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Abstract

Recent advances in remote sensing and land data assimilation purport to improve the quality of 

antecedent soil moisture information available for operational hydrologic forecasting. We 

objectively validate this claim by calculating the strength of the relationship between storm-scale 

runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-

storm surface soil moisture estimates from a range of surface soil moisture data products. Results 

demonstrate that both satellite-based, L-band microwave radiometry and the application of land 

data assimilation techniques have significantly improved the utility of surface soil moisture data 

sets for forecasting stream flow response to future rainfall events.

1. Introduction

Anticipating the capacity of the land surface to infiltrate future rainfall is an important 

source of predictability in short-term operational stream flow forecasts [Silvestro et al., 

2014; Massari et al. 2014]. Dynamic changes in this capacity are due primarily to variations 

in soil moisture content, which determine the infiltration capacity of the soil column 

[Western and Grayson, 1998]. As a result, there has been considerable interest in using 

remotely-sensed surface soil moisture retrievals for improved monitoring of pre-storm soil 

moisture conditions within hydrologic basins [Massari et al., 2015a]. However, these 

retrievals suffer from a number of well-known weaknesses including: 1) coarse spatial 

resolution (typically > 30 km), 2) shallow vertical support within the soil column (typically 

1–5 cm), and 3) reduced accuracy under dense vegetation.

Therefore, robust evaluation techniques are needed to objectively measure the benefits of 

new soil moisture products for hydrologic forecasting. One common approach has been to 

compare hydrologic model performance before and after the assimilation of a remotely-

sensed soil moisture product. However, a review of these approaches reveals a wide disparity 

in conclusions regarding the value of soil moisture assimilation for forecasting stream flow 

[Crow and Ryu, 2008; Massari et al., 2015b; Lievens et al., 2015]. This lack of consistency 

arises, at least in part, from significant sensitivity to the structure and calibration of the 

particular hydrologic model applied in the assimilation system [Chen et al., 2009; Zhuo and 
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Han, 2016; Massari et al., 2015a]. Therefore, evaluation results are non-robust in that they 

are affected by the accuracy of the assumed parametric relationship connecting precipitation, 

runoff and soil moisture imbedded within these models. In order to remove this sensitivity, 

and provide a more robust basis for cross-comparing a wide range of soil moisture products, 

Crow et al. [2005] developed a simplified evaluation approach based on temporally sampling 

the Spearman rank correlation between pre-storm soil moisture and (subsequent) storm-scale 

runoff ratios – defined as the ratio of total storm-scale stream flow to total storm-scale 

rainfall accumulation (both in dimensions of length) over a ~1 week period following a 

triggering precipitation event.

There has been considerable recent progress in the development of operational soil moisture 

products. These advances include the 2009 launch of the European Space Agency Soil 

Moisture and Ocean Salinity (SMOS) mission [Kerr et al., 2010] and the 2015 launch of the 

National Aeronautics and Space Administration Soil Moisture Active Passive (SMAP) 

mission [Entekhabi et al., 2010], both dedicated to measuring global surface soil moisture 

using L-band microwave radiometry, as well as the development of operational, value-added 

soil moisture data products based on the assimilation of L-band observations into a land 

surface model, such as the SMAP Level 4 Surface and Root-zone Soil Moisture (SMAP_L4) 

product [Reichle et al., 2016]. Our goal here is to update Crow et al. [2005] to consider these 

new soil moisture products and provide an objective description of their relative value for 

hydrologic forecasting.

2. Study basins and data

This study focuses on 16 medium-scale (2,000–10,000 km2) hydrologic basins located 

within the south-central United States (Figure 1). This particular region has experienced an 

unusually large number of flash flooding events during the past two years (Figure 1) and is 

therefore a natural choice for an analysis aimed at hydrologic predictability. In addition, land 

cover conditions in the region are generally amenable to the remote sensing of soil moisture 

(i.e., there is infrequent snow cover, generally modest topographic relief, and relatively 

isolated forest coverage). The selection of specific basins within this region was based on a 

screening analysis performed by the Model Parameterization Experiment [Duan et al., 2006] 

which identified suitable basins with adequate rain gauge density and lacking significant 

amounts of anthropogenic impoundment or diversion of stream flow.

