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Abstract

A discrete random medium is an object in the form of a finite volume of a vacuum or a 

homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed 

discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and 

artificial environments. They are often characterized by analyzing theoretically the results of 

laboratory, in situ, or remote-sensing measurements of the scattering of light and other 

electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect 

the energy budget of a discrete random medium and hence various ambient physical and chemical 

processes. In either case electromagnetic scattering must be modeled in terms of appropriate 

optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a 

relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-

harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by 

macroscopic particulate media that change in time much more slowly than the incident 

electromagnetic field. However, direct solutions of these equations for discrete random media had 

been impracticable until quite recently. This has led to a widespread use of various 

phenomenological approaches in situations when their very applicability can be questioned. 

Recently, however, a new branch of physical optics has emerged wherein electromagnetic 

scattering by discrete and discretely heterogeneous random media is modeled directly by using 

analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main 

objective of this Report is to formulate the general theoretical framework of electromagnetic 

scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss 
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its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–

Lorentz equations, we trace the development of the first-principles formalism enabling accurate 

calculations of monochromatic and quasi-monochromatic scattering by static and randomly 

varying multiparticle groups. We illustrate how this general framework can be coupled with state-

of-the-art computer solvers of the Maxwell equations and applied to direct modeling of 

electromagnetic scattering by representative random multi-particle groups with arbitrary packing 

densities. This first-principles modeling yields general physical insights unavailable with 

phenomenological approaches. We discuss how the first-order-scattering approximation, the 

radiative transfer theory, and the theory of weak localization of electromagnetic waves can be 

derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds 

of particulate medium. These recent developments confirm the mesoscopic origin of the radiative 

transfer, weak localization, and effective-medium regimes and help evaluate the numerical 

accuracy of widely used approximate modeling methodologies.

Keywords

Discrete random media; Electromagnetic scattering; Statistical electromagnetics; Radiative 
transfer; Weak localization; Effective-medium approximation

1. Introduction

In this Report we discuss fundamental aspects of the scattering of electromagnetic radiation 

by a discrete random medium (DRM), i.e., an object in the form of a distinct finite volume 

of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-

uniformly distributed discrete macroscopic impurities called small particles. The general 

subject of electromagnetic scattering is extremely broad and can hardly be fully covered in a 

single review, which necessitates exercising proper selectivity and a careful delineation of 

the overall scope of the discussion. Therefore, the main purpose of the opening section is to 

introduce, in a somewhat ad hoc and qualitative manner, several basic definitions and 

notions and to explain the main focus of this Report.

1.1. Small particles

The term “small particles” or just “particles” is ubiquitous in the discipline of light (or, more 

generally, electromagnetic) scattering [1–35] and even enters the very titles of several 

specialized monographs [1,8,11,13,16,18,20,24–26,28–30,34,35]. However, it may not be 

straightforward to give a universal and unambiguous physical definition of this term. For the 

purposes of this Report, a small particle is defined as a small yet optically macroscopic 
body. More specifically, a small particle is a finite discrete physical body that is “small” (or 

“tiny” or “minute”) and yet consists of a number of atoms large enough that the body can be 

characterized by bulk optical constants such as the electric permittivity, magnetic 

permeability, and conductivity. The adjective “discrete” means that the body can be thought 

of as having a distinct macroscopic surface separating it from the surrounding host medium 

and acting as an optical interface between the interior and exterior materials with different 

refractive indices. The distribution of the refractive index inside the particle does not need to 

be homogeneous.
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We will see later that the requirement of being characterized by optical constants appropriate 

to bulk matter allows one to define rather unambiguously the minimal permissible size of a 

small particle. It is not as straightforward to define the requisite “smallness” of the particle. 

More often than not, the characterization of being small follows from the human visual 

perception or from the need for an optical or electronic microscope to even see the particle. 

Often however it is more appropriate to refer to the optical size of the particle (or its size 
parameter), defined as the ratio of the circumference of the particle’s smallest circumscribed 

sphere to the wavelength of the incident electromagnetic wave. Then the smallness of a 

particle may be defined by restricting the dimensionless particle size parameter to be a few 

orders of magnitude or less. For example, leaves, birds, or decimeter-sized clumps of ice 

forming Saturn’s rings do not appear to be small particles when looked at by a human eye, 

but they are small particles from the perspective of probing them electromagnetically with a 

remote decimeter-wavelength radar. The factor that makes it convenient and possible to 

define the smallness of a particle in terms of its size parameter is the fundamental so-called 

scale invariance rule of electromagnetic scattering. This rule states that all dimensionless 

scattering and absorption characteristics of a finite object depend only on the ratio of the 

object’s size and the wavelength of radiation but not on their individual values [36].

Fig. 1 shows that in many cases the above definition of a small particle can be rather 

unequivocal. Fig. 2 illustrates however that a degree of ambiguity can remain in some cases. 

Indeed, on one hand a fractal soot aggregate with touching components can be considered an 

individual particle when it is suspended in the atmosphere and is widely separated from 

other atmospheric particulates. On the other hand, it can also be considered a composite 

object consisting of individual particles in the form of soot spherules. The possibility of this 

and similar ambiguities should always be kept in mind.

1.2. Discrete random media

Using the above definition of a small particle, a Type-1 discrete random medium (DRM; see 

Fig. 3a) can be defined as a morphologically complex object in the form of an imaginary 

volume V populated by a large number N of small particles in such a way that

• the spatial distribution of the particles throughout the volume is quasi-random 

and quasiuniform, and

• the physical states of the individual particles are statistically independent of each 

other and of the particle positions

(e.g., [7,12,19]). The physical state of a particle is defined as the combination of the 

particle’s size, morphology (including the spatial distribution of the refractive index), and 

orientation. A defining trait of electromagnetic scattering by a DRM is the absence of 

speckles in scattering patterns.

It is imperative to recognize that at any moment in time, the spatial distribution of particles 

in a multi-particle group is definite rather than random. Therefore, if the group is illuminated 

by a monochromatic or quasi-monochromatic1 parallel beam of light then statistical 

randomness and spatial uniformity of a DRM and the requisite absence of speckles can be 

achieved only over a sufficiently long period of time owing to random temporal changes of 
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particle positions. This is precisely what happens naturally in a multi-particle group 

suspended in a gas or a liquid and causes smooth, speckle-free patterns of electromagnetic 

scattering.

In some cases (e.g., in a particulate surface) the particles do not move relative to each other 

and yet, from the perspective of electromagnetic scattering, can often be thought of as 

forming a DRM. This can happen, for example, when particle positions in a group are 

“maximally random” and “maximally uniform”, while the entire multi-particle group is 

moving relative to the source of light and/or the detector. Then even small changes of the 

source-of-light → multi-particle group → detector configuration during the measurement 

are equivalent to multi-wavelength shifts in particle positions and can, in essence, result in a 

random particulate sample generating speckle-free scattering patterns [44,45] (see also 

Section 1.4 of [25]). Another way to achieve a speckle-free regime is to illuminate a fixed 

quasi-random multi-particle group by incoherent polychromatic and/or uncollimated light. 

Such scattering scenarios help broaden the notion of a DRM and often lead to useful 

practical applications.

The volume V hosting the N-particle group can also have a distinct physical boundary S 
separating the finite interior and the infinite exterior space with different refractive indices 

(Fig. 3b). Such a heterogeneous object can be classified as a morphologically complex DRM 

as well, provided that the distribution of particle positions throughout the actual physical 

volume V is sufficiently random and uniform. We will refer to such an object as a Type-2 

DRM.

In reality, the spatial distribution of the constituent particles can never be completely random 

and statistically uniform because the particles are not allowed to overlap and because their 

cumulative volume Vpart (defined as the union of the individual particle volumes) is nonzero. 

For the same reason the orientations of nonspherical particles cannot be completely 

independent of each other and of the particle coordinates. We will assume however that the 

particles are distributed throughout the (physical or imaginary) volume V as randomly and 

uniformly as the volume packing density ρ = Vpart/V < 1 permits.2 In this regard the 

morphology of a DRM is fundamentally different from that of fractal-like multi-particle 

clusters such as those studied, e.g., in [41–43,46–49] and illustrated in Fig. 2. On a 

somewhat pedestrian level, the spatial distribution of the particles can be considered 

statistically quasi-uniform if the average number of particles per unit volume n(r) is 

independent of the position vector r over distances of the order of several times the average 

separation between two neighbouring particles. Of course, n(r) is allowed to change over 

much greater distances. An instructive discussion of various mathematical parameterizations 

of physical disorder can be found in [50].

1According to conventional terminology, the qualifier “monochromatic” refers to a purely time-harmonic electromagnetic field, while 
the qualifier “quasi-monochromatic” refers to a time-harmonic electromagnetic field subjected to relatively slow quasi-random 
fluctuations.
2Note that the volume packing density ρ of a DRM can vary from essentially zero for a cloud to more than 0.5 for a particulate 
surface.
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1.3. Why to study electromagnetic scattering by discrete random media?

Discrete random media are ubiquitous in natural and artificial environments. Typical 

examples are clouds of interstellar dust; the cloud of interplanetary dust in the solar system; 

dusty atmospheres of comets; particulate planetary rings; clouds in planetary atmospheres; 

geophysical, biomedical, and technical particle suspensions; aerosol particles with numerous 

inclusions; heterogeneous polymeric materials; and particulate surfaces (cf. Figs. 4 and 5a–

d). Another important class of DRMs is represented by technical coatings such as layers of 

paint [54] (Figs. 5e,f).

The extreme morphological complexity of the majority of natural and artificial DRMs makes 

their characterization a daunting task. More often than not, one has to infer the micro- and 

macrophysical parameters of a DRM by analyzing theoretically the results of laboratory, in 
situ, or remote-sensing measurements of light and other electromagnetic radiation scattered 

by the medium. Thus the use of electromagnetic scattering as a potent noninvasive 

characterization technique represents a major reason to study this phenomenon. Another 

major reason has to do with the fact that scattering and absorption of electromagnetic 

radiation by particles can affect the energy budget of a volume of DRM and hence various 

ambient physical and chemical processes. In either case electromagnetic scattering must be 

described in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the 

electromagnetic field that quantify the reading of a relevant optical instrument and/or the 

electromagnetic energy budget.

1.4. The general scope of this Report

The practical solution of optical-characterization and energy-budget problems has the 

following four main ingredients:

• Formulation of appropriate optical observables for a given DRM and a specific 

type of illumination.

• Theoretical modeling of these observables for a specific DRM (the so-called 

direct scattering problem).

• Practical measurement of these observables.

• Solution of the so-called inverse scattering problem, i.e., finding the physical 

model of a DRM that provides the best fit of theoretical simulations of 

electromagnetic scattering to the measurement data.

To keep the size of this Report manageable, we will focus only on the first two ingredients. 

Specifically, our primary objective is to outline the first-principles theoretical framework of 

electromagnetic scattering by DRMs rooted in the microscopic Maxwell–Lorentz equations 

and discuss its immediate analytical and numerical consequences.

1.5. The need for first-principles approach

Until quite recently, theoretical calculations of electromagnetic scattering by a DRM had 

typically been based on ad hoc approaches with poorly known or undefined accuracies and 

ranges of applicability. Perhaps the most notable examples are the phenomenological3 

radiative transfer theory [7,12,19,55–71] originally developed for sparse turbid media such 
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as clouds, effective-medium rules [32,72–78], and the geometric-optics ray-tracing method 

[79–83]. Even simplistic phenomenological approaches such as the Gershun theory of the 

light field [84] or the Kubelka–Munk [85–89] and Hapke [90] theories, have found frequent 

– even though questionable – use (cf. [91,92]). The underlying principles of some of these 

methodologies can be traced all the way back to the classical yet thoroughly outdated work 

by Pierre Bouguer [93,94], Johann Lambert [95], August Beer [96], Eugen von Lommel 

[97], Orest Khvolson [98], and Arthur Schuster [99] (see [100] for an account of the history 

of the phenomenological radiative transfer theory). The basic “physically obvious” premise 

in many studies of electromagnetic scattering by DRMs has been the belief that if the 

individual far-field scattering properties of each constituent particle are known then all 

scattering properties of the entire DRM can somehow be constructed from those of the 

constituent particles. This generally incorrect assumption is based on the lack of recognition 

that from the perspective of electromagnetics, the entire DRM is a unified scattering target, 

while the only essential consequence of the complex object’s morphology (e.g., being 

composed of what appears to the human eye as discrete units, called particles) is to make the 

corresponding electromagnetic boundary conditions more complicated.

The main objective of this Report is to expose the fundamental physical nature of the 

phenomenon of electromagnetic scattering by a DRM and introduce the general theoretical 

formalism enabling first-principles modeling of relevant optical observables. We 

demonstrate how recent advances in the development of computer solvers of the 

macroscopic Maxwell equations and the availability of powerful computers and computer 

clusters have made possible direct modeling of electromagnetic scattering by representative 

random multi-particle groups with arbitrary packing densities. Furthermore, we discuss how 

the first-order-scattering approximation, the radiative transfer theory and the theory of weak 

localization of electromagnetic waves can be derived as immediate corollaries of Maxwell’s 

electromagnetics for very specific and well-defined kinds of DRM. These recent 

developments have decisively brought the subject of electromagnetic energy transport in 

macroscopic DRMs and their optical characterization into the realm of physical optics. In 

particular, they have helped establish a mesoscopic link between the macrophysical regime 

of radiative transfer, weak localization, and effective-medium approximations on one hand 

and the microscopic Maxwell–Lorenz equations on the other. We make a special effort to 

state explicitly what results have been established definitively and what aspects of this 

research discipline necessitate further analysis.

The unquestionable advantage of the first-principles approach is that it yields the definitive 

physical understanding of the phenomenon of electromagnetic scattering by a DRM and its 

corollaries. However, technical complexities of solving the Maxwell equations directly (both 

analytically and numerically) often diminish the applicability of the first-principles approach 

to real physical systems encountered in practice. As a consequence, it is reasonable to expect 

that various analytical, phenomenological, and heuristic approximations such as those 

mentioned above will still be widely used in the foreseeable future. Hence an important 

3A physical theory is called phenomenological if it expresses mathematically the results of observed phenomena without tracing and 
clarifying their fundamental origin and significance. Typically, the development of a phenomenological theory is based on heuristic 
(i.e., experience-based) shortcuts lacking rigorous justification.
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function of the first-principles approach is to characterize the accuracy and range of 

applicability of these approximations. To illustrate this function, we include a discussion of 

how direct computer solutions of the macroscopic Maxwell equations can be used to 

quantify the errors of such popular modeling tools as the first-order-scattering 

approximation, the radiative transfer equation, the theory of weak localization, and the 

effective-medium approach.

1.6. Further guidelines

To make the scope of this Report manageable, we will discuss only elastic scattering of 

electromagnetic waves. In other words, nonlinear optics effects will be excluded by 

assuming that the optical constants of the scattering object as well as of the surrounding 

medium are independent of the electric and magnetic fields.

We will also exclude from specific consideration the small Doppler shift of frequency of the 

scattered light relative to that of the incident light due to the movement of particles with 

respect to the source of illumination. Furthermore, we will not discuss the scattering of 

transient electromagnetic fields such as ultra-short laser pulses (cf. [101]) and will discuss 

only frequency-domain electromagnetic scattering by assuming that all “quasi-

instantaneous” fields and sources are time-harmonic and satisfy the frequency-domain 

Maxwell equations. In other words, we focus on the scattering of a monochromatic or quasi-

monochromatic electromagnetic field and assume that the scattering object varies in time 

much more slowly than the field.

In the majority of this Report we will assume that the randomness of a particulate medium is 

ensured by its temporal variability. The extension of the concept of a DRM to a fixed 

particulate medium illuminated by an incoherent source will be discussed in Section 12.

2. Electromagnetics, optical observables, and averaging

The most advanced theory of light–matter interactions available today is quantum electro-

dynamics (QED) [102–108] followed, in the hierarchy of generality and complexity, by the 

semi-classical approach [109–111] and the Maxwell–Lorentz microscopic electromagnetics 

[112–116]. Since the specific subject of this Report is elastic (i.e., not involving changes in 

frequency) electromagnetic scattering, we will assume that from the standpoint of a wide 

range of practical applications, all relevant physics can be adequately captured by the 

classical microscopic Maxwell–Lorentz equations.

Despite this simplification, the actual quantification of electromagnetic scattering by a DRM 

is still highly problematic because solving the Maxwell–Lorentz equations either 

analytically or numerically is essentially impossible given the enormous number of 

elementary electric charges forming macroscopic objects. This makes it imperative to derive 

a theoretical formalism that is much simpler than the microscopic Maxwell–Lorentz 

electromagnetics and bypasses the unnecessarily detailed computation of the actual 

electromagnetic field. It turns out that doing this is feasible by exploiting the two-layer 

structure of electromagnetics along with making hierarchal use of volume, time, and/or 

ensemble averaging.
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Indeed, in the words of Freeman Dyson [117],

The modern view of the world that emerged from Maxwell’s theory is a world with 

two layers. The first layer, the layer of the fundamental constituents of the world, 

consists of fields satisfying simple linear equations. The second layer, the layer of 

the things that we can directly touch and measure, consists of mechanical stresses 

and energies and forces. The two layers are connected, because the quantities in the 

second layer are quadratic or bilinear combinations of the quantities in the first 

layer. To calculate energies or stresses, you take the square of the electric field-

strength or multiply one component of the field by another… The objects on the 

first layer, the objects that are truly fundamental, are abstractions not directly 

accessible to our senses. The objects that we can feel and touch are on the second 

layer, and their behavior is only determined indirectly by the equations that operate 

on the first layer.

