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Classification of electroencephalogram (EEG) signal is important in mental decoding for brain-computer interfaces (BCI). We
introduced a feature extraction approach based on frequency domain analysis to improve the classification performance on different
mental tasks using single-channel EEG. This biologically inspired method extracts the most discriminative spectral features from
power spectral densities (PSDs) of the EEG signals.We applied ourmethod on a dataset of six subjects who performed five different
imagination tasks: (i) resting state, (ii) mental arithmetic, (iii) imagination of left hand movement, (iv) imagination of right hand
movement, and (v) imagination of letter “A.” Pairwise and multiclass classifications were performed in single EEG channel using
Linear Discriminant Analysis and Support VectorMachines. Ourmethod produced results (mean classification accuracy of 83.06%
for binary classification and 91.85% for multiclassification) that are on par with the state-of-the-art methods, using single-channel
EEG with low computational cost. Among all task pairs, mental arithmetic versus letter imagination yielded the best result (mean
classification accuracy of 90.29%), indicating that this task pair could be the most suitable pair for a binary class BCI. This study
contributes to the development of single-channel BCI, as well as finding the best task pair for user defined applications.

1. Introduction

The idea of people being able to control their brain rhythm
by performing specific mental tasks constitutes the main
research focus on electroencephalogram (EEG) basedmental
control tasks, which gave birth to the brain-computer inter-
face (BCI) [1]. BCI provides the user, the communication,
and control possibility that is independent of peripheral
nerves and muscles [2]. A typical BCI system consists of four
stages: signal acquisition, feature extraction, classification,
and transformation to an output device [3]. To build a well-
performing BCI, feature extraction is an important aspect.
Several studies suggested that the use of an efficient feature
extractionmethodmay improve the final performancesmore
than using an efficient classifier [4].

Despite the large numbers of feature extraction methods
that have been developed for BCIs [5–14], the performances
of current BCIs are still not satisfactory. Thus, the selection

of efficient features is still a key challenge to be addressed
[15, 16]. Due to the volume conduction effect and artefacts,
EEG signal has a poor signal-to-noise ratio [17]. Commonly
used feature extraction methods for BCIs, such as common
spatial pattern (CSP) filter [18] and independent component
analysis (ICA) [13], usually require multiple EEG channels
for gathering enough information for precise decoding.
Multichannel EEG recording reduces the portability of
daily use BCI and therefore constitutes the main drawback
for end users [19]. To address these problems, many
methods have been proposed in the literature including
electrode reduction algorithms and feature extraction
methods based on a few electrodes [16, 19–24]. However,
most of them either have high computational complexity
[20–22] or are only suitable for specific motor imagery
tasks [16, 19, 23, 24]. For online BCI applications, a quick
response time is a key issue and thus the efficient feature
extraction methods with low computational complexity and
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minimum number of channels are highly desirable [16, 24].
Moreover, many studies tested feature extraction methods
and classification algorithms only on BCI competition
datasets [16, 19, 21–24]. Although BCI competitions provide
a useful platform for testing and comparing different
algorithms, subject specific property of BCI may prevent
transplantation of algorithm performance from one dataset
to another [19]. Therefore, for a real BCI application, it is
advantageous to conduct BCI studies including data record-
ing, instead of only using BCI competition datasets [25, 26].

In this paper, a novel biologically inspired approach using
single EEG channel is proposed to extract frequency domain
features. Based on the new approach, we aim to improve
the classification performance and reduce the number of
electrodes required in EEG classification. Frequency band
features are a golden standard for EEG classification since
they represent the rhythmic neural activity within the dif-
ferent frequency bands [4, 8, 9]. Changes in these rhythms
due to movement or imagination of various tasks provide
useful features for binary or multiclass classification [4].
Thus, our method considers the biological information in the
EEG signal, which is different from the existing purely data-
driven approaches in BCIs. Moreover, using small number of
channels for EEG classification is advantageous since it takes
less preparation time and is highly preferred by the end users
[27]. That is important for daily use BCIs [23]. To the best of
our knowledge, there are only few single-channel EEG studies
in the literature and all of them are limited to a specificmental
task (e.g., an imagination of foot movement or a visual task)
[28–31].