Individual basin characteristics are summarized in Table 1. Moving from west to east, these 

basins exhibit progressively higher mean annual rainfall and runoff ratios (Table 1). Western 

basins are generally characterized by rangeland, grassland and winter wheat land cover types 

with relatively low biomass. More easterly basins contain larger amounts of upland forest 

cover and summer agriculture in low-lying areas.

For each basin, daily rainfall accumulations are derived from the spatial and temporal 

aggregation of gauge-corrected, 4-km Stage IV precipitation [Lin, 2011] data (to a daily 

time scale and a basin-average spatial scale) and daily stream flow values based on United 

States Geological Survey (USGS) stream gauge measurements located at each basin outlet 

[USGS, 2016]. Rainfall accumulation and stream flow daily totals are computed for 0 to 24 
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LST (UTC-6 hours). Antecedent soil moisture estimates are obtained from each of the 

sources described below.

2.1 AMSR2

AMSR2 soil moisture retrievals were based on the application of the Land Parameter 

Retrieval Model (LPRM) to the ~35-km resolution X-band channel of the Japanese Space 

Agency Advanced Microwave Scanning Radiometer-2 (AMSR2) satellite sensor to produce 

a 0.25° resolution product [Vrije Universiteit Amsterdam and NASA GSFC, 2014; Parinussa 

et al., 2015]. Owing to known problems with LPRM retrievals obtained at the 1:30 PM 

AMSR2 ascending overpass [Lei et al., 2015], only retrievals from the 1:30 AM descending 

overpass were utilized. In addition, retrievals with uncertainties greater than 0.40 m3m−3 

were masked. These masked retrievals comprise approximately 11% of all AMSR2 

retrievals in the study region. The AMSR2 sensor also measures in a (lower frequency) C-

band channel which is suitable for retrieving soil moisture; however, this channel is known 

to be contaminated by radio frequency interference over the United States.

2.2 SMOS L2

The SMOS mission [Kerr et al., 2010] measures L-band (1.400–1.427 GHz) microwave 

brightness temperature at ~45-km spatial resolution with equatorial ascending/descending 

overpasses at approximately 6 am/pm local solar time and a 3-day revisit period at the 

equator. It began scientific data collection in January 2010. The SMOS Level 2 (L2) soil 

moisture product utilized here is based on application of SMOS processor version 6.2.0 to 

retrieve soil moisture on an equal-area ISEA4h9 15-km grid [Kerr et al., 2012]. SMOS_L2 

retrievals obtained from both ascending (6 pm) and descending (6 am) orbits were combined 

into a single time series. Normalized retrieval error was determined by dividing the SMOS 

data quality index value (provided with each soil moisture value) by the absolute SMOS_L2 

soil moisture estimate. All retrievals with normalized error greater than 0.50 [−] were 

masked from the analysis. These masked retrievals comprise approximately 7% of all 

SMOS_L2 retrievals in the study region.

2.3 SMAP L2

Launched in January 2015, SMAP began continuous science data acquisition on March 31, 

2015 with its L-band (1.41 GHz) radiometer [Entekhabi at al., 2010]. The SMAP Enhanced 

Level 2 (L2) Passive Soil Moisture product is generated by applying the Backus-Gilbert 

optimal interpolation technique to the original SMAP brightness temperature product and 

then the SMAP baseline soil moisture retrieval algorithm [O’Neill et al., 2016]. This version 

of the SMAP_L2 product was released in December 2016 and is posted on version 2 of the 

global cylindrical 9 km Equal-Area Scalable Earth (EASEv2) grid [Brodzik et al., 2012] 

with a native resolution of ~36 km. Retrievals obtained from both ascending (6 pm) and 

descending (6 am) orbits were combined into a single time series. Masking was applied to 

remove retrievals during periods of snow cover or frozen soil.
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2.4 SMAP L4 and NRv4

The SMAP_L4 algorithm is an ensemble-based assimilation system built around the NASA 

Goddard Earth Observing System version 5 (GEOS-5) Catchment land surface model 

[Koster et al., 2000]. Its primary drivers are SMAP brightness temperature observations and 

surface meteorological forcing data from the GEOS-5 atmospheric assimilation system, 

corrected with precipitation observations [Reichle and Liu, 2014]. The algorithm 

interpolates and extrapolates information from the SMAP observations in time and in space 

based on the relative uncertainties of the model estimates and the observations. SMAP_L4 

data include 3-hourly soil moisture estimates for the “surface” (0–5 cm) and “root zone” (0–