Owing to this two-layer structure, the framework of the simplified theoretical formalism can 

be formulated as the following two-stage procedure:

• first, define relevant optical observables as quadratic and bilinear forms in the 

electromagnetic field that (i) can be directly measured with suitably designed 

instruments, and/or (ii) quantify the energy budget of a macroscopic object4; and

• second, develop an efficient way to directly calculate appropriate averages of 

these observables even if the detailed computation of the exact (microscopic) 

electromagnetic field itself is sacrificed.

Indeed, the majority of applications do not require the knowledge of instantaneous (or quasi-

instantaneous) local values of the optical observables but rather deal with averages taken 

over extended time intervals and/or finite (rather than infinitesimal) volume elements. 

Simple examples of the experimental use of time averages are the exposure time of a 

camera, the integrating time of the rod cells in our eyes, and the signal integration over the 

sensitive face of a detector. Moreover, in many situations time averaging can be replaced by 

ensemble averaging, thereby resulting in further dramatic simplifications.

In what follows, we will discuss how the two-layer structure of electromagnetics in 

combination with appropriate averaging procedures yields an important effective-field 

approximation called macroscopic electromagnetics. This approximation is based on the 

introduction of a mathematical entity called the macroscopic electromagnetic field and can 

be used to quantify time-harmonic electromagnetic scattering by a fixed macroscopic object. 

Although the macroscopic electromagnetic field in and of itself is not an actual physical 

field, it can yield suitably averaged optical observables directly, i.e., without the prior 

computation of the exact (i.e., microscopic) electromagnetic field. A straightforward 

generalization makes this approach applicable to quasi-monochromatic macroscopic fields 

and/or time-variable macroscopic objects. The resulting formalism enables the computation 

4Note that this definition of optical observables does not exclude quadratic and bilinear forms in the field that cannot be measured 
directly. The prime example of a bilinear form that often is not measurable is the Poynting vector [34].
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of relevant time-averaged optical observables for a DRM by using analytical expressions and 

equations completely devoid of the actual electromagnetic field scattered by the medium.

All three types of averaging mentioned so far (i.e., volume, time, and ensemble averaging) 

have been used in various publications on electromagnetic scattering. Some of these 

publications may give the impression that different types of averaging may be used 

interchangeably or that a type of averaging can be selected almost at will. It is imperative to 

keep in mind however that each type of averaging has its own conditions of applicability and 

that indiscriminate use of any one of them can lead to physically meaningless results. 

Therefore, in what follows we will be very explicit in justifying the use of a specific type of 

averaging and explaining why an alternative choice can be inappropriate.

3. Macroscopic Maxwell equations

War es ein Gott, der diese Zeichen schrieb (?) (Was it a God who wrote these signs 

(?))

[Ludwig Boltzmann [118], from Goethe’s Faust]

From a long view of the history of mankind – seen from, say, ten thousand years 

from now – there can be little doubt that the most significant event of the 19th 

century will be judged as Maxwell’s discovery of the laws of electrodynamics. The 

American Civil War will pale into provincial insignificance in comparison with this 

important scientific event of the same decade.

[Richard P. Feynman [119]]

The macroscopic Maxwell equations (MMEs) were postulated by James Clerk Maxwell 150 

years ago [120] as the most fundamental laws of electromagnetics consistent with the 

totality of experimental data accumulated by that time. Maxwell’s ideas, summarized in his 

famous Treatise [121], were picked up, systematized, and reworked mathematically by his 

immediate followers [122,123], most notably by Oliver Heaviside [124]. The subsequent 

notion that the MMEs must be a corollary of the more fundamental microscopic Maxwell–

Lorentz equations [125] was put forth by Hendrik Lorentz in [112] and has been further 

developed by many authors [113–116,126–142].

In the framework of classical electromagnetics, the microscopic electromagnetic field is the 

only actual physical field which, in the vast majority of situations, is an extremely intricate 

function of the position vector r and time t. The basic idea of macroscopic electromagnetics 

is that the detailed knowledge of the exceedingly complex dependence of the microscopic 

field on r and t is often not required in practice. Instead, this dependence is artificially 

simplified by averaging the microscopic field over either r or t, thereby yielding contrived 

macroscopic field vectors. It is imperative to recognize that these fictitious mathematical 

entities can only be useful to the extent to which they simplify the computation of 

macroscopic optical observables. In this respect macroscopic electromagnetics is the prime 

example of an effective-field approximation.

The temporal variability of the microscopic electromagnetic field inside a macroscopic 

object is caused by the incessant microscopic movements of the constituent elementary 
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charges, by macroscopic temporal changes of the object, and by time-harmonic oscillations 

and quasi-random fluctuations induced by the external sources. Throughout this Report, we 

will assume that field variations caused by macroscopic changes of the object occur much 

more slowly than those caused by the microscopic movements of the constituent elementary 

charges as well as much more slowly than the externally induced time-harmonic oscillations 

and, potentially, quasi-random fluctuations. Furthermore, we will assume that the quasi-

random oscillations of the field occur much more slowly than its time-harmonic oscillations. 

A fundamental corollary of these assumptions is that monochromatic and quasi-

monochromatic electromagnetic scattering by the slowly varying macroscopic object can be 

described at any moment in time by assuming that the object is fixed and solving the 

corresponding quasi-instantaneous boundary-value problem for the frequency-domain 

MMEs.

3.1. Averaging over physically small volume elements

The fundamental equations governing electromagnetic phenomena for point charges serving 

as building blocks of a macroscopic material medium are the four microscopic Maxwell–

Lorentz equations:

∇ · e(r, t) = η(r, t)
ε0

, (1)

∇ × e(r, t) + ∂b(r, t)
∂t = 0, (2)

∇ · b(r, t) = 0, (3)

∇ × b(r, t) − ε0μ0
∂e(r, t)

∂t = μ0j(r, t), (4)

where e and b are the microscopic electric and magnetic fields; η and j are the microscopic 

charge and current densities; ε0 and μ0 are the electric permittivity and the magnetic 

permeability of a vacuum; and 0 is a zero vector. Fundamentally, the microscopic fields are 

functions of r and t only. This implies that the position vector and time are the only 
parameters over which e(r, t) and b(r, t) can in principle be averaged.

According to the first averaging approach dating back to Lorentz [112], the microscopic 

field is homogenized, at any moment in time, over “physically small” volume elements δV 
centered at r in order to smooth out drastic variations of e(r, t) and b(r, t) over interatomic 

distances [114,126–128,133]:
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EδV (r, t) = 〈e(r, t)〉δV, (5)

BδV (r, t) = 〈b(r, t)〉δV . (6)

The well-known result of this approach is the system of the four MMEs:

∇ · DδV (r, t) = ρδV (r, t), (7)

∇ × EδV (r, t) + ∂BδV (r, t)
∂t = 0, (8)

∇ · BδV (r, t) = 0, (9)

∇ × HδV (r, t) − ∂DδV (r, t)
∂t = JδV (r, t), (10)

where HδV (r, t) is the macroscopic magnetic intensity vector; DδV (r, t) is the macroscopic 

electric displacement vector; ρδV (r, t) and JδV (r, t) are the macroscopic free charge density 

and current density, respectively. In the case of a macroscopically isotropic and time-

dispersive material, the macroscopic field vectors entering the MMEs (7)–(10) are further 

related by the constitutive relations [116]

DδV (r, t) = ∫
−∞

t
dt′εδV (r, t − t′)EδV (r, t′), (11)

HδV (r, t) = ∫
−∞

t
dt′ 1

μδV (r, t − t′)
BδV (r, t′), (12)

JδV (r, t) = ∫
−∞

t
dt′σδV (r, t − t′)EδV (r, t′) . (13)
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One must recognize that this averaging procedure yields artificial field vectors formally 

satisfying the MMEs rather than an exact physical electromagnetic field. Furthermore, the 

problem of actual practical significance is to compute macroscopic averages of specific 

optical observables, including quantities describing electromagnetic energy budget. In other 

words, one needs volume averages of quadratic and bilinear forms in the electromagnetic 
field, such, for example, as the Poynting vector [143,144]

s(r, t) = 1
μ0

e(r, t) × b(r, t) . (14)

This implies that for a mathematical solution of the MMEs to be physically significant and 

practically useful, it must enable the computation of relevant macroscopic optical 

observables, including the macroscopic Poynting vector

SδV (r, t) = 〈s(r, t)〉δV = 1
μ0

〈e(r, t) × b(r, t)〉δV, (15)

by a simple substitution of the macroscopic field vectors for the microscopic ones, e.g.,

SδV (r, t) = 1
μ0

EδV (r, t) × BδV (r, t) . (16)

Since the average of the vector product of two vectors in Eq. (15) is not necessarily equal to 

the vector product of the individual averages, Eq. (16) is highly nontrivial and by no means 

obvious.

To the best of our knowledge, Eq. (16) has been derived rigorously only for structured 

periodic nonmagnetic materials and only for the case of time-harmonic fields [141,142], 

while in all other situations (e.g., in the case of amorphous solids and liquids), it still has to 

be postulated. It must be recognized however that without Eq. (16) and similar formulas for 

other relevant second moments of the electromagnetic field the MMEs would largely lose 

their physical significance and become irrelevant or not helpful if one wishes to make useful 

predictions.

Let us now assume that the macroscopic field vectors are monochromatic, while the medium 

is non-magnetic. It is convenient to represent the real field variables as real parts of the 

respective complex time-harmonic variables:

EδV (r, t) = Re [E∼δV (r) exp ( − iωt)], (17)
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BδV (r, t) = Re [B∼δV (r) exp ( − iωt)], (18)

DδV (r, t) = Re [D∼δV (r) exp ( − iωt)], (19)

HδV (r, t) = Re [H∼δV (r) exp ( − iωt)], (20)

ρδV (r, t) = Re [ρ∼δV (r) exp ( − iωt)], (21)

JδV (r, t) = Re [J∼δV (r) exp ( − iωt)], (22)

where ω is the angular frequency, i = (−1)1/2, and “Re” stands for “the real part of”. It is then 

straightforward to show that the macroscopic field vectors satisfy the standard frequency-

domain MMEs

∇ · D∼δV (r) = ρ∼δV (r), (23)

∇ × E∼δV (r) − iωB∼δV (r) = 0, (24)

∇ · B∼δV (r) = 0, (25)

∇ × H∼δV (r) + iωD∼δV (r) = J∼δV (r) (26)

supplemented by the constitutive relations

D∼δV (r) = ε∼δV (r, ω)E∼δV (r), (27)
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H∼δV (r) = 1
μ0

B∼δV (r), (28)

J∼δV (r) = σ∼δV (r, ω)E∼δV (r), (29)

where the frequency-dependent electric permittivity ε̃δV (r, ω) and conductivity σ̃δV (r, ω) 

are, in general, complex valued:

ε∼δV (r, ω) = ∫
0

∞
dt εδV (r, t) exp (iωt), (30)

σ∼δV (r, ω) = ∫
0

∞
dt σδV (r, t) exp (iωt) . (31)

According to Eq. (16), the near-instantaneous time-independent macroscopic Poynting 

vector is now given by the time average

〈SδV (r, t)〉 = 1
T ∫

t − T /2

t + T /2
dt′ EδV (r, t′) × HδV (r, t′)

≈ 1
2 Re {E∼δV(r) × [H∼δV (r)]

∗
}, T ≫ To,

(32)

where the asterisk denotes a complex-conjugate value and

To = 2π
ω (33)

is the period of time-harmonic oscillations.

3.2. Ensemble averaging

The above methodology is intended to yield optical observables homogenized over 

physically small volume elements at each moment in time. In the case of a high-frequency 

time-harmonic electromagnetic field, one could think of a different averaging approach 

intended to yield time-averaged optical observables at each point in space. Specifically, the 

microscopic electric and magnetic fields as well as the microscopic charge and current 

densities are factorized according to
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e(r, t) = Re [e∼(r, t) exp ( − iωt)], (34)

b(r, t) = Re [b∼(r, t) exp ( − iωt)], (35)

η(r, t) = Re [η∼(r, t) exp ( − iωt)], (36)

j(r, t) = Re [ j∼(r, t) exp ( − iωt)] (37)

[131,133]. The dependence of the complex amplitudes ẽ(r, t), b̃(r, t), η̃(r, t), and j̃(r, t) on 

time is implicit in that it is caused by relatively slow random movements of the microscopic 

charges occurring independently of the rapid oscillatory motions described by the time-

harmonic factor exp(−iωt). This means that at any moment in time, the complex amplitudes 

satisfy the frequency-domain microscopic Maxwell–Lorentz equations

∇ · e∼(r, t) = η∼(r, t)
ε0

, (38)

∇ × e∼(r, t) − iωb∼(r, t) = 0, (39)

∇ · b∼(r, t) = 0, (40)

∇ × b∼(r, t) + iωε0μ0 e∼(r, t) = μ0 j∼(r, t) (41)

provided that

∂ e∼(r, t)
∂t ≪ ω e∼(r, t) , (42)

Mishchenko et al. Page 15

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



∂b∼(r, t)
∂t ≪ ω b∼(r, t) . (43)

Note that whether the inequalities (42) and (43) are satisfied can be expected to depend on 

several factors, including the angular frequency, the material in question, and the material 

temperature.

Averaging the fields (34) and (35) over time is meaningless since the rapidly oscillating 

factor exp(−iωt) causes both averages to vanish:

1
T ∫

t − T /2

t + T /2
dt′ exp ( − iωt′) =T ≫ To

0. (44)

However, the vector product of the complex electric field and the complex conjugate of the 

magnetic field varies with time much more slowly since the factors exp(−iωt) and 

[exp(−iωt)]* cancel each other. Therefore, averaging e(r, t) × b(r, t) over a period of time T 
much longer than To but much shorter than the typical temporal scale T′ of variability of the 

complex amplitudes ẽ(r, t) and b̃(r, t) is meaningful and yields a quasi-instantaneous 

Poynting vector slowly varying in time:

〈〈s(r, t)〉〉 = 1
μ0

1
T ∫

t − T /2

t + T /2
dt′e(r, t′) × b(r, t′)

≈ 1
2μ0

Re {e∼(r, t) × [b∼(r, t)]∗}, To ≪ T ≪ T′,

(45)

where the symbol 〈〈⋯〉〉 hereinafter denotes averaging over a sufficiently long time interval, 

the actual length of the time interval being clear from the context. The time-independent 

macroscopic Poynting vector is now defined as the average over a time interval T much 

longer than T′:

〈〈S(r, t)〉〉 = 1
2μ0

1
T Re ∫

t − T /2

t + T /2
dt′ e∼(r, t′) × [b∼(r, t′)]∗, T ≫ T′ . (46)

The computation of 〈〈S(r, t)〉〉 is usually simplified by assuming ergodicity of the ensemble 

of elementary charges (see, e.g., Section 10.4 of Ref. [34]5) and replacing the temporal 

average in Eq. (46) by the statistical average over the ensemble ψ of configurations of all the 

microscopic charges:

5Instructive discussions of the ergodic hypothesis as a basic underlying principle of classical and quantum statistical mechanics and 
kinetic theory can be found in [145–149].
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〈〈S(r, t)〉〉 = 1
2μ0

Re ∫ dψ e∼(r, ψ) × [b∼(r, ψ)]∗ p(ψ), (47)

where p(ψ) is a suitable time-independent probability density function. Similar expressions 

can be written for macroscopic versions of other quadratic and bilinear forms in the 

microscopic electromagnetic field.

In general, the computation of the ensemble average (47) is still quite involved. A major 

simplification is based on the as yet unproven assumption according to which

〈〈S(r, t)〉〉 = 1
2μ0

Re {E∼ψ (r) × [B∼ψ (r)]
∗
} (48)

(and similarly for other second moments), where all materials are assumed to be non-

magnetic and the corresponding macroscopic complex field vectors are given by the 

individual time averages replaced by ensemble averages:

E∼ψ (r) = 1
T ∫

t − T /2

t + T /2
dt′ e∼(r, t′) = ∫ dψ e∼(r, ψ)p(ψ), T ≫ T′, (49)

B∼ψ (r) = 1
T ∫

t − T /2

t + T /2
dt′ b∼(r, t′) = ∫ dψ b∼(r, ψ)p(ψ), T ≫ T′ . (50)

It can then be shown [131] that the macroscopic field vectors satisfy the standard frequency-

domain MMEs

∇ · D∼ψ (r) = ρ∼ψ (r), (51)

∇ × E∼ψ (r) − iωB∼ψ (r) = 0, (52)

∇ · B∼ψ (r) = 0, (53)
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∇ × H∼ψ (r) + iωD∼ψ (r) = J∼ψ (r) (54)

supplemented by the constitutive relations

D∼ψ (r) = ε∼ψ (r, ω)E∼ψ (r), (55)

H∼ψ (r) = 1
μ0

B∼ψ (r), (56)

J∼ψ (r) = σ∼ψ (r, ω)E∼ψ (r), (57)

where, again, the frequency-dependent macroscopic electric permittivity ε̃ψ (r, ω) and 

conductivity σ̃ψ (r, ω) are, in general, complex valued.

We have seen in the preceding subsection that equations having the same mathematical 

structure as Eqs. (51)–(57) can also be obtained using the volume-averaging approach. As a 

consequence, it is often believed that a formal re-multiplication of the vectors Ẽψ (r) and B̃ψ 

(r) given by Eqs. (49) and (50) by the time-harmonic factor exp(−iωt) yields the ensemble-
averaged time-dependent electromagnetic field. This belief is questionable since ensemble 

averaging is not a primordial physical concept and can only be used as a substitute for time 

averaging (see, e.g., [146] and pages 1–6 of [150]). Averaging the right-hand sides of Eqs. 

(34) and (35) over time yields a zero result provided that To ≪ T′. Therefore, the ensemble-

averaged time-dependent electromagnetic field must also be zero. The reader should recall 

that the vectors Ẽψ (r) and B̃ψ (r) are obtained by:

• artificially omitting the time-harmonic factor exp(−iωt) in Eqs. (34) and (35);

• taking the time average of the remaining factors; and

• replacing this time average by the ensemble average based on the assumption of 

ergodicity according to Eqs. (49) and (50).