Different from previous studies, our method greatly
reduces channels to one single channel, and it is a stimulus-
independent approachwhich can be used for differentmental
tasks. The proposed method is applied to a BCI experiment
involving six healthy subjects for classifying fivemental tasks,
that is, resting state, mental arithmetic, motor imagery of left
and right hand, and visual imagination of letter “A.” This
study is a part of a research project to build a daily use
BCI system for disabled people [32, 33]. A pairwise and a
multiclass classification were performed using the two com-
monly used classifiers, that is, Linear Discriminant Analysis
(LDA) and Support Vector Machines (SVM), to find the
most suitable task pair for BCI. Performance of our method
is also compared with the two existing methods which are
commonly used to extract the features for EEG classifications
[34, 35]. This paper is organized as follows. Section 2 gives
a brief description of data acquisition including the experi-
mental design and data preprocessing. Section 3 presents the
proposed feature extraction approach and Section 4 gives a
short description of the data classification. In Section 5, the
results of the experiment are shown along with a discussion.
Section 6 concludes the whole study and proposes ideas for
future work.

2. Data Acquisition

2.1. Experiment and Data Acquisition

2.1.1. Subjects. Six healthy, right-handed subjects (one
female) with a mean (standard deviation, SD) age of 30.5

(14.4) participated in the experiments. Except Subject 1, none
of the subjects have any experience in BCI experiments.
All subjects provided written informed consent before the
experiments. All procedures performed by the subjects were
in accordance with the ethical standards of the institutional
research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.

2.1.2. Procedure. The subjects were seated on a comfortable
chair in a dim lighted, silent room during the recordings.
Before each trial, they were informed about the type of task
(resting state, multiplication, right hand, etc.) by auditory
cues. During the task, they were required to close their
eyes to reduce the artefacts from eye blinking/movements.
The sequence of mental and motor tasks was as follows:
resting state, mental arithmetic, imagination of right hand
movement, imagination of left hand movement, and visual
imagination of letter “A” [32, 33, 36]. Each trial lasted 10
seconds and the interval between consecutive tasks was
about 3-4 seconds. The first 2 seconds in trial were the
task preparation time for the subject. The experiments are
comprised of 5 experimental runs of 20 trials each (100 trials
per task in total).The details of each task are provided below:

(i) Resting state (RS): the subjects were asked to sit and
relax as much as possible without thinking anything.

(ii) Mental arithmetic task (MA): the subjects were given
a two-digit multiplication problem to solve in mind
without vocalizing or any movement (e.g., 24 × 76 =
?). The problems were not repeated. After the trial,
the subject verified whether he reached the solution
or not.

(iii) Right hand imagination task (RH): the subjects were
told to imagine right hand movement.

(iv) Left hand imagination task (LH): the subjects were
required to imagine left hand movement.

(v) Letter “A” imagination task (LA): the subjects were
told to imagine the letter “A” in their mind.

2.1.3. Recordings. EEG data were recorded from the sub-
jects during the experiment, using a 64-Channel Biosemi
ActiveTwo EEG systemwith Ag/AgCl electrodes [32, 33].The
electrodes were placed according to the international 10–20
electrode placement system using Cz as the reference. The
grounding electrodes CMS and DRL were mounted on the
back of the head. The EEG signals were sampled at 512Hz.

2.1.4. Channel Selection. We selected 9 channels from dif-
ferent brain regions, that is, frontal (F3/4), central (C3/4),
parietal (P3/4, Pz), and occipital (O1/2) areas, for signal
analysis. Feature extraction and classificationwere performed
at each single channel.

