs have
in common enrichment for major intrinsic proteins
(BIN34.19), however, enrichment of cell wall pectin
esterases (BIN10.8) and modification (BIN10.7) was
observed for VviTIP1–3 while abiotic stress (BIN20.2),
cell cycle (BIN31.3), and hormone (i.e. JA and ABA)
metabolism (BIN17) functional categories were among
the many categories enriched in the GCN of its dupli-
cate VviTIP1–4.
Conversely, duplicated family members that exhibit less

divergent expression profiles such as VviPIP2–4 and
VviPIP2–5 showed more commonalities. Both VviPIP2–4
and VviPIP2–5 have a common enrichment for cell wall
(BIN10) and major intrinsic proteins (BIN34.19), albeit
some differences were apparent such as enrichment for
glutathione S transferases (BIN26.9) and cell organization
(BIN31.1) in VviPIP2–4 and VviPIP2–5, respectively
(Additional file 1: Table S6 and Additional file 1:
Table S7). Similarly,VviTIP1–1 and VviTIP1–2 share en-
richment for cell wall (BIN10) related genes, but categor-
ies related to light reaction (BIN1.1) and cell organization
(BIN31.1) were enriched in VviTIP1–1 and VviTIP1–2,
respectively.

Cis-regulatory element structure of grapevine MIP
promoters
Genome-wide analysis in grapevine promoters have
highlighted many CREs possessing strong position bias
towards the transcription start site (TSS) which were im-
plicated in a variety of grapevine development and stress
responses [34]. To determine which CREs are biologic-
ally relevant for the regulation of grapevine MIPs we

extracted the distribution patterns of 222 CREs (6- to 8-
mer in length) in the promoter region for grapevine MIPs
(Additional file 1: Table S8) selected from Wong et al. 2017
[34]. The frequency of occurrence, the median position of
occurrence, and position bias Z-score were evaluated. On
these subset of MIP genes, 6-mer and 7-mer CREs namely
RYCGAC, YAACKG, TTRCGT, and ACGTGKC were
amongst top 10 most highly ranked CREs based Z-score
(Fig. 5; Additional file 1: Table S9). The most highly ranked
CRE, the RYCGAC – part/variant of the dehydration-
responsive element (DRE)/C-repeat elements/low-
temperature-responsive element [48] – were present in 14
MIP promoters (∑ hits: 23, M position: 262) followed by
YAACKG CRE – part/variant of the type I R2R3-MYB rec-
ognition sites [49] – that were present in 19 MIP pro-
moters (∑ hits: 35, M position: 315). The TTRCGT CRE – the
major NAC TF recognition sites [50] – was also ranked
highly and was present in 9 MIP promoters (∑ hits:
13, M position: 286). Longer CREs such as ACGTGKC [51] –
a well-known ABA-responsive element (ABRE) – were
present in 8 MIP promoter (∑ hits: 12, M position: 226).
For most of these CREs, a position bias towards the TSS
(M position < 300) was also observed considering MIP genes.

Enrichment of known cis-regulatory elements in
grapevine MIP gene co-expression networks
In this study, promoters of genes within MIP GCNs
were also tested for enrichment for known CREs in
order to identify putative shared TF families within the
MIP GCNs that may be responsible for their transcrip-
tional regulation. Nineteen MIP GCNs displayed signifi-
cant enrichment (FDR < 0.01) for at least one CRE tested
(Fig. 6; Additional file 1: Table S10). Of these, six MIP
GCNs (i.e. VviNIP8–1, VviPIP1–1, VviXIP2–1, VviTIP1–4,
VviTIP2–2, and VviTIP2–3) were commonly enriched for
the PHR1-binding sequence (P1BS, GNATATNC). Several
of these MIP GCNs were also co-enriched with other
CREs. For example, AP2/ERF (GCCGGC) and R2R3-
MYB (GKTKGTTR) related CREs were observed in the
VviNIP8–1 GCN along with related genes such as
AP2/ERF TFs,VviTOE3 (VIT_01s0026g01690),VviERF1L4
(VIT_07s0005g03270), and VviMYB82C (VIT_11s0016
g05690). Promoters of the VviXIP2–1 GCN are also
enriched for the GCCGGC CRE correlating with the pres-
ence of two AP2/ERF TFs,VviTOE2 (VIT_14s0108g00050)
and VviTOE3 (VIT_01s0026g01690). Other co-enriched
CREs of interest include HB (CAATWATT) and extended
DRE elements (DEAR4, CRCCGACA) in promoters
of the VviPIP1–4 GCN, coincident with three HB
TFs (VIT_08s0007g01290, VIT_16s0100g00670, VIT_
18s0001g08410) and two AP2/ERF TFs VviERF061 (VIT_
02s0025g01360) and VviERF022 (VIT_18s0001g05850).
Interestingly, VviTIP3–1 and VviPIP1 − 2c were the