It is thus obvious that the subsequent re-multiplication of Ẽψ (r) and B̃ψ (r) by exp(−iωt) 
yields quantities of questionable veracity rather than actual time or ensemble averages.

3.3. Further discussion

The ensemble averaging approach described in Subsection 3.2 bypasses the introduction of 

time-dependent macroscopic vector fields altogether, whereas the volume averaging 

approach outlined in Subsection 3.1 does yield macroscopic field vectors explicitly 

dependent on time as well as on coordinates. As a consequence, certain solutions of the 
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time-domain MMEs (7)–(10) do describe vector waves unfolding in space and time, which 

may seem to provide substance to the widespread belief that EδV (r, t) and HδV (r, t) 
represent an actual physical field in a “homogenized macroscopic medium” rather than a 

purely mathematical entity. It is imperative to recognize however that (i) any type of 

averaging is a purely human intervention resulting in an artificial rather than an actual 

physical field; (ii) the computation of the macroscopic field vectors EδV (r, t) and HδV (r, t) 
(or Ẽψ (r) and B̃ψ (r)) is almost never an end in itself; and (iii) irrespective of the averaging 

approach chosen, the ultimate purpose of macroscopic electromagnetics is the computation 

of time- and/or volume-averaged optical observables and the average electromagnetic energy 

budget. The MMEs are useful and meaningful only to the extent to which they help achieve 

this objective by eliminating the need to solve explicitly the microscopic Maxwell–Lorentz 

equations. Despite substantial recent progress in the microphysical justification of the 

MMEs, this problem still awaits a definitive solution.

Although the formal mathematical structure of Eqs. (23)–(29) and (51)–(57) is the same, 

their solutions can, in principle, be different. Indeed, the specific procedures for the 

computation of the corresponding macroscopic electric permittivities and conductivities are 

not necessarily the same, and it is far from being obvious that ε̃δV (r, ω) ≡ ε̃ψ (r, ω) and 

σ̃δV (r, ω) ≡ σ̃ψ (r, ω). In what follows, we will usually omit the superscripts δV and ψ for 

the sake of brevity, but it should be kept in mind that the actual values of ε̃(r, ω) and σ̃(r, ω) 

may depend on the averaging approach chosen.

The relative merits of either homogenizing optical observables over physically small volume 

elements or averaging them over a time interval T ≫T′ remain somewhat unclear. The two 

averaging strategies are likely to yield similar results if they are applied to the calculation of 

the time-averaged radiation budget of a macroscopic volume with dimensions greatly 

exceeding the wavelength, provided that ε̃δV (r, ω) ≡ ε̃ψ (r, ω) and σ̃δV (r, ω) ≡ σ̃ψ (r, ω). 

However, the modeling of the interaction of the electromagnetic field with a photodetector 

may depend on whether one uses the macroscopic field vectors homogenized over physically 

small volume elements at a given moment in time or those averaged over time at a given 

point in space. This issue obviously needs to be further clarified.

On the more fundamental level, the MMEs must be derived in the framework of the QED by 

quantizing the microscopic electromagnetic field. There has been notable progress in this 

direction [151–154], but definitive studies are still needed.

4. Monochromatic and quasi-monochromatic scattering by a fixed 

macroscopic object

Consistent with the preceding discussion, the foundation of the theory of electromagnetic 

scattering by a DRM can be built of the following four major building blocks:

• the theory of monochromatic scattering by a fixed finite object;

• the theory of quasi-monochromatic scattering by a fixed finite object;

• the theory of monochromatic scattering by a randomly changing object; and
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• the theory of quasi-monochromatic scattering by a randomly changing object.

The main purpose of this section is to give an explicit formulation of the electromagnetic 

scattering problem for a fixed object in maximally general terms and discuss its immediate 

implications. We start with monochromatic scattering and then, in Subsection 4.12, 

generalize the formalism to encompass the case of quasi-monochromatic radiation. 

Monochromatic and quasi-monochromatic scattering by a time-variable object such as a 

DRM will be considered in the following section.

Let us define the characteristic length l according to

d ≪ l ≪ λ, (58)

where d is the typical distance between a molecule and its closest neighbors and λ is the 

wavelength. A major premise of the previous discussion is that frequency-domain 

macroscopic electromagnetics can be used to

• compute the value of any second moment of the microscopic electromagnetic 

field homogenized over physically small volume elements with dimensions of 

the order of l and averaged over a time interval T ≫To (hereinafter averaging 

strategy 1; Subsection 3.1), or

• compute the value of any second moment of the microscopic electromagnetic 

field averaged over a time interval T ≫T′ at any fixed point in space (hereinafter 

averaging strategy 2; Subsection 3.2).

This is done by first solving the frequency-domain MMEs

∇ · D∼(r) = ρ∼(r), (59)

∇ × E∼(r) − iωB∼(r) = 0, (60)

∇ · B∼(r) = 0, (61)

∇ × H∼(r) + iωD∼(r) = J∼(r) (62)

supplemented by the constitutive relations
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D∼(r) = ε∼(r, ω)E∼(r), (63)

H∼(r) = 1
μ0

B∼(r), (64)

J∼(r) = σ∼(r, ω)E∼(r) (65)

and then substituting the resulting macroscopic field vectors Ẽ(r) and B̃(r) in the 

appropriately modified formula for the requisite second moment of the microscopic field. 

Typically the modification amounts to applying the operation “ (1/2) Re “. For example, the 

microscopic Poynting vector is defined by Eq. (14), while its time-independent average 

macroscopic counterpart is given by

S(r) = 1
2 Re {E∼(r) × [H∼(r)]∗}, (66)

where S̄(r) stands for either 〈SδV (r, t)〉 or 〈〈S(r, t)〉〉. According to [155], the frequency-

domain macroscopic formalism can be expected to work well as long as the smallest 

homogeneous element of the scattering object exceeds ~50Å. And even for smaller 

elements, it may produce meaningful results if combined with empirical corrections for ε̃(r, 

ω) and σ̃(r, ω) [156].

The three basic ingredients of some phenomenological approaches to electromagnetic 

scattering by a DRM have been:

i. the visual perception of the DRM as being assembled of separate “building 

blocks” in the form of particles;

ii. the presumed knowledge of how to compute specific optical observables for each 

individual building block in the absence of all the other blocks; and

iii. the belief that the optical observables for the assembly of the building blocks can 

somehow be expressed in terms of the optical observables computed for the 

separate building blocks.

The latter belief has usually been justified by verbal “simple physical considerations” and 

accepted as needing no rigorous mathematical proof. However, this approach is generally 

incorrect since unlike the human eye, the electromagnetic field perceives the DRM in its 

entirety rather than one particle at a time. Therefore, any first-principles approach to 

electromagnetic scattering by a DRM must originate in the explicit formulation of the 
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MMEs and appropriate boundary conditions for the entire DRM rather than in the set of 

separate formulations for the individual particles.

4.1. The standard scattering problem

Consider a fixed finite scattering object imbedded in an infinite medium; the latter is 

assumed to be homogeneous, linear, isotropic, nonmagnetic, and nonabsorbing. In general, 

the object is a cluster consisting of a finite number N ≥ 1 of separated or touching distinct 

components. It occupies a finite interior region VINT given by

V INT = ∪
i = 1

N
V i, (67)

where Vi is the interior volume of the ith component (Fig. 6). The object is surrounded by 

the infinite exterior region VEXT defined such that VINT ∪ VEXT = ℜ3, where ℜ3 denotes 

the entire three-dimensional space. It is further assumed that the interior volume VINT is 

filled with isotropic, linear, nonmagnetic, and possibly inhomogeneous material. Point O 
serves as both the common origin of all position vectors and the origin of the laboratory 

coordinate system.

Unlike the general microscopic Maxwell–Lorentz equations (1)–(4), the four frequency-

domain MMEs (59)–(62) are not independent since Eqs. (59) and (61) follow from Eqs. (60) 

and (62) [34]. This allows one to consider only the Maxwell curl equations, re-written as

∇ × E∼(r) = iωμ0H∼(r)

∇ × H∼(r) = − iωε1E∼(r)
r ∈ VEXT, (68)

∇ × E∼(r) = iωμ0H∼(r)

∇ × H∼(r) = − iωε2(r, ω)E∼(r)
r ∈ V INT, (69)

where ε1 is the real-valued electric permittivity of the infinite host medium and

ε2(r, ω) = ε∼2(r, ω) + i
σ∼2(r, ω)

ω (70)

is the (potentially co-ordinate-dependent) so-called complex permittivity of the scattering 

object. The corresponding boundary conditions read:
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n × [E∼1(r) − E∼2(r)] = 0

n × [H∼1(r) − H∼2(r)] = 0
r ∈ SINT, (71)

where the subscripts 1 and 2 correspond to the exterior and interior sides of the boundary 

SINT of the object, respectively, n̂ is the local outward normal to SINT, and SINT is the union 

of the closed surfaces of the N components of the object:

SINT = ∪
i = 1

N
Si . (72)

Let us now assume that the complex amplitudes Ẽ(r) and H̃(r) everywhere in ℜ3 can be 

written as a superposition of the complex amplitudes of a plane-wave “incident field” 

(superscript “inc”) propagating in the direction of the unit vector n̂inc and those of a 

“scattered field” (superscript “sca”):

E∼(r) = E∼inc(r) + E∼sca(r), (73)

H∼(r) = H∼inc(r) + H∼sca(r), (74)

where

E∼inc(r) = E∼0
inc exp (ik1ninc · r), (75)

H∼inc(r) = H∼0
inc exp (ik1ninc · r) =

ε1
μ0

ninc × E∼0
inc exp (ik1ninc · r), (76)

and

k1 = ω ε1μ0 (77)

is the wave number in the exterior region VEXT. Furthermore, we require the scattered field 

amplitudes to satisfy the following asymptotic condition at infinity:
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lim
r ∞ { μ0 r × H∼sca(r) + r ε1 E∼sca(r)} = 0, (78)

where r = | r | is the distance from O to the observation point (Fig. 6). The limit (78) is 

traditionally called the Silver–Müller radiation condition at infinity [157,158] and holds 

uniformly over all outgoing directions r̂ = r/r.

The combination of the Maxwell curl equations (68) and (69), the boundary conditions (71), 

the decomposition (73)–(76), and the asymptotic condition (78) represents the so-called 

standard electromagnetic scattering problem for plane-wave illumination.

The mathematical decomposition (73)–(76) of the “total” macroscopic frequency-domain 

field vectors makes it clear that the scattered field is defined as the difference between the 

total fields corresponding to the situations when the object is and is not present. This is 

consistent with the point of view that the incident field is not transformed into or replaced by 

the scattered field. In other words, the physical cause of frequency-domain scattering by the 

object is not the incident field, but rather the very presence of an object with optical 

properties different from that of the exterior medium [159,160].

Note that to the best of our knowledge, the boundary conditions (71) have not been derived 

explicitly from the microscopic Maxwell–Lorentz equations. Ad hoc ways of introducing 

these conditions in the framework of macroscopic electromagnetics are discussed in Section 

2.8 of [161].

Since the first relations in Eqs. (68) and (69) yield the magnetic field vector provided that 

the electric field vector is known everywhere, the solution of the standard scattering problem 

is often sought in terms of only the electric field vector.

4.2. Existence and uniqueness of solution of the standard problem

The statement of the standard scattering problem would be of little practical use if this 

problem had no solution and/or if the solution was not unique. Fortunately, both the 

existence and the uniqueness of solution have recently been demonstrated for particles with 

smooth surfaces (see [162,163] as well as Section 9.1 of [115]). Certain results for particles 

with edges do exist, but this case is fundamentally more difficult since the formulation of the 

boundary condition becomes ambiguous unless appropriately modified (see Chapter 9.2 of 

[115] and the discussion in Subsection 4.3).

4.3. Volume integral equation

Although the standard scattering problem is formulated for the incident field in the form of a 

plane electromagnetic wave, the range of its actual applicability is much wider. Indeed, the 

linearity of both the MMEs, the boundary conditions, and the radiation condition at infinity 

implies that solving the standard problem yields the solution of a more general scattering 

problem as long as the corresponding incident electromagnetic field can be expanded in 

plane electromagnetic waves. This profound fact becomes especially evident if we consider 
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a mathematically equivalent formulation [162,163] of electromagnetic scattering in terms of 

the so-called volume integral equation (VIE) [34,164] (see also [165]):

E∼(r) = E∼inc(r) + k1
2∫

VINT
d3r′G (r, r′) · E∼(r′)[m2(r′) − 1]

= E∼inc(r) + k1
2 I + 1

k1
2 ∇ ⊗ ∇ · ∫

VINT
d3r′ E∼(r′)

exp (ik1 ∣ r − r′ ∣ )
4π ∣ r − r′ ∣ [m2(r′) − 1], r ∈ ℜ3,

(79)

where

G (r, r′) = I + 1
k1

2 ∇ ⊗ ∇
exp (ik1 ∣ r − r′ ∣ )

4π ∣ r − r′ ∣ (80)

is the free-space dyadic Green’s function,

m(r′) =
ε2(r′, ω)

ε1
(81)

is the (complex) refractive index of the object’s interior relative to that of the host exterior 

medium, I↔ is the identity dyadic, and ⊗ is the dyadic product sign.

The second equality of Eq. (79) is a mathematically rigorous expression which has been 

used in [162,163,166] to deduce several useful corollaries. By contrast, the first equality is a 

shorter expression, but contains a strong singularity (strictly speaking, a non-integrable one) 

when r ∈ VINT. Then the integration must be carried in the following specific principal-

value sense to ensure that it is equivalent to the rigorous expression [167,168]:

∫
VINT

d3r′G (r, r′)F(r′) = lim
V0 0 ∫

VINT\V0
d3r′G (r, r′)F(r′) − 1

3k1
2ω

F(r), (82)

where V0 is a spherical exclusion volume around r. In what follows, we use the compact 

version of Eq. (79) and similar ones, but always assume that it implies the abbreviation (82).

The VIE incorporates the boundary and radiation conditions and expresses the total field 

everywhere in space in terms of the total internal field. It can even be considered to be more 

inclusive since it is well behaved (has a unique solution) even for particles with sharp edges 

[166]. Therefore, in the following we do not impose any limitations on the object’s boundary 
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and assume, in a somewhat ad hoc fashion, that in the presence of sharp edges the scattering 

problem is formulated through its VIE representation.

Owing to its specific mathematical form, the VIE serves as the very embodiment of the 

concept of frequency-domain electromagnetic scattering [159,160]. Indeed, it shows that if 

the scattering object is absent (m(r′) ≡ 1), then the total field is identically equal to the 

incident field. The presence of the object (m(r′) ≡ 1) changes the total field, thereby 

allowing the definition of the scattered field as the difference between the total fields in the 

presence and in the absence of the object. Furthermore, the VIE implies that the incident 

field is not modified by the presence of the object and, thus, is not transformed into the 

scattered field.

The linearity of the VIE suggests that it should be convenient in many cases to express, 

purely mathematically, the scattered electric field in terms of the incident field:

E∼sca(r) = ∫
VINT

d3r′G (r, r′) · ∫
VINT

d3r″T (r′, r″) · E∼inc(r″), r ∈ ℜ3, (83)

where T↔ is the so-called dyadic transition operator of the scattering object. Eqs. (79) and 

(83) imply the following integral equation for T↔ traditionally called the Lippmann–

Schwinger equation (cf. [10,169,170]):

T (r, r′) = k1
2[m2(r) − 1] δ(r − r′) I + k1

2[m2(r) − 1]∫
VINT

d3r″G (r, r″) · T (r″, r′), r, r′

∈ V INT,

(84)

where δ (r) is the three-dimensional delta function. Note that T↔ is independent of the 

electromagnetic field and is defined only by the spatial distribution of the relative refractive 

index throughout VINT. As such, it can be viewed as a complete “optical identifier” of the 

scattering object.

4.4. Scattering in the far zone of the entire object

The spatial distribution of Ẽ (r) and H̃ (r) inside the scattering object as well as in its 

immediate vicinity can be quite complex. However, there is a drastic simplification as the 

distance from the object increases since, irrespective of the specific nature of the object, the 

scattered field ultimately becomes a spherical outgoing electromagnetic wave. Indeed, a key 

property of the dyadic Green’s function is the asymptotic behavior
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G (r, r′) →
r ∞ ( I − r ⊗ r)

exp (ik1r)
4πr exp ( − ik1r · r′), (85)

where, as before, r̂ = r/r. As a consequence, placing the origin of the laboratory coordinate 

system O at the geometrical center of the scattering object, as shown in Fig. 7, and 

substituting Eqs. (75) and (85) in Eq. (83) yields [34]

E∼sca(r) →
r ∞

exp (ik1r)
r E∼1

sca(nsca) =
exp (ik1r)

r A (nsca, ninc) · E∼0
inc, nsca · E∼1

sca(nsca) = 0.

(86)

Here, n̂sca = r̂ is a unit vector in the scattering direction and A↔(n̂sca, n̂inc) is the scattering 

dyadic having the dimension of length and possessing the properties

nsca · A (nsca, ninc) = A (nsca, ninc) · ninc = 0 . (87)

The explicit expression for the scattering dyadic in terms of the dyadic transition operator is 

as follows:

A (nsca, ninc) = 1
4π ( I − nsca ⊗ nsca) · ∫

VINT
d3r′exp( − ik1nsca · r′)

× ∫
VINT

d3r″T (r′, r″) exp (ik1ninc · r″) · ( I − ninc ⊗ ninc) .

(88)

Eq. (86) implies that the electric and magnetic field vectors of the scattered electromagnetic 

field vibrate in the plane perpendicular to the propagation direction and decay inversely with 

distance from the object.