2.2. Data Preprocessing. The first 2-second task preparation
period was excluded from the entire 10 seconds in each
trial. The remaining 8-second signal was divided into two
parts, which resulted in 100 × 2 epochs total for each task
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Figure 1: Data segmentation. In each trial, the first 2-s task preparation period was excluded and the remaining 8-second signal was divided
into two parts, which resulted in 100 × 2 epochs total for each task.

(see Figure 1). The EEG signal was filtered using the 10th-
order 50Hz low-pass digital Butterworth filter.

3. Feature Extraction

The general idea of feature extraction is that the high dimen-
sional input data are transformed into a reduced representa-
tion set of features while containing the relevant information
from the input data. Among feature extraction methods,
power spectral density (PSD) analysis is a commonly used
method as it extracts the frequency characteristics of signals
which enable the detection of mental and motor tasks
[4]. Most of the previous studies used this method for
investigating epileptics and hypnosis [37–41]. Generally, PSD
approaches demonstrate the most consistent robustness and
effectiveness in extracting the distinctive spectral patterns
for accurately discriminating between motor imagery EEGs
[42]. Here, we proposed a novel feature extraction method
relying on the frequency distributions of the signal’s PSD.
In this method, we first computed the PSD based on Welch
Periodogram: a hamming window of 400 points was used
with a 50% overlap between adjacent windowed sections. We
visually inspected the whole frequency range for all subjects.
Alpha and beta frequencies are important characteristics of
normal EEG activity at rest, and any change of these rhythms
might be interpreted as a cortical functioning or information
processing indication [43, 44]. In line with previous studies
[43, 44], we found that there is a stable pattern in the PSD
with different amplitudes for all subjects and for all tasks.
This biologically phenomenon allows a classification between
different mental tasks. Based on this biological phenomenon,
we extracted three features from the alpha (8–13Hz) and beta
(13–30Hz) bands of PSD by searching the local peak values
in the alpha and beta bands separately. The first feature is
selected as the highest PSD peak value in the alpha band,
which is indicated as 𝑓1 in Figure 2. The second and third
features are the two highest PSD peak values in the beta band,
which are indicated as 𝑓2 and 𝑓3 in Figure 2.

4. Classification

In general, classification is defined as assigning a predefined
class to each instance.The goal of classification is to accurately
predict the target class for each case in the data. Similar
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Figure 2: The proposed feature extraction scheme. The curve
indicates the PSD of EEG in alpha and beta bands. We selected the
highest PSD peak value in the alpha band and the two highest PSD
peak values in the beta band as the features.

to many previous studies on signal classification, we first
dealt with a binary classification problem and then extended
the study to multiclass cases. LDA and SVM are used for
classification, since they have been known to be efficient
classifiers for BCI [17].

4.1. LinearDiscriminant Analysis (LDA). Linear discriminant
analysis (LDA) is one of the popular classification algo-
rithms and has been successfully applied to many pattern
recognition and EEG data classification problems [3, 42].
LDA projects the data onto a lower-dimensional vector
space such that the ratio of the between-class distance to
the within-class distance is maximized, in order to achieve
maximum discrimination. The optimal projection can be
readily computed by applying the eigendecomposition to
scattermatrices. In this study, we implemented a pairwise and
a multiclass LDA for classification.
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4.2. Support Vector Machines (SVM) Classifier. SVM is a
strong classifierwhich has demonstrated its excellent general-
ization properties in various applications, including BCIs [12,
45]. The basic idea of SVM is to find the optimal separation
hyperplane by maximizing the margin. According to [46],
general output of a binary SVM classifier can be computed
by the following expression:

𝑦 = sign( 𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖𝑘 (𝑥𝑖, 𝑥𝑗) + 𝑏) . (1)

Here 𝛼𝑖 ≥ 0 are Lagrangian multipliers obtained by solving a
quadratic optimization problem, 𝑏 is the bias, and 𝑘(𝑥𝑖, 𝑥𝑗) is
a kernel function. The most commonly used kernel function
is the Gaussian RBF function which is also used in this study
and given by

𝑘 (𝑥𝑖, 𝑥𝑗) = exp(−
󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩22𝜎2 ) , (2)

where 𝜎 is a user defined parameter showing the width of the
kernel function.