two GCNs enriched with many of the CREs tested. For
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example, many ACGT-related (e.g. ACGTABREMOTI-
FA2OSEM, GADOWNAT, CACGTGMOTIF, ABREAT-
CONSENSUS) and RY-related (i.e. RYREPEATBN
NAPA, RYREPEATLEGUMINBOX) CREs, but also
others involved in Ca2+/calmodulin signaling (CGCG
BOXAT) and lateral organ boundary TF binding
(TCCGGA) were enriched in the VviTIP3–1 GCN
specifically. A suite of TFs whose homologs target the
latter CREs were also present reaffirming the bio-
logical relevance of this broad enrichment pattern
(Fig. 6; Additional file 1: Table S10). This includes two B3
TFs, VviABI3 (VIT_07s0005g05400) and VviFUS3
(VIT_14s0068g01290) whose homologs/orthologs in
Arabidopsis target the RY motif [52] and VviABI5/
VvbZIP25 (VIT_08s0007g03420) that targets various
ACGT-related CREs.

Discussion
Expansion and sub-functionalization of the grapevine MIP
family
The number of grapevine MIPs identified (33) is similar to
the number identified in earlier versions of the grape gen-
ome assembly (29 MIPs, [32]), Arabidopsis (35 MIPs, [11]),
and rice (33 MIPs, [10]). The MIP family is highly conserved
and although many orthologous grapevine-Arabidopsis
pairs were identified more than half of the orthologous rela-
tionships were impossible to resolve. The annotation and
gene names presented here differ at times (8 of 33) from
those established in Shelden et al. (2009) [32]. This is pri-
marily due to a much improved genome assembly which
allowed for the identification of previously unidentified
family members, and improved computational methods for
identifying the most likely Arabidopsis orthologs [36].

Fig. 5 Number and location of highlighted cis-regulatory elements in the promoters of grapevine MIP family members. The AP2/ERF (orange,
blue, pink, green), bZIP (turquoise), NAC (yellow), and R2R3–MYB (beige) were amongst top 10 (of 222) most highly ranked CREs (6- to 8-mer in
length) based Z-score. Each occurrence of the CRE is noted at its position with the appropriate colored line. Complete promoter CRE data can be
found in Additional file 1: Table 8 and Additional file 1: Table S9
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The grapevine MIP gene family has undergone a num-
ber of duplication events consistent with the highly
duplicated nature of plant genomes and grapevine spe-
cifically [31]. The duplication events concerning seg-
mental and tandem duplications identified in this study
have also been reported for Arabidopsis [23] and rice
[53, 54]. Nonetheless, novel duplication events involving
VviXIP2–1 and VviXIP2–2 may be grapevine-specific.
It is commonplace that duplicated genes often take on

different expression patterns, with respect to specific
portions of development and/or location [24]. In the
current study some duplicated MIP gene family mem-
bers have distinct patterns of expression. It is likely that
these duplicates have a similar protein function yet func-
tion in different contexts, for example VviXIP2–2 in
leaves and VviXIP2–1 in roots (see Fig. 3c). In grapevine,
several other gene families have a similar history of
duplication and sub-functionalization [39, 55, 56].
Concerning fruit specifically, the expression of most
MIP family members decreases as berry development
progresses consistent with earlier studies [21, 22]. Grape

berries become increasingly hydraulically buffered from
the parent plant during ripening and this buffering is
thought to result in part from decreases in hydraulic
conductivity [21, 57]. This general downregulation of
MIP family members during ripening may contribute to
these decreases in berry hydraulic conductivity. In
contrast, some specific isogenes (e.g. VviPIP2–3 and
VviPIP2–5; note PIP2–5 was previously referred to as
PIP2–1) show significant expression and even up-
regulation throughout the later stages of berry development
[21, 22]. Their role in fruit ripening remains unknown, but
some have speculated that they may facilitate small ion
transport and/or osmoregulation [58]. Fleshy fruits like
grape berries undergo rapid growth and sugar accumula-
tion during ripening and the role of aquaporins in mediat-
ing grape berry water relations is certainly worthy of
further study [59].
The grapevine expression atlas [47] is a powerful data-

set for examining tissue and developmental specific
expression patterns however caution is warranted espe-
cially when examining highly conserved gene families.
Microarray based expression analyses can be biased via
cross-hybridization [60], and this is why it is important
to include RNAseq based analyses as well. The results of
the MIP family members presented here show strong
parallels between both approaches suggesting that any
potential cross-hybridization did not lead to erroneous
results in the case of the expression atlas.