The formal mathematical conditions of applicability of Eq. (86) are as follows:

k1(r − a) ≫ 1, (89)

r ≫ a, (90)
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r ≫
k1a2

2 , (91)

where a is the radius of the smallest circumscribing sphere of the entire scattering object 

centered at O. The physical meaning of these inequalities is discussed in [34,171].

The main attraction of the far-zone approximation is that the entire object is implicitly 

treated as a point source of scattered radiation, while the scattered field is reduced to a 

simple outgoing spherical wave. Furthermore, Eq. (87) implies that out of the nine 

components of the scattering dyadic in spherical coordinates centered at the origin, only four 

are independent. It is thus convenient to introduce a 2 × 2 amplitude scattering matrix S 
having the dimension of length and expressing the θ - and φ-components of the scattered 

spherical wave in the θ - and φ -components of the incident plane wave:

E∼θ
sca(rnsca)

E∼φ
sca(rnsca)

=
exp (ik1r)

r S(nsca, ninc)
E∼0θ

inc

E∼0φ
inc . (92)

Here, θ ∈ [0, π] is the polar (zenith) angle measured from the positive z-axis and φ ∈ [0, 2π) 

is the azimuth angle measured from the positive x-axis in the clockwise direction when 

looking in the direction of the positive z-axis.

A fundamental property of the scattering dyadic and the amplitude scattering matrix is the 

following symmetry with respect to reversing and interchanging the incidence and scattering 

directions [172]:

A ( − ninc, − nsca) = [A (nsca, ninc)]
T
, (93a)

S( − ninc, − nsca) =
S11(nsca, ninc) −S21(nsca, ninc)

−S12(nsca, ninc) S22(nsca, ninc)
. (93b)

where T stands for “transposed.” Eqs. (93a) and (93b) are traditionally called reciprocity 

relations.

4.5. Well-collimated radiometers

By solving the MMEs either analytically or numerically, one can model a wide range of 

optical observables, including those that can be measured with actual optical instruments. 

Some of these instruments are expressly intended for near-field applications [173], while 

some can measure both near- and far-field observables. As explained in [100,174], the 
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overwhelming majority of laboratory, in situ, and remote-sensing instruments measuring 

specific manifestations of electromagnetic energy transport in particulate media belong to 

the category of well-collimated radiometers (WCRs). Depending on the measurement 

setting, these instruments can work in the near as well as in the far zone of the particulate 

scattering object, but in either case it is assumed that the total electromagnetic field at the 

observation point is a superposition of plane or near-plane wavefronts.

The principal functional elements of a WCR are the objective and relay lenses, the pinhole 

diaphragm, and the photoelectric detector, as shown schematically in Fig. 8a. The physical 

nature of the measurement afforded by the WCR can be illustrated by considering the 

response of the instrument to the field formed by superposing two plane electromagnetic 

waves propagating in the directions of the unit vectors q̂1 and q̂2, respectively. The effect of 

the objective lens on the total field is a superposition of its effects on each plane-wave 

component. According to the paraxial approximation (see Section 5.1 of [175]), in the near 

zone of the objective lens either plane wavefront is transformed into a converging spherical 

wavefront (Fig. 8b) with its focal point located in the plane of the diaphragm. The first 

spherical wavefront passes freely through the pinhole, is converted back into a plane 

wavefront by the relay lens, and impinges on the sensitive surface of the photodetector, 

thereby defining the signal generated by the WCR. The second spherical wavefront becomes 

extinguished by the diaphragm and never reaches the photodetector. Thus the combination 

{objective lens, diaphragm} serves to filter out only plane (or near-plane) wavefronts 

propagating in directions very close to the optical axis of the WCR and falling within its 

small acceptance solid angle

ΔΩ = πd2

4 f 2 , (94)

where d is the diameter of the pinhole and f is the focal length of the objective lens.

Typically a photodetector reacts only to the intensity of the beam impinging on its sensitive 

surface. However, by inserting special optical elements (such as polarizers and retarders) 

between the relay lens and the detector in Fig. 8a, it is possible to modify the resulting beam 

impinging on the detector in such a way that its new intensity contains information about the 

polarization state of the original superposition of the plane or near-plane wavefronts filtered 

out by the {objective lens, diaphragm} combination. The result is a photopolarimetric WCR.

Despite having quite different appearances, the one natural and six manmade devices in Fig. 

9 have the same basic physical function: they filter out electromagnetic wavefronts rather 

than electromagnetic energy currents. In a radio telescope (Fig. 9b) or a reflecting optical 

telescope (Fig. 9c), the functional role of the objective lens is played by the radio antenna or 

the primary mirror, respectively. In the final analysis, however, all these devices are WCRs, 

possibly with an added panoramic (or imaging) capability6. The basic functionality of a 

WCR makes it quite useful in cases when the total electromagnetic field at the observation 

point can naturally be represented as a superposition of plane or locally near-plane 
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wavefronts, the electromagnetic field in the far zone of a finite object being a prime 

example. Since the measurement enabled by a WCR is well defined in terms of basic 

concepts of light–matter interactions, it should be amenable to theoretical modeling. This 

explains why the combination of a WCR and an appropriate theoretical analysis tool often 

serves as an efficient means of optical characterization.

4.6. Far-zone optical observables

The formalism embodied by Eqs. (75) and (92) helps illustrate how to define specific far-

field optical observables measurable with WCRs. The main results of the following analysis 

will be straightforward consequences of the total field in the far zone being a superposition 

of two transverse wavefronts, i.e., the incident plane-wave field and the scattered spherical-

wave field.

As we have already mentioned, interposing one or more optical elements between the relay 

lens and the photodetector of a WCR can enable it to measure the power corresponding to 

particular polarization components of the superposition of plane or near-plane wavefront 

passed by the {objective lens, diaphragm} angular filter. Similarly, interposing one or more 

such optical elements before the scattering object, we can generate the incident field with a 

specific state of polarization. Repeating the measurement for a number of different 

combinations and/or orientations of these optical elements enables us to determine the 

specific mathematical relationship between a complete set of polarization characteristics of 

the incident field and that of the field impinging on the objective lens of a WCR. This 

relationship is traditionally formulated in terms of 4- element columns formed by the Stokes 

parameters and 4× 4 so-called phase and extinction matrices.

According to the preceding discussion, a WCR that is not facing the incident wave and is not 

centered at the scattering object will not generate any signal. Therefore, let us first consider 

the situation when the instrument has its optical axis centered at the object in the scattering 

direction away from the incidence direction, i.e., r̂ ≠ n̂inc (WCR 1 in Fig. 10). It is clear that 

in this case the instrument filters out only the quasi-plane part of the outgoing spherical 

wave cut out by its objective lens, as shown schematically by the dashed curve. Therefore, 

the average polarization response of WCR 1 per unit time can be expressed in terms of the 

so-called Stokes column vector of the scattered wave as follows:

Signal 1 = SolIsca(rnsca), (95)

where the overbar has the same meaning as in Eq. (66), r is the distance from the scattering 

object to WCR 1, n̂sca = r̂1, and Sol is the surface area of the objective lens. Recalling the 

definition of the real-valued Stokes parameters of a transverse electromagnetic wave [20,34] 

and Eq. (92), we have

6In this case each pixel of a charge-coupled device or each photoreceptor cell of the retina has a dual role of the diaphragm and the 
detector of electromagnetic energy flow [34].
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Isca(rnsca) =

Isca(rnsca)
Qsca(rnsca)
Usca(rnsca)
Vsca(rnsca)

= 1
2r2

ε1
μ0

E∼1θ
sca(nsca)[E∼1θ

sca(nsca)]
∗

+ E∼1φ
sca(nsca)[E∼1φ

sca(nsca)]
∗

E∼1θ
sca(nsca)[E∼1θ

sca(nsca)]
∗

− E∼1φ
sca(nsca)[E∼1φ

sca(nsca)]
∗

−E∼1θ
sca(nsca)[E∼1φ

sca(nsca)]
∗

− E∼1φ
sca(nsca)[E∼1θ

sca(nsca)]
∗

i{E∼1φ
sca(nsca)[E∼1θ

sca(nsca)]
∗

− E∼1θ
sca(nsca)[E∼1φ

sca(nsca)]
∗
}

.

(96)

Analogously, the polarization state of the plane incident wave (75) can be characterized in 

terms of the Stokes column vector

Iinc =

Iinc

Qinc

Uinc

V inc

= 1
2

ε1
μ0

E∼0θ
inc(E∼0θ

inc)
∗

+ E∼0φ
inc(E∼0φ

inc)
∗

E∼0θ
inc(E∼0θ

inc)
∗

− E∼0φ
inc(E∼0φ

inc)
∗

−E∼0θ
inc(E∼0φ

inc)
∗

− E∼0φ
inc(E∼0θ

inc)
∗

i[E∼0φ
inc(E∼0θ

inc)
∗

− E∼0θ
inc(E∼0φ

inc)
∗
]

. (97)

The corresponding transformation law reads:

Isca(rnsca) = 1
r2Z(nsca, ninc)Iinc, (98)

where Z(n̂sca, n̂inc) is the 4 × 4 Stokes phase matrix with real-valued elements given by the 

following quadratic and bilinear combinations of the elements of the amplitude scattering 

matrix S(n̂sca, n̂inc) [20,25,34]:

Z11 = 1
2 ( ∣ S11 ∣2 + ∣ S12 ∣2 + ∣ S21 ∣2 + ∣ S22 ∣2), (99)

Z12 = 1
2 ( ∣ S11 ∣2 − ∣ S12 ∣2 + ∣ S21 ∣2 − ∣ S22 ∣2), (100)
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Z13 = − Re (S11S12
∗ + S22S21

∗ ), (101)

Z14 = − Im (S11S12
∗ − S22S21

∗ ), (102)

Z21 = 1
2 ( ∣ S11 ∣2 + ∣ S12 ∣2 − ∣ S21 ∣2 − ∣ S22 ∣2), (103)

Z22 = 1
2 ( ∣ S11 ∣2 − ∣ S12 ∣2 − ∣ S21 ∣2 + ∣ S22 ∣2), (104)

Z23 = Re (S11S12
∗ − S22S21

∗ ), (105)

Z24 = − Im (S11S12
∗ + S22S21

∗ ), (106)

Z31 = − Re (S11S21
∗ + S22S12

∗ ), (107)

Z32 = − Re (S11S21
∗ − S22S12

∗ ), (108)

Z33 = Re (S11S22
∗ + S12S21

∗ ), (109)

Z34 = Im (S11S22
∗ + S21S12

∗ ), (110)

Z41 = − Im (S21S11
∗ + S22S12

∗ ), (111)
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Z42 = − Im (S21S11
∗ − S22S12

∗ ), (112)

Z43 = Im (S22S11
∗ − S12S21

∗ ), (113)

Z44 = Re (S22S11
∗ − S12S21

∗ ) . (114)

The Stokes phase matrix has the dimension of area.

Let us now consider a polarimetric WCR with its axis centered at the scattering object in the 

exact forward-scattering direction r̂ = n̂inc, i.e., WCR 2 in Fig. 10. Now the {objective lens, 

diaphragm} angular filter of the instrument accepts both the incident plane wave and the part 

of the outgoing spherical wave propagating in the forward-scattering direction and cut out by 

the objective lens. As a consequence, we can define the Stokes column vector of the total 

field for propagation directions r̂′ very close to nînc:

I(r′r′) = 1
2

ε1
μ0

E∼θ(r′r′)[E∼θ(r′r′)]∗ + E∼φ(r′r′)[E∼φ(r′r′)]∗

E∼θ(r′r′)[E∼θ(r′r′)]∗ − E∼φ(r′r′)[E∼φ(r′r′)]∗

−E∼θ(r′r′)[E∼φ(r′r′)]∗ − E∼φ(r′r′)[E∼θ(r′r′)]∗

i{E∼φ(r′r′)[E∼θ(r′r)]∗ − E∼θ(r′r′)[E∼φ(r′r′)]∗}

, r′ ∈ ΔΩ2, (115)

where ΔΩ2 is the acceptance solid angle of WCR 2 and the total electric field is given by

E∼(r′r′) = E∼inc(r′r′) + E∼sca(r′r′) . (116)

Integrating the elements of I(r′r̂′) over the objective lens of WCR 2 yields the following 

expression for the average recorded polarized signal per unit time [20,25,34]:

Signal 2 = SolIinc − K(ninc)Iinc +
Sol
r2 Z(ninc, ninc)Iinc, (117)

where Z(n̂inc, n̂inc) is the forward-scattering Stokes phase matrix and K(n̂inc) is the real 4 × 

4 Stokes extinction matrix. The elements of the latter are linear combinations of the 

elements of the forward-scattering amplitude matrix S(n̂inc, n̂inc):
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K j j = 2π
k1

Im (S11 + S22), j = 1, …, 4, (118)

K12 = K21 = 2π
k1

Im (S11 − S22), (119)

K13 = K31 = − 2π
k1

Im (S12 + S21), (120)

K14 = K41 = 2π
k1

Re (S21 − S12), (121)

K23 = − K32 = 2π
k1

Im (S21 − S12), (122)

K24 = − K42 = − 2π
k1

Re (S12 + S21), (123)

K34 = − K43 = 2π
k1

Re (S22 − S11), (124)

where “Im” stands for “imaginary part of”. Like the phase matrix, the extinction matrix has 

the dimension of area.

Eq. (117) is the most general form of the so-called optical theorem. It demonstrates that the 

presence of the scattering object not only changes the total power of the electromagnetic 

radiation recorded by the WCR facing the incident wave (WCR 2 in Fig. 10), but also can 

change its state of polarization. The latter phenomenon is called dichroism and is caused by 

different attenuation rates for different polarization components of the incident wave in the 

case of an object lacking perfect spherical symmetry. Moving WCR 2 sufficiently far from 

the scattering object can render the contribution of the third term on the right-hand side of 

Eq. (117) negligibly small,
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Signal 2 =r ∞ SolIinc − K(ninc)Iinc, (125)

and thereby make the extinction matrix a directly measurable quantity.

Among the most general properties of the phase and extinction matrices [18,20,178] are the 

inequalities

0 ≤ Z11, ∣ Zi j ∣ ≤ Z11 (i, j = 1, …, 4); (126)

the reciprocity relations

Z( − ninc, − nsca) = Δ3[Z(nsca, ninc)]TΔ3 (127)

and

K( − ninc) = Δ3[K(ninc)]TΔ3;

the backscattering theorem

Z11( − n, n) − Z22( − n, n) + Z33( − n, n) − Z44( − n, n) = 0; (128)

and the symmetry relation

K( − ninc) =

K11(ninc) K12(ninc) −K13(ninc) K14(ninc)

K21(ninc) K22(ninc) K23(ninc) −K24(ninc)

−K31(ninc) K32(ninc) K33(ninc) K34(ninc)

K41(ninc) −K42(ninc) K43(ninc) K44(ninc)

, (129)

where
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Δ3 = Δ3
T = Δ3

−1 =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

. (130)

The properties (127)–(130) follow directly from the reciprocity relation (93) combined with 

Eqs. (99)–(114) and (118)–(124).

4.7. Energy budget

In the preceding subsection we explained how to quantify the electromagnetic response of a 

far-field WCR. In this subsection we discuss the theoretical solution of the energy-budget 

problem for an arbitrary volume V enclosing the entire scattering object (Fig. 11a). Since the 

host medium is assumed to be nonabsorbing, the net average rate at which the 

electromagnetic energy crosses the closed boundary S of the volume is always nonnegative 

and is equal to the power absorbed by the object:

Wabs = − ∫
S

d2r S(r) · n, (131)

where, as before,

S(r) = 1
2 Re {E∼(r) × [H∼(r)]∗} (132)

is the average macroscopic Poynting vector and n̂ is the unit vector in the direction of the 

local outward normal to S. According to Eqs. (73) and (74), W̄abs can be written as a 

combination of three terms:

Wabs = W inc − Wsca + Wext, (133)

where

W inc = − 1
2 Re ∫

S
d2r {E∼inc(r) × [H∼inc(r)]

∗
} · n, (134)

Wsca = 1
2 Re ∫

S
d2r {E∼sca(r) × [H∼sca(r)]

∗
} · n, (135)
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Wext = − 1
2 Re ∫

S
d2r {E∼inc(r) × [H∼sca(r)]

∗
+ E∼sca(r) × [H∼inc(r)]

∗
} · n . (136)

It can easily be seen that W̄inc vanishes identically because {Ẽinc (r) × [H̃inc (r)]*}/2 is a 

constant vector independent of r, which is a trivial consequence of the surrounding medium 

being loss-less. Therefore, the absorption rate is equal to the difference between the energy 

extinction rate and the energy scattering rate:

Wabs = Wext − Wsca . (137)

Again, one can exploit the assumption that the infinite host medium surrounding the object 

is nonabsorbing to show that the values of W̄ext and W̄sca would not change if V were 

chosen to be a spherical volume with its boundary S residing in the far zone of the entire 

object. Then it is straightforward to derive that

Wext = K11(ninc)Iinc + K12(ninc)Qinc + K13(ninc)Uinc + K14(ninc)V inc, (138)

Wsca = ∫
4π

dr [Z11(r, ninc)Iinc + Z12(r, ninc)Qinc + Z13(r, ninc)Uinc + Z14(r, ninc)V inc] (139)

(see Sec. 13.4 of [34]).

It is important to recognize that although the extinction and phase matrices are inherently 

far-field quantities, Eqs. (137)–(139) are valid for any volume enclosing the entire scattering 

object even if its boundary lies in the object’s near field. Of course, a trivial modification of 

Eqs. (137)–(139) would not work for a volume enclosing only part of the scattering object, 

as illustrated in Fig. 11b, since in this case one would need to know the specific near-field 

spatial distribution of the Poynting vector over S. Eqs. (137)–(139) would also not apply if 

the host medium were absorbing [179].