In this study, different kernel function types such as
exponential and base have been tried, and we found that the
best results are obtained with RBF function. Therefore, only
the result with RBF function is provided in this paper. We
implemented the pairwise SVM to multiclass scenario and
obtained the classification performances for both problems.

4.3. Data Classification. Data from 9 channels were analysed
separately in order to express the classification accuracy in
single channel. The classification algorithms discriminated
the test data of an unknown task between the given two
tasks. Each class had 200 epochs. We randomly chose 50
epochs per class as the training dataset and left the rest as
the independent testing dataset. The classifiers were trained
using the training dataset. In the testing session we randomly
picked up 50 epochs from the testing dataset to test the
classification performance. This process was repeated 100
times to get the final classification performance with mean
classification accuracy.

Multiclass classification was performed for discrimina-
tion of five different tasks. The training and testing method-
ology followed the same steps in binary classification. We
first did pairwise classification for each channel. Then the
class label of each channel was attained by max-win voting.
Moreover, we calculated the classification accuracy (CA) for
four channels (F3/4, C3/4). Based on the CA, the final class
for that testing data was predicted by means of max-win
voting strategy. In order to see the classification performance
of different tasks, we also report individual CA for each task.

5. Results and Discussion

5.1. Feature Extraction Results. ThePSDwaveforms of six dif-
ferent subjects have consistency in the general characteristics
of each mental and motor task. Figure 3 shows a randomly
selected single-trial PSD of all subjects at channel F3 for Task
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Figure 3: PSD during task RS in channel F3 for all subjects. Red dots
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Figure 4: PSD for all five tasks in channel F3 for Subject 1. The
difference between tasks is shown in PSD.

RS. A clear alpha (8–13Hz) peak is shown for each subject,
though there are individual differences of its amplitude.
We observed two peaks in beta band, and they have lower
amplitude values compared to the peak at the alpha band.
The PSD for different tasks at channel F3 for Subject 1 is
given in Figure 4. The difference between tasks is shown in
PSD, where the alpha peak has the highest amplitude for
Task RS. Similar to Task RS, Task LA has higher alpha peak
compared to motor imagery tasks (Tasks LH and RH) and
Task MA. Beta peaks decrease for the motor imagery tasks
compared to other tasks. Rhythmic neural activities within
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Figure 5: Feature difference between channels for Subject 1. Each
channel has different behaviour for the same feature combination.

the alpha (8–13Hz) and beta (13–30Hz) frequency bands
are modulated during imagined mental and motor tasks.
Changes in these rhythms provide the neurophysiologic
support for extracting the features from the alpha and beta
bands. Results from previous studies indicate that alpha wave
amplitudes vary with the subject’s attention to mental tasks
performed with the eyes closed [28, 32, 33]. Beta rhythms
are modulated when the subjects are alert and attentive
to external stimuli or exert a motor imagery task [28–30].
Specifically, imagination of handmovement typically induces
a power decrease in the beta rhythms (namely, event-related
desynchronization) over the corresponding functional areas
in the sensorimotor cortex [30]. Our findings are consistent
with the neurophysiologic knowledge, hence supporting our
idea that the selected features would discriminate different
mental and motor tasks.