100 cm) layers on the 9-km EASEv2 grid [Reichle et al., 2016]. L4 data are available within 

2–3 days from the time of observation. The unpublished Nature Run, version 4 (NRv4) data 

are also generated with the SMAP_L4 system, but configured for a single ensemble member 

(no perturbations) and without the assimilation of SMAP brightness temperature 

observations. As a result, NRv4 provides a model-only reference to assess the relative 

benefit of assimilating SMAP brightness temperature observations.

3. Approach

3.1. Storm event definition

A storm “event” is defined as the 6-day period following a triggering daily precipitation 

accumulation amount that exceeds a pre-specified threshold. By design, these triggering 

events always fall on the first day of this event period, and, to avoid the confounding impact 

of over-lapping storm events, we discard events for which another storm exceeding the 

threshold occurs within the event period. Likewise, all events must be preceded by at least 

one day with a daily precipitation amount below the storm accumulation threshold. All daily 

soil moisture products are 0 to 24 LST (UTC-6 hours) averages, and pre-storm antecedent 

soil moisture is defined as the minimum value of daily soil moisture obtained during the 

two-day period prior to the onset of a storm event. In all cases, at least 25% spatial coverage 

is required to sample a basin-average soil moisture value.

Daily stream flow observations (in native flow rate dimensions [L3/T]) are converted into 

daily depths [L/T] via normalization by basin area. Daily rainfall and stream flow 

accumulations are then temporally summed for each storm event and a storm-scale runoff-

ratio is calculated for each individual event. For a range of daily precipitation storm event 

thresholds, the Spearman rank coefficient of variation (R2
s) between antecedent soil 

moisture and storm scale runoff-ratio is sampled in time for each basin and each soil 

moisture product. Rank correlation is used because the relationship between antecedent soil 

moisture and runoff ratio is potentially nonlinear. Owing to the relatively short length of the 

SMAP data record to date, sampled R2
s values for individual basins are subject to large 

random sampling errors, and we currently lack the statistical power to evaluate soil moisture 

product performance on a basin-by-basin basis. Therefore, we focus only on spatially-

averaged values of R2
s ( Rs

2) acquired across all 16 basins between 31 March 2015 and 31 

December 2016.
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No attempt was made to isolate storm flow within the overall stream flow time series. 

Therefore, it is possible for base flow to contribute a non-insignificant fraction of observed 

storm-scale stream flow response (especially for low storm precipitation thresholds within 

relatively humid study basins). However, it should be stressed that the presence of base flow 

does not undermine the interpretation of Rs
2 as a metric for stream flow forecasting skill. 

Instead, it simply indicates that a fraction of this forecasting skill is due to the temporal 

persistence of elevated base flow levels (associated with high soil moisture values) rather 

than the prediction of land surface response to future precipitation.

3.2. Uncertainty description

Uncertainty intervals for R2
s values sampled within individual basins are obtained using a 

5000-member boot-strapping approach and then merged to estimate uncertainty intervals for 

sampled Rs
2. Based on the averaged spatial correlation sampled between SMAP_L4 basin-

averaged, surface soil moisture values (presumed to be the most accurate representation of 

soil moisture available), and the approach of Bretherton et al. [1999], the 16 basins in Figure 

1 contain only 7.4 spatially-independent samples. In addition, since Rs
2 values for each soil 

moisture product are sampled from a highly-overlapping set of storm events, uncertainty 

intervals attached to individual products provide a potentially misleading description of the 

statistical significance of pair-wise differences (since the cross-correlation of sampling 

errors ensures that the variance of sampling error in pair-wise differences is less than the 

sum of the sampling error variances for each product individually). Therefore, we further 

assess the sampling uncertainty in relative comparisons based on the boot-strapping of pair-

wise Rs
2 differences between all soil moisture products - considering only storm events 

whose antecedent conditions are captured by both members of the soil moisture product pair.