4.8. Foldy equations

The general scattering formalism described in Subsections 4.1–4.3 applies equally to an 

object in the form of a single body and to a fixed multi-particle group. However, when the 

object is a group of touching and/or separated distinct components then it can sometimes be 

advantageous to modify the formalism by expressing the total scattered field as a vector 

superposition of the partial fields contributed by the individual components. Specifically, let 

us consider the scattering by a fixed configuration of N ≥ 2 distinct finite particles 

collectively occupying the interior region VINT according to Eq. (67) (see Fig. 6). It has been 
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shown in [180,181] (see also Section 11.3 of [170]) that the solution of the VIE everywhere 

in space can be expressed as follows:

E∼(r) = E∼inc(r) + ∑
i = 1

N ∫
Vi

d3r′G (r, r′) · ∫
Vi

d3r″T i(r′, r″) · E∼i(r″), r ∈ ℜ3, (140)

where the electric field vector Ẽi(r) “exciting” particle i is given by

E∼i(r) = E∼inc(r) + ∑
j( ≠ i) = 1

N
E∼i j

exc(r), (141)

the E∼i j
exc(r) are “particle–particle exciting field vectors” given by

E∼i j
exc(r) = ∫

V j
d3r′G (r, r′) · ∫

V j
d3r″T j(r′, r″) · E∼ j(r″), r ∈ V i, (142)

and T↔i is the ith-particle dyadic transition operator with respect to the common laboratory 

coordinate system. The T↔i satisfies the integral equation

T i(r, r′) = Ui(r)δ(r − r′) I + Ui(r)∫
Vi

d3r″G (r, r″) · T i(r″, r′), r, r′ ∈ V i, (143)

where the Ui(r) is the ith-particle potential function given by

Ui(r) =
0, r ∉ V i,

k1
2[mi

2(r) − 1], r ∈ V i
(144)

and mi(r) is the refractive index of particle i relative to that of the host medium. All position 

vectors originate at the common origin O of the laboratory coordinate system. Eqs. (140)–

(143) form the system of integral so-called Foldy equations (FEs). They automatically 

incorporate all boundary conditions at individual-particle surfaces as well as the radiation 

condition at infinity and rigorously describe the scattered field everywhere in space. 

Comparison of Eqs. (84) and (143) reveals that, quite conveniently, T↔i is the dyadic 

transition operator of the ith particle in the absence of all the other particles. As such, it can 

be considered an individual optical identifier of the ith component of the group.
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4.9. Frequency-domain “multiple” scattering

Ever since Heaviside’s Electromagnetic Theory [182], the concept of “multiple” scattering 

has been quite popular in discussions of electromagnetic scattering by multi-particle groups 

(see [183,184] and references therein). To demonstrate the actual nature of this concept in 

the context of frequency-domain electromagnetics [92], let us introduce the ith potential 

dyadic centered at the origin of the laboratory reference frame according to

U i(r, r′) = Ui(r)δ(r − r′) I (145)

and introduce the following operator notation:

BE = ∫ d3r′B (r, r′) · E∼(r′) . (146)

Iterating Eqs. (141) and (142), we have

Ei = Einc + ∑
j( ≠ i) = 1

N
GT jE

inc + ∑
j( ≠ i) = 1

N
∑

l( ≠ j) = 1

N
GT jGT lE

inc

+ ∑
j( ≠ i) = 1

N
∑

l( ≠ j) = 1

N
∑

m( ≠ l) = 1

N
GT jGT lGTmEinc + ⋯,

(147)

whereas substituting Eq. (147) in Eq. (140) yields the following Neumann expansion of the 

total field:

E = Einc + ∑
i = 1

N
GT iE

inc + ∑
i = 1

N
∑

j( ≠ i) = 1

N
GT iGT jE

inc

+ ∑
i = 1

N
∑

j( ≠ i) = 1

N
∑

l( ≠ j) = 1

N
GT iGT jGT lE

inc + ⋯ .

(148)

It is clear that the Neumann series is fundamentally based on the previously mentioned fact 

that T↔i for each i is an individual property of the ith particle computed as if this particle 

were alone rather than a member of the group. As a consequence, it has been rather common 

to characterize Eq. (148) as the “order-of-scattering expansion” for the N-particle group. It 

should be remembered however that the FEs have a solution even when the corresponding 

Neumann series (148) does not converge. Numerical examples of possible divergence can be 

found in [185,186].
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4.10. Far-field Foldy equations

In principle, the FEs can be solved numerically in order to compute the field scattered by a 

fixed finite configuration of arbitrarily positioned particles. However, the solution becomes 

impracticable quite rapidly with increasing N. One way to simplify the problem and make it 

tractable is to consider a very sparse configuration by assuming that:

• the N particles are widely separated so that each of them resides in the far zones 

of all the other particles; and

• the observation point is located in the far zone of any particle (but not necessarily 

in the far zone of the entire group).

Specifically, if the incident electric field vector is given by Eq. (75) then the FEs imply that 

the total electric field vector is still given by the superposition (73), where the scattered 

electric field vector is now given by [34,181]

E∼sca(r) = ∑
i = 1

N
g(ri) A i(ri, ninc) · E∼inc(Ri) + ∑

j( ≠ i) = 1

N
A i(ri, Ri j) · E∼i j . (149)

Here, A↔i (n̂′, n̂) is the far-zone scattering dyadic of particle i centered at the particle’s 

own origin Oi (Subsection 4.4);

g(r) =
exp (ik1r)

r ; (150)

and the vectors Ẽij satisfy the following system of equations:

E∼i j = g(Ri j)A j(Ri j, ninc) · E∼inc(R j) + g(Ri j) ∑
l( ≠ j) = 1

N
A j(Ri j, R jl) · E∼ jl, i, j = 1, …, N,

j ≠ i .

(151)

The vector notation used in Eqs. (149) and (151) is explained in Fig. 12; a hat denotes a unit 

vector in the respective direction. Eqs. (149)–(151) are called the far-field FEs. It is evident 

indeed that the linear algebraic system (151) is much simpler than the initial system of 

integral equations (141)–(142).

Eqs. (73) and (149) show that the total field at any observation point located sufficiently far 

from any particle in the sparse multi-particle configuration is a superposition of the incident 
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plane wave and N partial spherical wavelets centered at the N particles. Importantly, the 

observation point r does not have to be in the far zone of the entire N-particle group: it can 

be anywhere in space (e.g., between particles i and j in Fig. 12) as long as it is in the far zone 

of any particle entering the group. The total scattered field (149) is not, in general, a 

transverse electromagnetic wave. It becomes a transverse wave only in the far zone of the 

entire N-particle configuration defined by the criteria (89)–(91), where a is the radius of the 

smallest sphere encompassing all N particles.

4.11. Dyadic correlation function and Poynting–Stokes tensor

We have already mentioned in Section 2 that it can be possible in some cases to derive an 

analytical expression for an optical observable that is explicitly devoid of the 

electromagnetic field. Sometimes this expression is a closed-form equation solving which 

can serve as a highly efficient means of calculating the optical observable directly, without 

the prior detailed computation of the electromagnetic field itself.

The general methodology enabling one to bypass an explicit use of the electromagnetic field 

is well exemplified by the far-field formulas (95), (98), and (117), in which case the 

observable in question is the 4-element Stokes column vector. However, this observable can 

be defined only for a transverse (i.e., plane or spherical) electromagnetic wave, whereas the 

total electromagnetic field in the near zone of any object (e.g., at any observation point 

inside a cloud of particles) is never a transverse wave. Furthermore, the Stokes column 

vector contains no explicit information on the direction of the Poynting vector and cannot be 

used in situations when this direction is not known a priori.

The Poynting vector is another optical observable extensively discussed in the preceding 

sections. Its obvious analytical limitation is that different pairs of electric and magnetic field 

vectors can yield the same Poynting vector. This implies that the Poynting vector cannot be 

used to describe the phenomenon of electromagnetic scattering by, for example, expressing 

the Poynting vector of the scattered field in that of the incident field. In other words, the 

Poynting vector does not carry sufficient information about the participating electric and 

magnetic fields and, in particular, carries no information about the polarization state of a 

transverse electromagnetic field.

It is therefore highly desirable to introduce an alternative quantity that:

• can be defined for any electromagnetic field;

• has the dimension of electromagnetic energy flux; and

• enables a complete and self-contained description of electromagnetic scattering 

in the context of practical optical analysis.

It has been shown in [34,187] that a rather general quantity satisfying all these requirements 

is the so-called dyadic correlation function involving electric field vectors at two different 

points in space:

C (r′, r) = E(r′) ⊗ [E(r)]∗ . (152)
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This quantity along with the Maxwell curl equations (68) and (69) can be used to compute 

other observables, including those involving both the electric and the magnetic field vector. 

An important example is the so-called Poynting–Stokes tensor defined as the dyadic product 

of the magnetic and complex-conjugated electric field vectors taken at the same point in 

space:

P (r) = 1
2H∼(r) ⊗ E∼∗(r) . (153)

Indeed, it is easily verified that

P (r) = 1
2iωμ0

[∇r′ × C (r′, r)]
r′ = r

, (154)

where the subscript r′ means that the ∇ operator acts only on E(r′). Unlike the Stokes 

parameters, this quantity is applicable to any electromagnetic field (e.g., the near field of a 

scattering object) and not just to a transverse electromagnetic wave. Furthermore, unlike the 

Poynting vector, the Poynting–Stokes tensor preserves all the information about the 

participating electric and magnetic fields that gets lost upon taking the vector product of 

these fields. We will see in the following sections that owing to their generality, the dyadic 

correlation function and the Poynting–Stokes tensor enable the derivation of compact 

closed-form analytical formulas and equations directly describing electromagnetic scattering 

in terms of optical observables.

It is straightforward to see that with respect to the Poynting–Stokes tensor, the Poynting 

vector and the Stokes parameters are derivative quantities. Indeed, we have in general

S(r) = Re {[Pzy
∗ (r) − Pyz

∗ (r)]x + [Pxz
∗ (r) − Pzx

∗ (r)]y + [Pyx
∗ (r) − Pxy

∗ (r)]z}, (155)

where x̂, ŷ, and ẑ are the unit vectors of a right-handed Cartesian coordinate system. In the 

case of a transverse electromagnetic wave, the Stokes column vector is given by

I(r) =

Pφθ
∗ (r) − Pθφ

∗ (r)

Pφθ
∗ (r) + Pθφ

∗ (r)

Pθθ
∗ (r) − Pφφ

∗ (r)

i[Pθθ
∗ (r) + Pφφ

∗ (r)]

, (156)

where θ and φ are the zenith and azimuth angles defining the local direction n̂ of wave 

propagation such that n̂ = θ̂ × φ̂.
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According to Eqs. (73), (75), and (83), the total field can be expressed as

E∼(r) = 𝔍E(r, ninc) · E∼0
inc, r ∈ ℜ3, (157)

where ↔E(r, n̂inc) is a transformation dyadic independent of E∼0
inc and given by

𝔍E(r, ninc) = exp (ik1ninc · r) I + ∫
VINT

d3r′G (r, r′)

· ∫
VINT

d3r″T (r′, r″) exp (ik1ninc · r″) .

(158)

It follows from Eqs. (68), (69), (74), and (76) that a relationship similar to Eq. (157) must 

exist for the magnetic field as well:

H∼(r) = 𝔍H(r, ninc) · H∼0
inc, r ∈ ℜ3, (159)

where the transformation dyadic 𝔍̂
H(r, n̂inc) is independent of H∼0

inc and is given by

𝔍H(r, ninc) = i
k1

∇ × 𝔍E(r, ninc) × ninc . (160)

Then we have for the Poynting–Stokes tensor of the total field [34]:

P (r) = 𝔍H(r, ninc) · P
inc

· [𝔍E(r, ninc)]
T ∗

, r ∈ ℜ3, (161)

where

P
inc

= 1
2H∼0

inc ⊗ [E∼0
inc]

∗
(162)

is the Poynting–Stokes tensor calculated separately for the plane-wave incident field.

We will see below that Eq. (161) is a general template for many closed-form relationships 

between observable characteristics of the incident and total fields. Importantly, this formula 

demonstrates that the elements of the tensor P↔(r) generally depend on all the elements of 

the tensor P↔inc. In other words, as we have already mentioned, the complex Poynting 
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vector of the total field cannot be uniquely expressed in that of the incident field. This 

implies that the widespread characterization of electromagnetic scattering as causing the 

transformation of the intensity of the incident light into that of the scattered light is 

fundamentally wrong.

Eq. (161) implies the existence of a linear (but not necessarily tensorial) operator expressing 

the Poynting–Stokes tensor of the total field in that of the incident plane-wave field [34]. We 

will denote this operator by 𝔍 ̂ and write symbolically:

P (r) = 𝔍(r, ninc)P
inc

. (163)

The reader may find it instructive to rewrite Eq. (163) in the matrix form with respect to the 

Cartesian laboratory coordinate system and thereby express the elements of the 9 × 9 matrix 

representing the operator 𝔍̂ in terms of the elements of the 3 × 3 matrices representing the 

dyadics ↔E and ↔H. Analogously, we can write

P
sca

(r) = 𝔍sca(r, ninc)P
inc

, (164)

where

P
sca

= 1
2H∼sca(r) ⊗ [E∼sca(r)]

∗
(165)

is the Poynting–Stokes tensor calculated separately for the scattered field.

Eqs. (163) and (164) represent a remarkably compact yet general way of describing 

electromagnetic scattering in terms of optical observables rather than macroscopic field 

vectors. As such, they will be central to the following discussion, especially when it comes 

to the scattering of quasi-monochromatic fields by temporally variable objects. The reader 

can verify that Eqs. (98) and (117) are but specific coordinate-dependent manifestations of 

these formulas.

Formulas analogous to Eqs. (163) and (164) can be derived for optical observables other 

than the Poynting–Stokes tensor. Each such formula serves as a linear transformer with an 

optical observable of the incident electromagnetic field as the input and an optical 

observable of the total or scattered electromagnetic field as the output. Such linear 

transformers are essential in practice because of the two-layer structure of electromagnetics 

discussed in Section 2.

4.12. Quasi-monochromatic scattering by a fixed object

The formalism summarized above provides an efficient means of computing time-averaged 

macroscopic optical observables without solving explicitly the microscopic Maxwell–
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Lorentz equations. It is based, in particular, on the assumption that the complex amplitudes 

E∼0
inc and H∼0

inc = ε1/μ0 ninc × E∼0
inc entering the solution of the standard scattering problem are 

independent of time. Let us now imagine a situation wherein these amplitudes remain 

constant over periods of time Tf such that

Tf ≫ T0 (averaging strategy 1) (166)

and

Tf ≫ T′ (averaging strategy 2), (167)

but fluctuate over longer time scales. In other words,

E∼inc(r, t) = E∼0
inc(t) exp (ik1ninc · r), (168)

H∼inc(r, t) = H∼0
inc(t) exp (ik1ninc · r) =

ε1
μ0

ninc × E∼0
inc(t) exp (ik1ninc · r), (169)

where significant random changes of the complex amplitude E∼0
inc(t) occur over periods of 

time longer than Tf. The solution of the standard scattering problem for a temporal 

succession of E∼0
inc(t)-values then yields a temporal succession of the total field vector values 

that can be thought of as defining time-dependent macroscopic field vectors fluctuating 

randomly on time scales longer than Tf: {Ẽ(r), H̃(r)} →{Ẽ(r, t), H̃(r, t)}.

According to the above discussion, the quasi-instantaneous values of Ẽ(r, t) and H̃(r, t) are 

postulated to define optical observables averaged over time intervals of the order of Tf. For 

example,

S(r, t) = 1
2 Re {E∼(r, t) × [H∼(r, t)]∗} (170)

and
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P (r, t) = 1
2H∼(r, t) ⊗ E∼∗(r, t) . (171)

The corresponding averages over much longer time intervals are then calculated according to

〈〈S(r, t)〉〉 = 1
T ∫

t − T /2

t + T /2
dt′S(r, t′), T ≫ Tf, (172)

〈〈P (r, t)〉〉 = 1
T ∫

t − T /2

t + T /2
dt′P (r, t′), T ≫ Tf . (173)

These averages are time independent provided that S̄(r, t) and P↔(r, t) are stationary 

random processes (see, e.g., [188]).

The random macroscopic field vectors Ẽ(r, t) and H̃(r, t) are traditionally said to represent a 

quasi-monochromatic macroscopic electromagnetic field. In particular, Eqs. (168) and (169) 

are said to describe a quasi-monochromatic plane electromagnetic wave (or a quasi-

monochromatic parallel beam of light).

Despite the inequalities (166) and (167), typical fluctuations of quasi-instantaneous optical 

observables still occur too rapidly to be traced by many optical instruments. It is therefore 

postulated that the intrinsic functionality of such instruments is to record the integral of an 

optical observable over an extended period of time without resolving the quasi-instantaneous 

values of this observable explicitly.7 Thus the practical usefulness of the notion of a quasi-

monochromatic electromagnetic field turns out to be two-fold. First, it helps combine the 

simplicity of the frequency-domain scattering formalism with a more realistic representation 

of the majority of artificial and natural sources of the electromagnetic field. Second, it 

allows one to account for inherent limitations of typical optical devices.