In order to see whether the selected channels are sig-
nificantly different from each other on the extracted feature
set, a one-way-MANOVA test was performed. The feature
difference between channels is shown in Figure 5 for a
representative subject. The canonical variables c1 and c2
are linear combinations of the features (a1y in alpha band
and a2y and a3y in beta band) for each channel. The null
hypothesis (i.e., no difference between channels) is rejected
with 𝑝 < 0.05. There was a statistically significant difference
between channels based on three features, d (estimate of the
dimension of the groupmeans) = 2, 𝑝 < 0.005; Wilk’s lambda
= [0.162; 0.810; 0.99]; and chi-square distribution= [3263; 376;
8]. This difference indicates different discriminative abilities
in EEG classification.

In Figure 6, the dendrogram shows the distance between
channels. The largest distance was observed between C3
and O1 channels for RS, showing that channels in distant
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Figure 6: The distances between channels of Subject 1 for RS. A
larger distance indicates a big difference between two channels.

brain regions may carry very different information even for
the same task. This result indicates the necessity of channel
selection in EEG classification.

5.2. Classification Results. Table 1 shows the classification
accuracies of all six subjects at the best channel for different
task pairs. Using only a single channel, our method can
achieve fairly good classification accuracy with SVM (mean
accuracy over all tasks and all subject is 83.06%), which indi-
cates the effectiveness of ourmethod in feature extraction and
electrode reduction. Although Subject 1 has more experience
in using BCI than other subjects, who are naı̈ve to BCI, we
did not find significant difference between the performances
of Subject 1 and others. As a result, the user’s training time can
be shortened when using our method. Comparison between
using two popular classifiers, that is, SVM and LDA, showed
that our method worked better with SVM using a Gaussian
kernel.

Additionally, we examined the plot of sensitivity (true
positive rate) versus 1-specificity (false positive rate), namely,
receiver operating characteristics (ROC) curve and the area
under the curve (AUC) [47] for evaluating the reliability of
classification procedure. A sample graph for the performance
of Subject 1 on RS versus MA is given in Figure 7, where
the point (0, 1) indicates the perfect classification. We can
see that classification performance from channel F4 (red line
in Figure 7) is in the upper left corner of the ROC graph.
This result is in line with Tables 1 and 3, where F4 is the
best channel for this task pair and this subject, indicating
reliability of our classification procedure.

From Table 1, we also can see that the best channel
varies with the different task pairs for the same subject. For
example, for subject 1 when using SVM as the classifier, the
best channel for RS versus MA is F4, while for LH versus LA
it is P4. A plausible explanation is that different brain regions
have different functions that allow performing different tasks.
Although there is a common understanding that individual
optimization might be needed for finding the best electrode
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Table 1: Classification results for the features extracted by ourmethod.The better classification performances are highlighted in bold for each
subject and each task pair. The best classification performances among different task pairs are underlined.

Task pairs Classifiers
Accuracy %
Subjects

S1 S2 S3 S4 S5 S6 Mean over subjects

RS&MA
LDA 95.10 71.38 64.76 56.12 57.56 70.76 69.25

(F3) (F3) (O2) (F3) (O1) (F4)

SVM 98.36 84.38 68.76 89.96 80.84 87.20 84.91
(F4) (F3) (F3) (P3) (O1) (F4)

RS&RH
LDA 86.52 61.66 57.08 54.84 56.08 62.2 63.06

(F3) (P3) (O2) (C3) (P4) (F4)

SVM 92.40 87.56 77.00 90.12 79.00 83.80 84.98
(F4) (P3) (C4) (P3) (C3) (O2)

RS&LH
LDA 88.88 60.0 56.08 59.8 56.16 60.88 63.63

(C4) (C4) (F3) (P3) (P4) (F4)

SVM 94.74 70.86 58.52 90.88 88.96 86.20 81.69
(C4) (F3) (F4) (P3) (C3) (O2)

RS&LA
LDA 72.88 72.70 60.82 60.76 56.64 62.2 64.33

(F3) (P3) (O2) (P3) (C4) (F4)

SVM 87.18 96.50 64.20 91.20 87.92 89.92 86.15
(P3) (P3) (C4) (P3) (P3) (C4)