Grapevine MIP co-regulation networks
Based on the ‘guilt-by-association’ principle, genes in-
volved in related processes often share parallel expres-
sion dynamics across a wide range conditions including
different organ/cell types, developmental stages, stress,
and hormonal perturbations [61]. Gene co-expression
networks (GCNs) analyses, which are built upon the
‘guilt-by-association’ principle, have been particularly
useful for ascribing the most representative biological
functions to both individual gene(s) [62–65] and large
gene families [39, 66] in grapevine. This study highlights
the strong co-expression relationships within the MIP
family itself, and between MIP family members and
genes involved various processes such as growth, cell-
division, and cell redox homeostasis.
One of the strongest GCN relationships revealed in

this study was that between the MIP family and genes
involved in growth and transport processes, namely cell
wall modification and cell expansion. Aquaporins have
been implicated in the growth of rose flower petals and
are part of a GCN associated with petal cell expansion
[67]. In grape berries, targeted analyses of a limited
number of aquaporins and cell wall metabolic genes
were shown to have similar patterns of expression that
correlated with growth [68]. The treatment of grape

Fig. 6 Enriched cis-regulatory elements within shared MIP co-expression
networks. Enriched CREs between 6- and 8-mer are depicted as
separate panels. Circle opacity represents the enrichment score
(−log10 FDR values) of the corresponding enriched CRE and circle size
of represents the total number of genes containing the enriched CRE
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berries with exogenous ethylene stimulated growth and
associated micro-array analyses revealed coordinated
changes in the expression of both aquaporin and cell
wall metabolic genes [69]. Among the cell wall metabolic
genes identified by Schlosser et al. (2008) [68] and Cher-
vin et al. (2008) [69] were the pectin esterases (BIN10.8)
and cellulose synthesis (BIN10.2) identified in this study.
The congruence between these previous studies and the
more global a priori approach utilized here provides ro-
bust evidence for a functional link between these groups
of genes.
Our GCN analyses also revealed a strong link between

the MIP family and cell division (cell cycle, BIN31.3, and
cell organization, BIN31.1). This is a relationship that
has not been studied in plants apart from a few studies.
Over-expression of tobacco NtTIP1;1 in cell culture
enhanced cellular expansion and cell-division [70] and
specific aquaporin isoforms have been associated with
rapidly proliferating tissues in roots [71, 72]. Cell prolif-
eration and growth involves the regulation of source-
sink relationships intersecting with turgor driven growth,
and one could speculate an important role for MIP
family members in both of these processes. Outside of
plants there is a growing body of work linking aquaporin
function with the regulation of cell proliferation [73].
Another interesting GCN highlighted in this study was

between the MIP family and cell redox homeostasis. The
most obvious link between MIPs and redox homeostasis
is the fact that many MIP isoforms transport hydrogen
peroxide [74]. Therefore perhaps it should not come as
a surprise that MIP family members would be among
coordinated redox homeostasis genes. Links between
aquaporin function and redox homeostasis are involved in
the regulation of root water uptake under stress [75–77]
but not necessarily through a transcriptional mechanism
[78] and the same is true for pathogen responses [79]. Per-
haps one of the most interesting observations is the nexus
between cell expansion, cell division, and redox homeosta-
sis [80], where aquaporins may play a cornerstone role in
coordinating water fluxes and redox homeostasis in the
control of growth.

The diversity of bona fide cis-regulatory elements in
grapevine MIP promoters
Regulation of plant MIP genes is still poorly understood.
This study represents a first attempt of characterizing
the CRE structure of the grapevine MIP family and
identifying putative TFs responsible for its regulation. As
limitations exists even for well-established statistical
measures used for prioritizing CREs, combining several
metrics may overcome potential caveats of each ap-
proach [34].
Recent studies have shown that the DRE and GCC-box