The generalization of Eqs. (161), (163), and (164) to the case of quasi-monochromatic 

scattering by a fixed object is quite straightforward:

〈〈P (r, t)〉〉 = 𝔍H(r, ninc) · 〈〈P
inc

(t)〉〉 · [𝔍E(r, ninc)]
T ∗

, r ∈ ℜ3, (174)

〈〈P (r, t)〉〉 = 𝔍(r, ninc)〈〈P
inc

(t)〉〉, (175)

7The ultimate justification of this postulate must be based, in particular, on the explicit QED treatment of light–matter interactions 
[110,189].
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〈〈P
sca

(r, t)〉〉 = 𝔍sca(r, ninc)〈〈P
inc

(t)〉〉 . (176)

The quasi-monochromatic versions of the main formulas of Subsections 4.6 and 4.7 are 

again coordinate-specific manifestations of Eqs. (175) and (176):

〈〈Signal 1(t)〉〉 = Sol〈〈Isca(rnsca, t)〉〉 =
Sol
r2 Z(nsca, ninc)〈〈Iinc(t)〉〉, (177)

〈〈Signal 2(t)〉〉 = Sol〈〈Iinc(t)〉〉 − K(ninc)〈〈Iinc(t)〉〉 +
Sol
r2 Z(ninc, ninc)〈〈Iinc(t)〉〉, (178)

〈〈Wabs(t)〉〉 = 〈〈Wext(t)〉〉 − 〈〈Wsca(t)〉〉, (179)

〈〈Wext(t)〉〉 = K11(ninc)〈〈Iinc(t)〉〉 + K12(ninc)〈〈Qinc(t)〉〉 + K13(ninc)〈〈Uinc(t)〉〉 + K14(ninc)〈
〈V inc(t)〉〉,

(180)

〈〈Wsca(t)〉〉 = ∫
4π

dr [Z11(r, ninc)〈〈Iinc(t)〉〉 + Z12(r, ninc)〈〈Qinc(t)〉〉 + Z13(r, ninc)〈〈Uinc(t)〉

〉 + Z14(r, ninc)〈〈V inc(t)〉〉],

(181)

where
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〈〈Iinc(t)〉〉 = 1
2

ε1
μ0

〈〈E∼0θ
inc(t)[E∼0θ

inc(t)]
∗

+ E∼0φ
inc(t)[E∼0φ

inc(t)]
∗
〉〉

〈〈E∼0θ
inc(t)[E∼0θ

inc(t)]
∗

− E∼0φ
inc(t)[E∼0φ

inc(t)]
∗
〉〉

〈〈 − E∼0θ
inc(t)[E∼0φ

inc(t)]
∗

− E∼0φ
inc(t)[E∼0θ

inc(t)]
∗
〉〉

i〈〈E∼0φ
inc(t)[E∼0θ

inc(t)]
∗

− E∼0θ
inc(t)[E∼0φ

inc(t)]
∗
〉〉

. (182)

All time averages in Eqs. (174)–(182) are independent of time.

All results of this subsection can easily be generalized to the case of a polychromatic 

incident field with quasi-monochromatic components [34].

5. Electromagnetic scattering by a randomly changing macroscopic object

5.1. Dynamic and static scattering

So far we have been discussing electromagnetic scattering by a fixed macroscopic object. In 

the case of a randomly changing macroscopic object such as a DRM, temporal changes in 

particle positions and/or physical states result in significant variations in the solution of the 

standard scattering problem even if the incident field is monochromatic. The typical time 

interval over which macroscopic quadratic and bilinear forms in the field vary significantly 

will be denoted by Tv. We will assume hereinafter that Tv ≫ To, Tv ≫ T′, and Tv ≫ Tf.

In some cases, the temporal resolution of optical measurements is finer than Tv, i.e., is 

sufficient to trace the random variations in macroscopic optical observables. Such 

measurements and their theoretical simulations constitute the subject of dynamic light 
scattering [190,191]. In other cases such random variations occur too rapidly to be captured 

by an actual optical device accumulating the signal over an extended period of time. This 

type of measurements and their theoretical modeling belong to the discipline of static light 
scattering [34]. If T is the integration time of an optical measurement defining its temporal 

resolution, then

To
T′

≪ Tf ≪ T ≪ Tv (183)

for dynamic scattering and

To
T′

≪ Tf ≪ Tv ≪ T (184)
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for static scattering. In either case the practical quantification of electromagnetic scattering 

by a stochastic macroscopic object requires, strictly speaking, repeated solutions of the 

standard scattering problem for temporally evolving instantaneous states of the object.

In what follows, we will mostly discuss static scattering of monochromatic and quasi-

monochromatic electromagnetic fields.

5.2. Monochromatic static scattering by a randomly changing macroscopic object

To represent an actual static measurement, quadratic and bilinear forms in the field must be 

averaged over a sufficiently long period of time T ≫ Tv. In the case of monochromatic 

scattering, Eqs. (170) and (171) become

〈〈S(r, t)〉〉 = 1
2 Re 〈〈E∼(r, t) × [H∼(r, t)]∗〉〉, r ∈ VEXT, (185)

〈〈P (r, t)〉〉 = 1
2〈〈H∼(r, t) ⊗ [E∼(r, t)]∗〉〉, r ∈ VEXT, (186)

where the macroscopic field vectors Ẽ(r, t) and H̃ (r, t) depend on time owing to the 

temporal changes of the scattering object, while 〈〈S(r, t)〉〉 and 〈〈P↔ (r, t)〉〉 are time 

independent provided that S̄(r, t) and P↔(r, t) are stationary random processes. Now the 

temporal average on the right-hand side of Eq. (185) or (186) cannot, in general, be 

expressed as a product of the individual averages,

〈〈S(r, t)〉〉 ≠ 1
2 Re [〈〈E∼(r, t)〉〉 × 〈〈H∼(r, t)〉〉∗], (187)

〈〈P (r, t)〉〉 ≠ 1
2〈〈H∼(r, t)〉〉 ⊗ 〈〈E∼(r, t)〉〉∗, (188)

and must be calculated explicitly. As usual, this computation is drastically simplified by 

assuming ergodicity of the scattering object and the resulting ergodicity of the random 

processes S̄(r, t) and P↔(r, t):

〈〈S(r, t)〉〉 = 〈S(r, Ψ )〉Ψ = ∫ dΨ S(r, Ψ )P(Ψ )

= 1
2 Re ∫ dΨ E∼(r, Ψ ) × [H∼(r, Ψ )]∗ P(Ψ ),

(189)
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〈〈P (r, t)〉〉 = 〈P (r, Ψ )〉Ψ = ∫ dΨ P (r, Ψ )P(Ψ )

= 1
2∫ dΨ H∼(r, Ψ ) ⊗ [E∼(r, Ψ )]∗ P(Ψ ),

(190)

where Ψ defines the state of the macroscopic object (rather than that of the constituent 

molecules) and P(Ψ) is a suitable time-independent probability density function.

Eqs. (161), (163), and (164) now become

〈〈P (r, t)〉〉 = 〈〈𝔍H(r, ninc; t) · P
inc

· [𝔍E(r, ninc; t)]
T ∗

〉〉

= 〈𝔍H(r, ninc; Ψ ) · P
inc

· [𝔍E(r, ninc; Ψ )]
T ∗

〉
Ψ

, r ∈ ℜ3,

(191)

〈〈P (r, t)〉〉 = 〈〈𝔍(r, ninc; t)〉〉P
inc

= 〈𝔍(r, ninc; Ψ )〉Ψ P
inc

, (192)

〈〈P
sca

(r, t)〉〉 = 〈〈𝔍sca(r, ninc; t)〉〉P
inc

= 〈𝔍sca(r, ninc; Ψ )〉Ψ P
inc

, (193)

while the main formulas of Subsections 4.6 and 4.7 take the form

〈〈Signal 1(t)〉〉 =
Sol
r2 〈Z(nsca, ninc; Ψ )〉Ψ Iinc, (194)

〈〈Signal 2(t)〉〉 = SolIinc − 〈K(ninc; Ψ )〉Ψ Iinc +
Sol
r2 〈Z(ninc, ninc; Ψ )〉Ψ Iinc, (195)

〈〈Wabs(t)〉〉 = 〈〈Wext(t)〉〉 − 〈〈Wsca(t)〉〉, (196)

〈〈Wext(t)〉〉 = 〈K11(ninc; Ψ )〉
Ψ

Iinc + 〈K12(ninc; Ψ )〉
Ψ

Qinc + 〈K13(ninc; Ψ )〉
Ψ

Uinc

+ 〈K14(ninc; Ψ )〉
Ψ

V inc,
(197)
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〈〈Wsca(t)〉〉 = ∫
4π

dr [〈Z11(r, ninc; Ψ )〉
Ψ

Iinc + 〈Z12(r, ninc; Ψ )〉
Ψ

Qinc + 〈Z13(r, ninc; Ψ )〉
Ψ

Uinc + 〈Z14(r, ninc; Ψ )〉
Ψ

V inc] .

(198)

Again, all time averages in Eqs. (191)–(198) are independent of time.

5.3. Quasi-monochromatic static scattering by a randomly changing macroscopic object

Let us now consider the situation wherein the solution of the standard scattering problem 

fluctuates in time owing to random temporal variations of both the incident field and the 

macroscopic object. Eqs. (163) and (164) now become

〈〈P (r, t)〉〉 = 〈〈𝔍(r, ninc; t)P
inc

(t)〉〉, (199)

〈〈P
sca

(r, t)〉〉 = 〈〈𝔍sca(r, ninc; t)P
inc

(t)〉〉, (200)

where the averages are taken over a period of time much longer than both Tf and Tv. It is 

reasonable to assume that morphological changes of the scattering object are completely 

independent of the temporal fluctuations of the externally generated incident field. More 

specifically, we assume that 𝔍̂(r, n̂inc; t) and P↔inc(t) as well as 𝔍̂sca(r, n̂inc; t) and 

P↔inc(t) are pairs of independent stationary random processes, which implies that both 

〈〈P↔(r, t)〉〉 and 〈〈P↔sca (r, t)〉〉 are independent of time and are given by

〈〈P (r, t)〉〉 = 〈〈𝔍(r, ninc; t)〉〉〈〈P
inc

(t)〉〉, (201)

〈〈P
sca

(r, t)〉〉 = 〈〈𝔍sca(r, ninc; t)〉〉〈〈P
inc

(t)〉〉 . (202)

Finally, assuming ergodicity of the scattering object, we obtain

〈〈P (r, t)〉〉 = 〈𝔍(r, ninc; Ψ )〉Ψ〈〈P
inc

(t)〉〉, (203)
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〈〈P
sca

(r, t)〉〉 = 〈𝔍sca(r, ninc; Ψ )〉Ψ〈〈P
inc

(t)〉〉 . (204)

In other words, the time averaging of the Poynting–Stokes tensor of the incident quasi-

monochromatic beam and the ensemble averaging of the transformation operators 𝔍̂ and 

𝔍̂sca are completely separated. The corresponding generalization of the main formulas of 

Subsections 4.6 and 4.7 reads

〈〈Signal 1(t)〉〉 =
Sol
r2 〈Z(nsca, ninc; Ψ )〉Ψ〈〈Iinc(t)〉〉, (205)

〈〈Signal 2(t)〉〉 = Sol〈〈Iinc(t)〉〉 − 〈K(ninc; Ψ )〉Ψ〈〈Iinc(t)〉〉 +
Sol
r2 〈Z(ninc, ninc; Ψ )〉Ψ〈〈Iinc(t)〉〉,

(206)

〈〈Wabs(t)〉〉 = 〈〈Wext(t)〉〉 − 〈〈Wsca(t)〉〉, (207)

〈〈Wext(t)〉〉 = 〈K11(ninc; Ψ )〉
Ψ

〈〈Iinc(t)〉〉 + 〈K12(ninc; Ψ )〉
Ψ

〈〈Qinc(t)〉〉 + 〈K13(ninc; Ψ )〉
Ψ

〈
〈Uinc(t)〉〉 + 〈K14(ninc; Ψ )〉

Ψ
〈〈V inc(t)〉〉,

(208)

〈〈Wsca(t)〉〉 = ∫
4π

dr [〈Z11(r, ninc; Ψ )〉
Ψ

〈〈Iinc(t)〉〉 + 〈Z12(r, ninc; Ψ )〉
Ψ

〈〈Qinc(t)〉〉

+ 〈Z13(r, ninc; Ψ )〉
Ψ

〈〈Uinc(t)〉〉 + 〈Z14(r, ninc; Ψ )〉
Ψ

〈〈V inc(t)〉〉] .

(209)

It is straightforward to generalize all results of this subsection to the case of a polychromatic 

incident field with quasi-monochromatic components [34].
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Let us now assume that the transformation dyadics ↔E and ↔H as well as the electric 

and magnetic field amplitudes of the quasi-monochromatic plane-wave incident field can be 

represented as sums of average and fluctuating (subscript “f”) components:

𝔍E(r, ninc; t) = 〈〈𝔍E(r, ninc; t)〉〉 + 𝔍E
f

(r, ninc; t) = 〈𝔍E(r, ninc; Ψ )〉
Ψ

+ 𝔍E
f

(r, ninc; t), (210)

𝔍H(r, ninc; t) = 〈〈𝔍H(r, ninc; t)〉〉 + 𝔍H
f

(r, ninc; t) = 〈𝔍H(r, ninc; Ψ )〉
Ψ

+ 𝔍H
f

(r, ninc; t),

(211)

E∼0
inc(t) = 〈〈E∼0

inc(t)〉〉 + E∼0f
inc(t) = E∼0c

inc + E∼0f
inc(t), (212)

H∼0
inc(t) = 〈〈H∼0

inc(t)〉〉 + H∼0f
inc(t) = H∼0c

inc + H∼0f
inc(t), (213)

where r ∈ ℜ3, the subscript “c” stands for “coherent”, and, by definition,

〈〈𝔍E
f

(r, ninc; t)〉〉 = 0 , (214)

〈〈𝔍H
f

(r, ninc; t)〉〉 = 0 , (215)

〈〈E∼0f
inc〉〉 = 0, (216)

〈〈H∼0f
inc〉〉 = 0, (217)

where 0↔ is a zero dyad. Then averaging Eq. (161) over a time interval much longer than 

both Tf and Tv while assuming statistical independence of the random incident field and the 

random scattering object yields
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〈〈P (r, t)〉〉 = 〈〈𝔍H(r, ninc; t) · P
inc

(t) · [𝔍E(r, ninc; t)]
T ∗

〉〉 (218a)

= 1
2〈𝔍H(r, ninc; Ψ )〉

Ψ
· {H∼0c

inc ⊗ [E∼0c
inc]

∗
} · 〈[𝔍E(r, ninc; Ψ )]

T ∗
〉
Ψ

+ 1
2〈𝔍H(r, ninc; Ψ )〉

Ψ
· 〈〈H∼0f

inc(t) ⊗ [E∼0f
inc(t)]

∗
〉〉 · 〈[𝔍E(r, ninc; Ψ )]

T ∗
〉
Ψ

+ 1
2〈𝔍H

f
(r, ninc; Ψ ) · {H∼0c

inc ⊗ [E∼0c
inc]

∗
} · [𝔍E

f
(r, ninc; Ψ )]

T ∗
〉
Ψ

+ 1
2〈𝔍H

f
(r, ninc; Ψ ) · 〈〈H∼0f

inc(t) ⊗ [E∼0f
inc(t)]

∗
〉〉 · [𝔍E

f
(r, ninc; Ψ )]

T ∗
〉
Ψ

.

(218b)

This formula can alternatively be written as

〈〈P (r, t)〉〉 = 〈𝔍H(r, ninc; Ψ )〉
Ψ

· 〈〈P
inc

(t)〉〉 · 〈[𝔍E(r, ninc; Ψ )]
T ∗

〉
Ψ

+ 〈𝔍H
f

(r, ninc; Ψ ) · 〈〈P
inc

(t)〉〉 · [𝔍E
f

(r, ninc; Ψ )]
T ∗

〉
Ψ

(219a)

= 〈𝔍H(r, ninc; Ψ ) · 〈〈P
inc

(t)〉〉 · [𝔍E(r, ninc; Ψ )]
T ∗

〉
Ψ

. (219b)

We see again that averaging the Poynting–Stokes tensor of the incident quasi-

monochromatic field over time is completely decoupled from the ensemble averaging. This 

implies that to solve the quasi-monochromatic scattering problem, one can solve the 

monochromatic scattering problem and then make the formal substitution P↔inc → 
〈〈P↔inc(t)〉〉.

6. Effective-object methodology

Direct computer solutions of the MMEs for morphologically complex objects can be quite 

time-consuming and in many cases impracticable. As a consequence, there has been a 

widespread use of phenomenological so-called effective-medium rules intended to 

drastically simplify the computation (see [72–78,192–199] and references therein). 

Implicitly, the main idea of an effective-object approximation (EOA) (more commonly 

known as an effective-medium approximation, or EMA) is to replace a morphologically 

complex object, either fixed or randomly varying in time, by a much simpler “effective” 

object possessing essentially the same scattering properties. For example, one could think of 

replacing the Type-1 and -2 DRMs shown in Figs. 13a,b by homogeneous scattering objects 

with the same overall shape defined by the surface S, as shown in Figs. 13c,d.
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In terms of the transformation operators 𝔍̂ and 𝔍̂sca, one can think of the following 

hierarchy of EOAs:

• A deterministic EOA amounts to replacing a fixed morphologically complex 

scattering object by a fixed simple “effective” object such that

𝔍(r, ninc) ≈ 𝔍eff(r, ninc), (220)

𝔍sca(r, ninc) ≈ 𝔍eff
sca(r, ninc) . (221)

• A semi-stochastic EOA amounts to replacing a stochastic morphologically 

complex scattering object by a fixed simple “effective” object such that

〈𝔍(r, ninc; Ψ )〉Ψ ≈ 𝔍eff(r, ninc), (222)

〈𝔍sca(r, ninc; Ψ )〉Ψ ≈ 𝔍eff
sca(r, ninc) . (223)

• A stochastic EOA amounts to replacing a stochastic morphologically complex 

scattering object by a stochastic simple “effective” object such that

〈𝔍(r, ninc; Ψ )〉Ψ ≈ 〈𝔍eff(r, ninc; Ψ eff)〉Ψeff
, (224)

〈𝔍sca(r, ninc; Ψ )〉Ψ ≈ 〈𝔍eff
sca(r, ninc; Ψ eff)〉Ψeff

. (225)

Note that we intentionally defined the three EOAs in terms of the linear operators 𝔍̂ and 

𝔍̂sca acting on an optical observable rather than on the macroscopic field vectors (of course 

these definitions can be generalized to include types of optical observables other than the 

Poynting–Stokes tensor). Traditionally, however, EMAs have been introduced with the 

purpose of replicating the average macroscopic field vectors rather than specific optical 

observables [72–78,192–199]. In other words, a semi-stochastic EOA would normally be 

introduced as a recipe for replacing a stochastic morphologically complex scattering object 

by a fixed simple “effective” object such that

〈𝔍E(r, ninc; Ψ )〉
Ψ

≈ 𝔍E
eff

(r, ninc), (226)
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〈𝔍H(r, ninc; Ψ )〉
Ψ

≈ 𝔍H
eff

(r, ninc) (227)

in Eq. (218b). This is equivalent to defining the EMA as that replicating the “coherent field” 

created by the object. This explains why an EMA recipe would typically be formulated in 

terms of replacing an actual heterogeneous object by that made of a homogeneous material 

with an “effective refractive index”.