MA&RH
LDA 66.12 57.76 62.42 62.08 64.48 62.88 62.62

(O2) (F3) (O2) (P3) (O2) (O2)

SVM 81.08 72.08 72.36 90.44 90.24 86.24 82.07
(O2) (P3) (F3) (P3) (O2) (O2)

MA&LH
LDA 68.64 58.56 65.24 57.64 61.32 62.04 62.24

(P3) (F3) (F3) (P3) (O2) (F4)

SVM 82.34 78.60 94.52 90.84 88.20 98.20 88.78
(O2) (C4) (P4) (P3) (O1) (F4)

MA&LA
LDA 73.42 68.24 60.96 58.56 62.44 66.44 65.01

(F4) (P3) (F4) (O2) (P3) (F4)

SVM 84.16 94.98 87.50 90.80 91.08 93.26 90.29
(F4) (P3) (P4) (P3) (O1) (O2)

RH&LH
LDA 52.90 55.56 63.72 54.08 53.72 60.96 56.82

(C4) (C3) (F3) (C4) (F3) (O2)

SVM 64.18 67.92 65.62 80.88 78.48 82.56 73.27
(C4) (P3) (Pz) (C4) (P3) (P3)

RH&LA
LDA 68.24 67.14 63.44 55.48 57.08 61.72 62.18

(C4) (F4) (F4) (O2) (O1) (F4)

SVM 76.48 96.08 60.34 80.32 77.24 90.0 80.07
(F3) (P3) (F4) (C3) (P3) (F4)

LH&LA
LDA 59.00 71.96 69.46 55.56 56.96 63.52 62.74

(P4) (F4) (F4) (O2) (P4) (P4)

SVM 76.80 95.32 67.66 80.20 68.44 82.00 78.40
(P4) (F3) (C3) (C4) (F3) (Pz)

Mean over tasks LDA 73.17 64.49 62.39 57.49 58.24 63.36 63.19
SVM 83.77 84.43 71.65 87.56 83.04 87.94 83.06

for few channel based BCIs [19], we did find that some brain
regions are important for differentiating some tasks. In our
experiment, we found that four subjects have the highest
performance at the frontal area of the brain (F3 and F4) for

RS versus MA, indicating frontal area may be an important
region for distinguishing these two tasks. For the pair RS
versus LA, the highest classifications (96.5%) are obtained
at the parietal (P3) region for four subjects and at central
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Table 2: Comparison of the mean SVM performance (over all task pairs) of our method with the existing methods [34, 35].

S1 S2 S3 S4 S5 S6 Mean over subjects
Our method 83.77 84.43 71.65 87.56 83.04 87.94 83.06
Min-max-mean-std [33] 71.95 83.27 73.46 70.00 68.11 66.67 72.24
Band power [34] 73.3 83.5 82.2 62.3 67.2 77.0 74.25

Table 3: Accuracy, sensitivity, and specificity values with standard deviations for RS versus MA tasks of Subject 1 with SVMmethod.

F3 F4 C3 C4 P3 P4 Pz O1 O2
Accuracy% 96.80 ± 1.66 96.76 ± 1.54 94.17 ± 1.95 92.69 ± 2.42 84.93 ± 3.14 92.44 ± 2.08 91.71 ± 2.17 86.82 ± 2.51 84.31 ± 2.96
Sensitivity% 96.27 ± 2.65 95.11 ± 2.73 93.80 ± 2.74 91.39 ± 3.84 78.60 ± 3.98 90.38 ± 3.15 89.75 ± 2.95 82.00 ± 3.41 80.21 ± 3.90
Specificity% 97.47 ± 1.94 98.66 ± 1.55 94.71 ± 2.78 94.39 ± 3.08 95.46 ± 3.08 94.95 ± 2.68 94.09 ± 3.04 93.77 ± 3.32 90.31 ± 4.28
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Figure 7: SVMROC graphs of Subject 1 for 9 channels for RS versus
MA. Accuracy is measured by the area under the ROC curve. An
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test.