(GCCGCC) core sequences are critical for the regulation

of MIP genes by members of AP2/ERF subgroups I, IV,
and V in several plants [81–84]. This is consistent with
the highly prioritized DRE in MIP promoters among all
other CREs (Fig. 5) and the co-regulation with AP2/ERF
TFs including several predicted grapevine subgroup I, IV,
and V members. Some of these regulatory relationships
are conserved while many others are novel. Known
relationships include co-regulation of a closely related
grapevine homolog of Arabidopsis RAP2.11 (VIT_
02s0025g03170) with VviTIP2–1, and co-regulation of
VviTIP3–1 with grapevine homolog of Arabidopsis
DREB2D. These examples of co-regulation are consistent
with known and predicted targets of Arabidopsis RAP2.11
[85] and DREB2D [86]. The DRE sites within VviTIP2–1
and VviTIP3–1 promoter may be important for its regula-
tion in grapevine. Unexpectedly, GCC-box elements and
other GCC-related CREs (GCCGGC, GCCGTC) were not
found within most MIP promoters within 1000 bases from
the TSS (Additional file 1: Table S8 and Additional file 1:
Table S9). This observation might indicate potential diver-
gence in AP2/ERF transcriptional regulatory networks in-
volving MIP genes between plant species and the DRE
may be preferred in grapevines, and/or that GCC-box and
related CREs are located beyond the promoter regions
analyzed in this study.
Several bZIP, NAC, and R2R3-MYB transcription

factors have been shown to regulate specific MIP genes
[67, 87, 88] consistent with many highly co-regulated
TFs of these families in MIP subnetworks. Differences in
the distribution of CREs present in MIP promoters were
also observed (Fig. 5). PIP and TIP promoters contain
mostly AP2/ERF and bZIP-related CREs while NIP pro-
moters contain mostly NAC and R2R3-MYB-related
CREs, suggesting some degree of transcriptional regula-
tion specificity in grapevine aquaporin regulation.
Promoter analysis suggests that hormone metabolic

pathways such as ABA and ethylene play an important
role in the regulation of MIP genes. There is evidence
for ethylene-regulated aquaporin expression in rose
petals [67, 89] and aquaporin genes are among those
regulated by exogenous ethylene treatment in grape
berries [69]. Several studies demonstrate that ABA regu-
lates the expression of numerous MIP family members
[90–92]. However, it is important to point out that
short-term modulation of aquaporin activity via ABA,
and possibly other hormones such as ethylene, likely oc-
curs at the post-translational level [93, 94]. In grapevine,
ABA has been shown to differentially regulate the same
aquaporin isogene (VviTIP1–1, VIT_06s0061g00730) de-
pending on the organ [95]. These complex relationships
involved in the hormonal regulation of aquaporin gene
expression require further study.
The promoters of genes in six MIP GCNs were also

commonly enriched for the PHR1-binding sequence
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(P1BS, GNATATNC). The cognate sequence, such as
GAATATTC, is known to be bound by members of the
MYB (GARP, G2) TF and is related to the regulation of
transcriptional repressors [96] and accordingly no ho-
mologs of MYB (GARP, G2) TFs were represented in re-
spective MIP GCNs. The enrichment of this CRE may
suggest a potential role of large-scale transcriptional re-
pression in the regulation of MIPs. Conversely, for many
other CREs enrichment profiles were often accompanied
by the presence of TF families known to target them
(Fig. 6, Additional file 1: Table S10) suggesting a role of
transcriptional activation of MIP and co-regulated genes.
The diversity of enriched CREs also highlights that in
addition to the those shown to be directly implicated in
MIP regulation such as AP2/ERF, bZIP, NAC, and R2R3-
MYB TFs, regulation of MIPs may involve more TF fam-
ilies than previously described. Several genes that belong to
HB, LBD, and B3 TF families may also represent novel can-
didate regulators of grapevine MIP and co-regulated genes.

Conclusions
The current work utilized the most high quality and up-
to-date genome information in characterizing the grape-
vine MIP gene family, its structure, and the putative du-
plication events involved in its evolution. When paired
with the GCN analyses conducted here we identified
those MIP family members that have undergone duplica-
tion and sub-functionalization through characterizing
the tissue and developmental specific expression pat-
terns across the family. GCN analyses revealed several
interesting relationships between MIP family members
and genes involved in cell expansion, cell division, and
transport processes. Characterizing the cis-regulatory
elements in grapevine MIP promoters along with associ-
ated GCN members identified the putative classes of
TFs responsible for the regulation of the family and their
associated GCNs. Combining phylogenetic analyses,
gene expression profiling, GCN analyses, and CRE en-
richment, this study provides a comprehensive overview
of the structure and transcriptional regulation of the
grapevine MIP family. These results can help guide fu-
ture studies aimed at understanding the role of specific
transcription factors in controlling the diverse expres-
sion patterns within the MIP family.
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