Unfortunately, the traditional way of formulating an EMA is somewhat limited since it helps 

determine only two out of four terms on the right-hand side of Eq. (218b). The three EOAs 

defined by Eqs. (220)–(225) are more general and useful. Furthermore, they yield 

automatically the traditional field-based EMAs in cases when the last two terms on the right-

hand side of Eq. (218b) can be neglected. In addition, they do not rely on the contrived 

notion of the coherent field.

To the best of our knowledge, EOAs remain unproven hypotheses since none of them has 

been derived directly from the time-domain or frequency-domain MMEs under well-defined 

and reproducible conditions. In the words of Chýlek et al. written in 2000 [77], EMAs

are not approximations in a strict mathematical sense. It is not generally possible to 

estimate the accuracy of a given approximation by considering the magnitude of 

neglected terms with respect to those that are kept. EMAs are often based on an ad 
hoc assumption that leads to a simplified, solvable model of a real, complicated, 

and usually unsolvable situation. As a result, one is able to derive a simple or only 

moderately complicated prescription (e.g., the mixing rule) of how to calculate the 

average optical properties of a heterogeneous composite material from the known 

properties and amounts of its individual components. Because there are no specific 

algebraic terms neglected and because the exact solution of the problem is usually 

unknown, the accuracy of such derived effective material constants (effective 

dielectric constants or effective refractive indices of material) and the precise 

conditions for their permissible use are not easy to assess.

Fortunately, the current availability of efficient computer solvers of the MMEs and powerful 

computer clusters makes it possible to validate EOAs numerically, at least in special cases. 

Recent progress in this direction will be discussed in Subsection 8.2 and Section 9.

7. Direct computer solvers of the macroscopic Maxwell equations

According to the preceding discussion, the main objective of the discipline of 

electromagnetic scattering by particulate objects is the computation of optical observables 

that can be used to quantify the energy budget of a macroscopic volume or the results of 

measurements with actual optical instruments. Alternatively, this objective can be 

formulated as the computation of quantities such as the transformation dyadics ↔E (r, 

n ̂inc) and ↔H(r, n̂inc) entering Eq. (161); the transformation operators 𝔍̂(r, n̂inc ) and 𝔍̂sca 

(r, n̂inc ) entering Eqs. (163) and (164); the ensemble- averaged transformation operators 

〈𝔍̂(r, n̂inc; Ψ)〉Ψ and 〈𝔍̂sca (r, n̂inc; Ψ)〉Ψ entering Eqs. (192), (193), (203), and (204); and 
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their various coordinate-specific representations. Far-field examples of the latter are the 

(ensemble-averaged) extinction and phase matrices.

Whenever possible, all these quantities should be calculated by using a direct, numerically 

exact computer solver of the MMEs8 in combination with a suitable ensemble-averaging 

procedure. The majority of direct solvers of the MMEs belong to one of two broad 

categories. Differential-equation techniques yield the scattered field by solving the 

differential MMEs or the vector wave equation in the frequency or in the time domain. 

Classical examples of the frequency-domain differential-equation techniques are the 

Lorenz–Mie theory for a homogeneous or radially inhomogeneous spherical particle 

[1,22,200–204] and the separation of variables technique for a homogeneous or layered 

spheroid [205–211]. General differential-equation techniques applicable to an object with 

essentially any morphology are the frequency-domain finite-difference method [212,213], 

the finite-difference time-domain method (FDTDM) [214–218], and the pseudo-spectral 

time-domain method (PSTDM) [219,220]. In both FDTDM and PSTDM, it is necessary to 

truncate the computational domain by introducing an artificial outer boundary and then 

ensure that spurious reflections from this boundary are suppressed. This is effectively 

accomplished by using the perfectly matched layer proposed in [221,222] and its 

refinements. Integral equation methods are based on the volume or surface integral 

counterparts of the MMEs, the prime examples being the frequency-domain volume integral 

equation method and the closely related discrete-dipole approximation (DDA) [168,223–

228]. There are also hybrid techniques or methods that can be derived using different 

approaches. Furthermore, there are general formulations, such as the frequency-domain T-

matrix method (TMM) [20,24,28,35,229–235], based on expanding relevant electric field 

vectors in special mathematical functions possessing desirable analytical properties and then 

using various ad hoc techniques to compute the transition matrices relating the resulting 

columns of the expansion coefficients.

The FDTDM and the DDA are examples of general direct solvers of the MMEs that are 

rather insensitive to the object’s morphology and thus can be applied to a multi-particle 

group as well as to a compact single-body object using the same basic computer program. 

Some approaches, such as the TMM, can be made much more efficient by explicitly 

accounting for the specific object’s morphology, for example, its aggregate structure. Each 

direct numerical solver of the MMEs has its own advantages and drawbacks in terms of 

computer memory and execution time requirements, convergence rate, accuracy, and range 

of applicability. For example, the more traditional versions of the TMM can be less flexible 

than the FDTDM and the DDA in terms of the scattering object’s morphology, but appear to 

be the fastest and most accurate techniques within the range of their convergence. Further 

information on direct computer solvers of the MMEs can be found in the reviews [236,237].

By definition, running a direct computer solver of the MMEs yields the monochromatic 

scattering properties of a fixed object. However, the angular scattering patterns typical of a 

8By definition, a direct computer solver of the MMEs is called numerically exact if it can generate numerical results with a guaranteed 
number of correct decimals. The number of correct decimals may vary depending on the available computer resources and practical 
accuracy requirements. However, all reported decimals can, in principle, be validated by modifying computer program settings in 
order to accommodate a more stringent accuracy requirement.
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fixed object with a size comparable to or greater than the wavelength are typically burdened 

by numerous sharp maxima and minima (called speckles) that must be smoothed out to yield 

representative static-scattering results [34,92,238,239]. The necessity of repeating 

computations for a large number of realizations of a random object for the purpose of 

ensemble averaging still represents a great practical challenge. For example, the computation 

of electromagnetic scattering by a DRM can require averaging over an excessive number of 

fixed multi-particle configurations. In this respect the advantage of the superposition TMM 

(STMM) [20,230,240] is the extremely efficient quasi-analytical procedure which allows 

one to create a fixed quasi-random N-particle configuration and then average relevant optical 

observables over all possible orientations of this configuration with respect to the laboratory 

coordinate system [241–244]. This procedure captures in effect an infinite continuous set of 

random realizations of the N-particle group, eliminates completely the notorious speckle 

“noise”, and yields exceedingly accurate results.

The first studies of electromagnetic scattering by random three-dimensional multi-particle 

groups based on direct computer solutions of the MMEs [245–248] exploited the frequency-

domain multi-sphere method [249–253] which can be considered a particular case of the 

STMM. More recently, other numerical solvers of the MMEs have been used, such as the 

PSTDM and its variations [254–258], the DDA [259–274], the FDTDM [275–277], and the 

hybrid finite element–boundary integral–characteristic basis function method [278–281]. 

However, the STMM appears to have been the most frequently used technique [268,282–

328]. Studies of two-dimensional DRMs composed of parallel infinite cylinders have been 

based on the multi-cylinder solution of the MMEs [329–331], the PSTDM [332,333] and the 

FDTDM [334].

Given the extreme complexity of direct computer calculations of electromagnetic scattering 

by a DRM, it is imperative to characterize the accuracy of the various numerical techniques 

and certify that internal (subjective) convergence of a technique (if achieved) ensures 

objectively converged results. This can be done by comparing benchmark data generated for 

the same scattering object with software implementations of completely independent 

methods.

As an example, let us compare far-field results obtained with five totally independent 

computer programs based on the STMM [244], DDA [228], invariant-imbedding TMM (II-

TMM) [234,335], FDTDM [336], and PSTDM [337] for the same compound scatterer in the 

form of a spherical particle hosting 10 identical non-overlapping spherical inclusions (Fig. 

14a). The size parameters of the host and the inclusions are k1R = 10 and k1r = 2.5, 

respectively, where R is the radius of the host and r is that of the inclusions. The 

corresponding refractive indices relative to that of the infinite surrounding medium are 1.33 

and 1.55 + i0.003. The coordinates of the 10 inclusions (in units of size parameter) are listed 

in Table 1. It is assumed that the compound particle is illuminated by a quasi-

monochromatic plane electromagnetic wave incident in the direction of the positive z-axis, 

as shown in Fig. 14b. For demonstration purposes, we define the 4 × 4 dimensionless 

scattering matrix F̃(Θ) according to
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F∼(Θ) = 4π
Csca

〈Z(θsca = Θ, φsca; θinc = 0, φinc = φsca; Ψ )〉Ψ , (228)

where θ ∈ [0,π] is the zenith (polar) angle, φ ∈ [0, 2π) is the azimuth angle, and Θ is the 

angle between the incidence and scattering directions (i.e., the scattering angle); the 

ensemble average is taken over the uniform orientation distribution of the compound 

scatterer; and the normalization constant Csca is given by

Csca = ∫
4π

dnsca〈Z11(θsca, φsca; θinc = 0, φinc = 0; Ψ )〉
Ψ

. (229)

Note that F̃ is independent of φsca owing to the random orientation distribution of the 

scattering object, while Csca represents the ensemble-averaged scattering cross section 

〈〈W̄sca (t)〉〉/〈〈Iinc (t)〉〉 for the case of unpolarized incident plane-wave field (cf. Eq. (209)). 

It is easily seen that the (1,1) element of the scattering matrix F̃(Θ) (often called the phase 

function) is normalized according to

1
2∫0

π
dΘ F∼11(Θ) sin Θ = 1. (230)

The results of our computations are tabulated in Table 2 and visualized in Figs. 15–18. Table 

2 gives the corresponding extinction,

Qext =
Cext
πR2 , (231)

and scattering,

Qsca =
Csca
πR2 , (232)

efficiency factors, where

Cext = 〈K11(ninc; Ψ )〉
Ψ

(233)
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is the n̂inc - independent extinction cross section 〈〈Wēxt(t)〉〉/〈〈Iinc (t)〉〉 for unpolarized 

incident light (cf. Eq. (208)). Also tabulated are the absorption efficiency factor

Qabs = Qext − Qsca, (234)

the single-scattering albedo

ϖ =
Qsca
Qext

, (235)

and the asymmetry parameter

〈 cos Θ〉 = 1
2∫0

π
dΘ F∼11(Θ) sin Θ cos Θ . (236)

Unlike the case with the DDA, FDTDM, and PSTDM, the averaging over orientations by the 

STMM and II-TMM computer programs is performed analytically so that the accuracy of 

computations is unaffected by simulating the uniform orientation distribution of the 

compound object by a limited set of discrete orientations. This analytical procedure also 

made the STMM and II-STM computations for the randomly oriented composite object 

much faster.

The DDA simulations were performed with the code ADDA 1.2 on the computer cluster of 

the supercomputing center of the Novosibirsk State University. We used the default 

parameters of the code while controlling the discretization level by the number nx of so-

called “dipoles” along the particle diameter. Five values ranging from 64 to 128 were 

considered, corresponding to dipole sizes from λ/20 to λ/40, where λ = 2π/k1 is the 

wavelength in the infinite surrounding medium. The orientation averaging was performed 

with a built-in adaptive procedure which adjusts the number of simulated orientations of the 

compound object to keep the relative uncertainty in Cext caused by averaging within 10−4 

[228]. As a consequence, the final numerical uncertainty is controlled mostly by nx. To 

further improve the accuracy, we applied the extrapolation to the zero dipole size, as 

described in [338]. This procedure also provides an internal error estimate which, for the 

majority of computed values, was adequate, i.e., was within the actual differences from the 

STMM results. Fig. 15 shows both the “raw” DDA results for nx = 64 and 128 and the 

“extrapolated” ones. One can see that the quantitative agreement between the latter and the 

internally converged STMM results is quite good (the corresponding phase functions F̃
11 (Θ) 

typically differ by less than 1%).

Figs. 16–18 demonstrate a similarly impressive agreement between the STMM results and 

those obtained with the II-TMM, FDTDM, and PSTDM computer programs. Note that 
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unlike the STMM, the II-TMM is based on an alternative approach to calculate the object’s 

T matrix which is more general, but can make it somewhat more cumbersome to obtain the 

same benchmark precision. The FDTDM and PSTDM results have been calculated with 

λ/40 and λ/50 spatial grid sizes and exhibit expected convergence towards the STMM 

curves.

This quantitative comparison of completely independent direct computer solvers of the 

MMEs obviously certifies that these five techniques can be used in reliable far-field 

calculations of electromagnetic scattering by DRMs.

Note that when running the STMM computer program, we increasingly tightened all 

numerical accuracy parameters until the final results converged internally to a very high 

accuracy. While this “subjective” convergence of the STMM results does not guarantee the 

same “objective” convergence, it is still expected to be a good indicator of the actual 

accuracy of the final numbers. Given the virtual absence of such benchmark numerical data 

in the published literature, we tabulate the converged STMM scattering-matrix results in 

Appendix A.

8. Direct computer modeling of electromagnetic scattering by Type-1 

discrete random media

In this section we will discuss the results of representative calculations of electromagnetic 

scattering by Type-1 DRMs based on direct computer solutions of the MMEs. In most cases 

we will use the model of a DRM in the form of a cluster of N identical small spherical 

particles randomly and uniformly distributed throughout an imaginary spherical volume V 
with a radius R, as shown in Fig. 19a (after [339]).

8.1. Far-field speckle and its suppression

Let us first consider far-field scattering of a quasi-monochromatic plane-wave field by two 

different fixed clusters of N = 80 identical spherical particles distributed throughout an 

imaginary spherical volume with a size parameter of k1R = 40. The size parameter of the 

constituent spherical particles is k1r = 4 and their relative refractive index is m = 1.32. The 

coordinates of the particles forming either cluster were chosen using a random number 

generator, but otherwise they are fixed. The laboratory spherical coordinate system used to 

describe far-field scattering by either cluster is shown in Fig. 14b where, as before, the unit 

vectors n̂inc and n̂sca specify the directions of incidence and scattering. The zenith and 

azimuth angles of the incidence direction are assumed to be θinc = 0° and φinc = 0°, 

respectively. The incident plane-wave field is assumed to be circularly polarized in the 

counter-clockwise sense when looking in the direction of propagation, which implies that 

〈〈Vinc(t)〉〉=〈〈Iinc(t)〉〉 and 〈〈Qinc (t)〉〉 = 〈〈Uinc (t)〉〉 = 0; the double angular brackets denote 

averaging over a time interval T ≫ Tf.

The two panels of Fig. 20a show the corresponding time-independent far-field angular 

distributions of the intensity 〈〈Isca (rn̂sca, t)〉〉 scattered in the backward hemisphere. These 

intensity distributions were calculated using the STMM computer program described in 

[243] and reveal typical random speckle patterns. Fig. 20b shows the result obtained by 
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averaging the scattered intensity over the uniform orientation distribution of the multi-

particle configuration used to create the top panel of Fig. 20a. This orientation averaging 

replaces averaging over a time interval T ≫ Tv and is intended to simulate averaging over 

uniformly random positions of all 80 particles by taking advantage of the efficient analytical 

procedure afforded by the STMM, as discussed in Section 7. Predictably, the average 

intensity pattern is rotationally symmetric with respect to the incidence direction and is 

fairly featureless, the strong and narrow backscattering peak being the only notable 

exception.

To interpret the results of these computations, we will invoke the mathematical concept of 

ordered multi-particle sequences representing the various terms on the right-hand side of Eq. 

(148). Fig. 21a shows schematically two such sequences depicted using the blue and yellow 

colors. To make the discussion even more physically appealing, we will assign a cumulative 

phase to each multi-particle sequence by assuming that each particle of the sequence resides 

in the far zone of the preceding particle. For example, particle 4 of the blue sequence in Fig. 

21a is in the far zone of particle 3, particle 3 is in the far zone of particle 2, etc. In other 

words, we will use the far-field version of the Neumann expansion (148):

E∼(r, t) = E∼inc(r, t) + E∼sca(r, t)

= E∼inc(r, t) + ∑
i = 1

N
g(ri)A i(ri, ninc) · E∼inc(Ri, t) + ∑

i = 1

N
∑

j( ≠ i) = 1

N
g(ri)g(Ri j)A i(ri, Ri j) · A j(Ri j,

ninc) · E∼inc(R j, t) + ∑
i = 1

N
∑

j( ≠ i) = 1

N
∑

l( ≠ j) = 1

N
g(ri)g(Ri j)g(R jl)A i(ri, Ri j) · A j(Ri j, R jl) · A l(R jl,

ninc) · E∼inc(Rl, t) + ⋯,

(237)

where we imply the notation of Fig. 12 and indicate explicitly the temporal dependence of 

the macroscopic electric field vector of the incident quasi-monochromatic plane-wave field. 