4. Results

Based on sampling across all storm events and all basins, Figure 2 illustrates the range in 

observed rainfall runoff ratio and its variation as a function of both storm-scale precipitation 

accumulation (Figure 2a) and pre-storm surface soil moisture (acquired from the SMAP_L4 

product; Figure 2b). As expected, a slight increase in runoff ratio is seen with increased 

storm size in Figure 2a. However, even for relatively large storm events (with > 100 mm of 

total rainfall accumulation), a wide range of potential storm-scale runoff ratios is observed 

(Figure 2a). Runoff ratio exhibits a much stronger overall relationship with pre-storm 

surface soil moisture levels (Figure 2b; provided again by SMAP_L4) - demonstrating the 

contribution of antecedent soil moisture conditions to hydrologic predictability.

Figure 3 plots Rs
2 for precipitation storm thresholds ranging from 5 to 35 mm/day and pre-

storm soil moisture products. Recall that Rs
2 is the spatial average of R2

s sampled 

individually within each of our 16 study basins. Numerical labels in Figure 3 reflect the 

number of storm events sampled to acquire plotted values of Rs
2. The error bars in Figure 3 

capture 95% sampling confidence intervals obtained from the boot-strapping approach 
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described above. However, for reasons discussed above, the pair-wise hypothesis tests 

presented in Table are used as basis of formal conclusions regarding the statistical 

significance of sampled Rs
2 differences between products.

Higher values of Rs
2 in Figure 3 are consistent with an enhanced ability to detect variations in 

soil moisture which subsequently impact stream flow response to future precipitation. 

Among the remote sensing products (open symbols in Figure 3), SMAP_L2 demonstrates 

the best Rs
2 results, followed by the SMOS_L2 product, and then the X-band AMSR2 

retrievals. For the lower accumulation thresholds (5, 15 and 25 mm/day), both SMOS_L2 

and SMAP_L2 differences versus AMSR2 are statistically-significant (two-tailed, 95% 

confidence; Table 2). Restricting SMAP_L2 and SMOS_L2 retrievals to only the 6 AM or 6 

PM overpasses, to better mimic the use of only the 1:30 AM overpass for AMSR2 retrievals, 

had only a minimal impact on their sampled Rs
2 results. Therefore, Figure 3 is consistent 

with the expectation that L-band remote sensing products are more valuable than older 

products acquired from higher-frequency microwave channels (e.g., X-band). In addition, 

SMAP_L2 significantly outperforms AMSR2 for the highest event threshold and SMOS_L2 

for the lower two thresholds (5 and 15 mm/day). However, the Rs
2 differences between 

SMOS_L2 and SMAP_L2 become non-significant for the 15 and 25 mm/day thresholds 

(Table 2).

Despite its relative superiority versus other remote-sensing products, the SMAP_L2 product 

still lags behind surface soil moisture estimates obtained from the NRv4 modeling system 

(Figure 3). Nevertheless, improvement relative to NRv4 is seen when SMAP brightness 

temperature observations (which form the basis of the SMAP_L2 retrievals) are assimilated 

into the NRv4 modeling system to produce the SMAP_L4 product. However, the difference 

between the SMAP_L4 and NRv4 Rs
2 falls short of 95% confidence (ranging from between 

84% and 91% confidence depending on storm event threshold size - see Table 2). Relatively 

little difference is found in Figure 3 when switching between the use of surface and “root-

zone” SMAP_L4 and NRv4 soil moisture products (not shown). However, this may be 

simply due to the tendency for the Catchment land surface model (used to generate both 

products) to exhibit relatively strong vertical coupling between its surface and root-zone soil 

moisture predictions [Kumar et al., 2009].

In addition to soil moisture products, Figure 3 also examines the use of pre-storm USGS 

daily stream flow data as a predictor of storm-scale runoff ratios. If available, antecedent 

stream flow measurements are generally assumed to be a valuable predictor of future stream 

flow magnitudes and commonly assimilated into operational hydrologic models – see e.g., 

Liu et al. [2016]. However, for precipitation accumulation thresholds of 15 mm/day and 

above, the SMAP_L4 product outperforms daily USGS stream flow measurements as a 

leading predictor of storm-scale runoff ratio - at a significance level which reaches 93% 

confidence for an event threshold of 35 mm/day (see Table 2).
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As noted above, several choices underpin our approach for defining discrete rainfall events 

within a continuous daily rainfall record. In order to determine the impact of these choices, 

alternative versions of Figure 3 were generated for the cases of: 1) maximum storm lengths 

of 5 and 7 days (versus the default of 6 days), 2) the use of prior day soil moisture to define 

antecedent conditions (versus the default of using the minimum soil moisture estimated in 

the two-day period prior to the storm events), and 3) not masking storm events which are 

interrupted by the onset of another event (versus the default of masking these events). None 

of these tested variations changed the qualitative relationships summarized in Figure 3. 