(C4) regions for the remaining two subjects. For motor tasks,
mostly the parietal and central region electrodes (P3, Pz,
and C4) have the highest classification performance. These
findings might help to find a task-related region of interest
for placing the electrode for single-channel BCI. Moreover,
some biologically inspired models might be developed for
understanding the emotional and cognitive brain processes.
Finally, the proposed mental task based approach is a kind
of stimulus-independent active BCI approach [48], in which
the user has more freedom to attain a certain goal, such as
neurofeedback systems, gaming applications, and e-learning
platforms.

Different subjects have different task pairs for the best
classification, indicating that the performance of binary-class
BCI can be improved by individual optimization of task
pairs. Identifying the best BCI task pairs for binary-class BCI

could be useful for user defined application, for example,
neurogames. Among different task pairs, the task pair MA
versus LA yields the best mean performance (90.29%) and its
performance is close to the best one for most subjects except
for the first subject (the subject with BCI experience). Thus,
this pair might be the best option for binary-class BCI, in
particular for naı̈ve subjects.Nonetheless, the lowest accuracy
achieved with the worst combination of task pairs, that is,
mean accuracy 73% for RH&LH, is still comparable with the
results reported by other single-channel BCI studies [49],
indicating the effectiveness of our method.

Table 2 shows the comparisons between our method and
two other feature extraction methods which are tested by
using our data with Gaussian kernel-based SVM classifier.
The method proposed in [34] is based on minimum, max-
imum, mean, and standard deviation of EEG data which
tested single-channel performance, while the method in [35]
is for extracting band power features of alpha and beta bands.
Shown in Table 2, our method outperforms the existing
methods with a mean classification accuracy of 83.06%,
indicating that the proposed frequency domain features are
more effective in single-channel classification. Table 3 shows
the classification accuracy, sensitivity, and specificity values
with standard deviations for RS versus MA tasks of Subject
1 with SVM method in order to show the reliability of the
binary classification results. Accuracy is the ratio of the sum
of true positives and true negatives to the total population
which are in accordance with the classification performance.

The multiclass classification was tested with a pairwise
and voting strategy [34, 46] using a few numbers of elec-
trodes. The multiclass classification results with SVM are
presented in Table 4 with the overall accuracy values. We
achieved comparatively high classification results (91.85%).
The experimental results of the proposed method from both
binary and multiclass classification showed that this method
can be performed in the context of BCI research. Nowadays,
BCI systems are only used for patients andmilitary purposes,
but in the near future, more practical BCI applications like
neurogames may take place in our daily life.

6. Conclusions

In this study, a new feature extraction method for EEG
signals based on biologically inspired frequency domain
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Table 4: Multiclass classification results with 4 electrodes, that is, F3, F4, C3, and C4.

Classifier RS MA RH LH LA Overall accuracy
SVM

Accuracy% 100 100 87.04 72.66 99.56 91.85
Standard deviation 0.00 0.00 3.55 4.31 0.61 1.69

characteristics is presented, and its application in BCIs
based on single channel is demonstrated. The experimental
results indicate the interest of our method in improving the
classification accuracy, minimizing the number of electrodes
required in a BCI, and reducing the computational cost. The
findings are consistent with the neurophysiologic knowledge.
Comparison with the existing feature extraction methods
shows that our method yields better mean performances
which are on par with the state-of-art methods, using only
a single-channel EEG and with low computational cost.
Application of the proposed method for a multiclass clas-
sification further indicates the robustness and efficiency of
our method. Additionally, the best task pair for designing a
binary-class BCI is also concluded for a naı̈ve subject, which
is mental arithmetic versus letter imagination. In future, we
will combine thismethodwith some existing artefact removal
algorithms for real BCI applications based on the single-
channel EEG.
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