Another concern is the impact of including snow events on the sampling of Rs
2 for the NRv4, 

SMAP_L4 and USGS Stream flow results plotted in Figure 3. However, sub-setting these 

datasets to include only days with SMAP_L2 retrievals (which have passed a frozen soil and 

snow cover mask during processing) had no discernible impact on results. Alternative 

versions of Figure 3 for all cases listed above are shown in the supporting material (Figures 

S1, S2, S3, S4 and S5).

5. Summary and Conclusions

Within the range of basins studied here, expectations concerning storm-scale rainfall runoff 

ratios are strongly conditioned by appropriate knowledge of pre-storm soil moisture 

conditions Figure 2b). In addition, the development and application of both L-band 

radiometry and advanced data assimilation systems have significantly improved the quality 

of soil moisture information available for this purpose (Figure 3, Table 2). In particular, the 

assimilation of SMAP L-band brightness temperature data in the SMAP_L4 system results 

in a surface soil moisture product with the highest hydrologic forecasting skill observed to 

date, and the SMAP_L4 product provides at least as much predictive skill as pre-storm 

measurements of stream flow (Figure 3). The relative advantages of the SMAP_L4 product 

grow as the analysis is focused on larger storm events (see the right-hand-side of Figure 3). 

It should, however, be stressed that this conclusion is based on a single regional study in an 

area that is relatively well-suited to the remote retrieval of soil moisture. Follow-on work 

over a wider range of conditions is needed.

In closing, it should be noted that the successful application of satellite-based soil moisture 

products for hydrologic forecasting also depends on their near-real time availability. 

SMAP_L2 products are typically available within 24 hours from the time of observation. 

SMAP_L4 data are available within 2–3 days because of the latency incurred by the use of 

gauge-based precipitation inputs. However, several options exist for shortening the latency 

of SMAP_L2 and L4 products, including the short-term forecasting of SMAP_L2 products 

based on SMAP-derived loss functions [Koster et al., 2017] and the production of lower-

latency SMAP_L4 products using GEOS-5 forcing inputs without the benefit of gauge-

based precipitation inputs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
For a region of the south-central United States, boundaries (in blue) for our 16 medium-scale 

study basins overlain on a county-scale map of total number flash-flood events in the period 

Jan. 2015 to Nov. 2016. Identification of flash floods is based on the subjective reporting of 

major weather events by local weather observers to the United States National Weather 

Service (NWS) based on criteria described in NWS [2007]. Basins numbers correspond in 

the basin listing order given in Table 1, and individual US states are labeled.
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Figure 2. 
Box-plots (i.e., 5th, 25th, 50th, 75th and 95th percentiles) of storm-scale runoff ratio versus: a) 

total storm rainfall accumulation depths [mm] and b) pre-storm surface soil moisture [m3m
−3] for storm events observed across all basins in Figure 1. In part b), pre-storm surface soil 

moisture is based on SMAP_L4 surface soil moisture estimates and events with 

accumulation depths less than 10 mm are excluded. Numbers represent total storm events 

described by each box-plot. Runoff ratios greater than one likely reflect measurement errors 

in estimates of storm total rainfall and/or stream flow used to determine the storm runoff 

ratio.
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Figure 3. 

Spearman rank coefficient of variation Rs
2 (between pre-storm soil moisture and storm-scale 

runoff ratio) versus storm event precipitation accumulation threshold for a range of soil 

moisture products (plus antecedent USGS stream flow). Error bars represent 95% sampling 

confidence. Rs
2 is sampled in time within each basin and averaged across all 16 study basins 

(Figure 1). Numerical labels reflect the number of total storm events sampled to acquire Rs
2. 

Symbols lacking individual numerical labels have complete temporal coverage and are based 

on the storm numbers indicated by the larger black numerals.
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