It is then easily seen that the expression for the partial electric field contributed by the blue 

four-particle sequence in Fig. 21a at the observation point includes the complex exponential 

factor exp[ik1(r4 + R43 + R32 + R21 + n̂inc · R1)]. Thus the corresponding cumulative phase 

of the blue four-particle sequence is

δblue = k1(r4 + R43 + R32 + R21 + ninc · R1) . (238)

The cumulative phases of other multi-particle sequences are determined analogously. For 

example, that of the yellow three-particle sequence is given by
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δyellow = k1(r3′ + R3′2′ + R2′1′ + ninc · R1′) . (239)

It is important to recognize that the very concept of the cumulative phase becomes 

questionable if at least one particle of a sequence is located in the near zone of the preceding 

particle, which obviously happens in densely packed DRMs (e.g., Figs. 4i and 5). We will 

see however that qualitative interpretations of STMM results based on the notion of the 

cumulative phase can be qualitatively instructive even in the case of random particulate 

volumes with substantial packing densities.

The origin of the far-field speckles in the two panels of Fig. 20a can now be understood by 

recognizing that in the far zone of the entire cluster the partial field due to any multi-particle 

sequence is an outgoing transverse spherical wavelet centered at the origin of the last 

particle of the sequence. Since the distance to the far-zone observation point is much greater 

than the radius R of the imaginary particulate volume V, all such partial wavelets at the 

observation point propagate in essentially the same direction given by the unit vector n̂sca 

(Fig. 21a). The four-element column 〈〈Isca (rn̂sca, t)〉〉 in Eq. (177) at the observation point 

can be directly expressed in terms of the elements of the scattering coherency dyadic 

ρ↔sca(rn̂sca) = 〈〈Ẽsca(rn̂sca, t) ⊗ [Ẽsca(rn̂sca, t)]*〉〉 according to

〈〈Isca(rnsca, t)〉〉 = 1
2

ε1
μ0

θsca · ρ sca(rnsca) · θsca + φsca · ρ sca(rnsca) · φsca

θsca · ρ sca(rnsca) · θsca + φsca · ρ sca(rnsca) · φsca

−θsca · ρ sca(rnsca) · φsca − φsca · ρ sca(rnsca) · θsca

i (φsca · ρ sca(rnsca) · θsca − θsca · ρ sca(rnsca) · φsca)

, (240)

where θ̂sca and φ̂sca are the polar-angle and azimuth-angle unit vectors of the scattering 

direction such that n̂sca = r̂ = θ̂sca × φ̂sca. According to Eq. (237), the dyadic product Ẽsca 

(rn̂sca, t) ⊗ [Ẽsca (rn̂sca, t)]* at any moment in time is the sum of an infinite number of terms, 

each describing the result of interference of two spherical wavelets centered at the end 

particles of two particle sequences.

Fig. 21a exemplifies one such pair. If the interference of the corresponding pair of spherical 

wavelets at the observation point is constructive (destructive) then it serves to increase 

(decrease) the total intensity scattered in the direction n̂sca. The result of the interference 

depends largely on the phase difference Δ = δblue − δyellow given by

Δ = k1(r4 + R43 + R32 + R21 + ninc · R1 − r3′ − R3′2′ − R2′1′ − ninc · R1′) . (241)

The total scattered intensity in the far zone of the particulate volume is the sum of the 

interference results contributed by all possible pairs of particle sequences. The minimal 
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angular width of such interference maxima and minima is proportional to 1/k1R, while their 

number grows rapidly with N. These two factors explain the typical spotty appearance of the 

scattering patterns in Fig. 20a.

It is sometimes asserted that a speckle pattern can be caused only by monochromatic 

incident light, for example by that generated by a continuous laser. In actuality, however, all 

one needs in order to observe speckles is a fixed scattering object illuminated by a quasi-

monochromatic plane-wave field.

The two panels of Fig. 20a exemplify the variability of the quasi-instantaneous speckle 

patterns that can be expected of a temporally changing DRM. After the quasi-instantaneous 

speckle patterns have been computed or measured for a representative set of evolving states 

of a DRM, one can choose to

• analyze the statistical information content of differences between the individual 

speckle patterns; or

• apply an averaging procedure, thereby isolating the static component of the 

speckle patterns.

We have already mentioned that these two approaches are known as dynamic and static light 

scattering.

8.2. Static scattering by Type-1 discrete random media

In what follows, we simulate ensemble-averaged light-scattering characteristics of an 

imaginary spherical volume randomly and uniformly filled with identical particles by 

creating only one random N-particle configuration and then averaging over all possible 

orientations of this configuration with respect to the laboratory coordinate system. The 

fidelity of this approach will be analyzed later in this subsection.

We have already seen in Fig. 20 that averaging over the equiprobable orientation distribution 

of an 80-particle configuration effectively eliminates the speckle pattern and yields the 

combination of a smooth background and a notable backscattering peak. It turns out that the 

existence of both features can be explained qualitatively by using the notion of the 

cumulative phase of a multi-particle sequence introduced above. Specifically, each far-field 

speckle element can be thought of as being the result of constructive or destructive 

interference of two wavelets contributed by specific multi-particle sequences, such as those 

shown in Fig. 21a. The phase difference (241) evaluated at the far-zone observation point 

changes randomly as the particles move, so that the average result of the interference is zero. 

However, we will demonstrate below that certain classes of wavelet pairs interfere 

constructively irrespective of particle positions and thereby are responsible for the residual 

scattering pattern.

Let us make a simplifying assumption that φsca = φinc and define the scattering direction in 

terms of the scattering angle Θ = θsca. Then scattering in the far zone can be conveniently 

described in terms of the dimensionless 4 × 4 scattering matrix (228). Numerous STMM 

computations have demonstrated that the elements populating the upper right and lower left 

2 × 2 blocks of this matrix are negligibly small compared to the other elements, which is an 
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expected result of averaging over the equiprobable orientation distribution of a multi-particle 

group coupled with sufficient uniformity of the initial particle positions throughout the 

scattering volume (cf. Table A.1). Specifically, the scattering matrix has the following 

typical structure:

F∼(Θ) =

F∼11(Θ) F∼21(Θ) 0 0

F∼21(Θ) F∼22(Θ) 0 0

0 0 F∼33(Θ) F∼34(Θ)

0 0 −F∼34(Θ) F∼44(Θ)

, (242)

where the scattering matrix elements denoted by a zero are at least an order of magnitude 

smaller than the smallest nonzero element (in the absolute-value sense). Note that the 

relations F̃
12 (Θ) = F̃

21(Θ) and F̃
43(Θ) = −F̃

34 (Θ) are caused by the uniform orientation 

distribution of a multi-particle cluster. In all examples discussed below, the size parameter of 

the imaginary spherical volume filled with particles is fixed at k1R = 50, while the size 

parameter and relative refractive index of the particles are fixed at k1r = 4 and m = 1.32.

The plot of the phase function F̃11(Θ) in Fig. 22 reveals several fundamental consequences 

of increasing the number of particles N in the volume. First of all, there is a strong and 

narrow forward-scattering enhancement owing to the systematically constructive 

interference of the wavelets singly scattered by the constituent particles in the exact forward 

direction. This feature is detailed in the top left-hand panel of Fig. 23 and, according to Fig. 

21b, can be called forward-scattering localization of electromagnetic waves [287]. Indeed, 

the left-hand panel of Fig. 21b shows that the exact forward-scattering direction is unique in 

that the phases of the wavelets forward-scattered by all the individual particles in the DRM 

are precisely the same, irrespective of the specific instantaneous particle coordinates [1]. It is 

straightforward to show that if there were no multi-particle sequences, the constructive 

interference of these single-particle wavelets would cause an increase of the forward-

scattering phase function F̃
11(0) by a factor of N. The top left-hand panel of Fig. 23 shows 

that this increase does occur for N = 2, 5, and 20, but eventually the F̃
11(0) value saturates. 

This behavior can be explained qualitatively by referring to a multi-particle interaction effect 

whereby particle 3 in the right-hand panel of Fig. 21b “shadows” particle 2 by attenuating 

the incident field exciting particle 2.

The second remarkable consequence of increasing N is that the phase function at 

backscattering angles starts to develop a narrow peak with a maximum at Θ = 180° (see the 

top right-hand panel of Fig. 23). The qualitative explanation of this so-called weak 

localization of electromagnetic waves9 (otherwise known as the coherent backscattering 

effect) is illustrated in Fig. 21c. The blue and yellow outgoing wavelets are contributed by 

the same chain of n particles but sequenced in opposite order. The opposite sequencing is 

9Note that the frequently used term “weak localization of photons” is thoroughly inappropriate since it refers to an interference 
phenomenon that is purely classical and has nothing to do with QED photons.
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largely inconsequential owing to the reciprocity relation for the scattering dyadic (93a). 

Therefore, the two conjugate wavelets interfere at the observation point constructively or 

destructively mostly depending on the resulting phase difference between the blue and 

yellow sequences given by

Δ = k1(R1 − Rn) · (ninc + nsca) . (243)

If the observation direction n̂sca is far from the exact backscattering direction −n̂inc then the 

average effect of this interference is zero owing to randomly varying positions of particles 1 

and n. However, at exactly the backscattering direction the differential phase Δ vanishes 

identically for any n-particle chain, thereby causing the interference to be always 

constructive and create a backscattering intensity peak.

The third obvious consequence of increasing the number of particles in the DRM is the 

progressively smooth and featureless profile of the phase function at scattering angles 30° ≤ 

Θ ≤ 170°. This effect manifests itself as the “diffuse” intensity background in Fig. 20b and is 

mostly caused by another class of wavelet pairs illustrated in Fig. 21d. In this case the 

wavelet caused by the yellow sequence of n particles is the same as that caused by the blue 

sequence and thus “interferes with itself.” Since the self-interference is always constructive 

irrespective of the specific chain of particles owing to the identity Δ ≡ 0, the positive 

contribution of this class of wavelet pairs survives the ensemble averaging for any incidence 

and scattering directions. The qualitative explanation of the progressive smoothness of the 

phase-function curves with increasing N in Fig. 22 is that the side-scattered intensity is 

averaged over the contributions from the rapidly increasing number of multi-particle chains.

The bottom left-hand panel of Fig. 22 shows that the most prominent effect of increasing N 
on the ratio −F̃

21(Θ)/F̃
11(Θ) is to smooth out the low-frequency oscillations in the single-

sphere curve and, on average, to make this ratio more neutral. This implies that the main 

contribution to the second Stokes parameter of the scattered light, 〈〈Qsca (rn̂inc, t)〉〉, comes 

from single-particle chains, whereas the contributions from many-particle chains are largely 

randomized.

A fundamental property of the ratio F2̃2 (Θ)/F̃
11(Θ) is that it is identically equal to unity for 

scattering by a single sphere [1,34]. Therefore, the rapidly increasing deviation of this ratio 

from unity for N ≥ 5 in Fig. 22 can also be attributed to multi-particle chains. Similarly, 

F̃
33(Θ) ≡ F̃

44 (Θ) and F̃
33(180°)/F̃

11(180°) ≡ 1 for scattering by a single spherical particle, 

but the cumulative contribution from multi-particle chains in particulate volumes with N ≥ 5 

cause rapidly growing violations of these identities.

If the incident plane-wave field is polarized linearly in the xz-plane then the angular 

distribution of the corresponding cross-polarized scattered intensity is defined by 
1
2[F∼11(Θ) − F∼22(Θ)]. This quantity is plotted in Fig. 23 along with the quantity 

1
2[F∼11(Θ) + F∼44(Θ)] defining the same-helicity scattered intensity for the case of the incident 
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plane-wave field polarized circularly in the counterclockwise direction when looking in the 

direction of the unit vector nînc Both quantities provide the most definitive demonstration of 

the onset of weak localization with increasing N. Indeed, the corresponding single-particle 

curves show no backscattering enhancement whatsoever, so the backscattering peaks that 

develop with increasing N (and thus with growing contributions from multi-particle chains) 

can be attributed unequivocally to weak localization.

Fig. 23 also depicts the angular profiles of the linear and circular polarization ratios defined 

as

μL(Θ) =
F∼11(Θ) − F∼22(Θ)

F∼11(Θ) + 2F∼12(Θ) + F∼22(Θ)
(244)

and

μC(Θ) =
F∼11(Θ) + F∼44(Θ)
F∼11(Θ) − F∼44(Θ)

, (245)

respectively. The first quantity pertains to the case of a linearly polarized plane-wave 

incident field and is the ratio of the cross-polarized and co-polarized scattered intensities. 

The second quantity is relevant to the case of a circularly polarized plane-wave incident field 

and is the ratio of the same-helicity and opposite-helicity scattered intensities [34]. Fig. 23 

demonstrates that the contribution from multi-particle chains serves to increase significantly 

the background deviations of both polarization ratios from zero, while weak localization 

causes pronounced backscattering peaks in the μL and μC angular profiles.

Let us now examine whether it was indeed appropriate to calculate each ensemble-averaged 

scattering pattern in Figs. 22 and 23 by averaging over orientations of only one quasi-

random N-particle configuration. We essentially assumed that the results thus obtained 

would be statistically representative of the average over all possible realizations of the N-

particle group, at least for large N. The correctness of this assumption is confirmed by Fig. 

24 computed for two different realizations of a random 200-particle group populating a k1R 
= 50 imaginary spherical volume. The refractive index of the identical k1r = 4 particles is 

again 1.32. The reader can see that although the two sets of initial coordinates of the 200 

particles were quite different, averaging over all orientations of each configuration yielded 

virtually indistinguishable results.

A more subtle and less ubiquitous manifestation of coherent backscattering can be exhibited 

by a DRM populated by quasi-Rayleigh particles with sizes significantly smaller than the 

wavelength [296]. Fig. 25 depicts the ratio − F2̃1(Θ)/F̃
11(Θ) for a spherical particulate 

volume with k1R = 31 populated by N = 1, …, 1875 identical spherical particles with k1r = 2 

and m = 1.31 [243]. It can be seen that unlike the − F2̃1(Θ)/F̃
11(Θ) trend in Fig. 22, the 
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increase of N first to 75 and then to 750 causes the onset and swift growth of a new feature 

not exhibited by the N = 1 curve. This narrow asymmetric minimum at backscattering angles 

was called the polarization opposition effect [340].

Like other manifestations of coherent backscattering, the polarization opposition effect is 

caused by pairs of multi-particle sequences exemplified by Fig. 21c. A qualitative 

interpretation of this specific feature is shown in Fig. 21g using simple two-particle 

sequences [341]. Particles 1–4 lie in a plane normal to the incidence direction and are 

assumed to have sizes significantly smaller than the wavelength. Particles 1 and 2 lie in the 

scattering plane (defined again as the plane through the illumination and observation 

directions), while the line through particles 3 and 4 is normal to this plane. If the incident 

quasi-monochromatic plane-wave field is unpolarized then both magenta sequences 

contribute scattered light polarized negatively with respect to the scattering plane (i.e., 

having positive values of the Stokes parameter Q), whereas both blue sequences contribute 

positively polarized scattered light (i.e., having negative values of the Stokes parameter Q). 

The phase difference between the conjugate magenta sequences is identically equal to zero, 

while that between the blue sequences is zero when the angle α = 180° − Θ (traditionally 

called the phase angle) is zero, but oscillates rapidly with increasing α. Therefore, on 

average, weak localization will enhance the negatively polarized scattering contributions 

over a wider range of phase angles than the positively polarized contributions. The result is 

the polarization opposition effect in the form of a negative polarization minimum at a small 

α comparable to the angular width of the coherent phase-function peak.

Despite its subtlety,10 the polarization opposition effect was observed in the laboratory much 

earlier than the more ubiquitous backscattering intensity peak. Fig. 26 shows polarization 

measurements by Lyot [342] for a particulate surface obtained by burning a tape of 

magnesium under a glass plate until the deposit on the plate was completely opaque. Lyot 

described the observed phase curve of polarization as “puzzling” and tentatively attributed it 

to the very small size of magnesia grains. Lyot’s results were recently reproduced and 

supplemented by photometric measurements [343] (see Fig. 27). The latter revealed an 

equally narrow backscattering intensity peak, thereby confirming that the backscattering 

intensity and polarization features have weak localization as their common cause. The 

polarization opposition effect with its typically asymmetric angular profile was not formally 

identified as a manifestation of weak localization until 1993 [340]. However, its physical 

origin is precisely the same as that of the so-called azimuthal asymmetry of the coherent 

backscattering cone observed in the late 1980s [298,344,345].

It appears that Oetking [346] was the first to observe weak localization in the form of a 

narrow intensity peak centered at the exact backscattering direction. However, neither Lyot 

nor Oetking offered a correct theoretical explanation of their laboratory results. The first 

theoretical prediction of weak localization was made by Watson [347] with a reference to a 

private communication from R. Ruffine. The first deliberate laboratory demonstrations of 

coherent backscattering accompanied by a correct theoretical interpretation should be 

10For example, we have already pointed out that the bottom left-hand panel of Fig. 22 shows no signs of a sharp polarization 
minimum at backscattering angles emerging with increasing N.
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credited to Kuga and Ishimaru [348], Tsang and Ishimaru [349], Van Albada and Lagendijk 

[350], and Wolf and Maret [351]. Further references can be found in [25,38,352–354]. 

Remarkable manifestations of weak localization in planetary astrophysics are discussed in 

[31,296,306,317,339,340,355–358].

Qualitatively, the effect of increasing the number of particles N in a DRM can be expected to 

be twofold. On one hand, it serves to increase the number of multi-particle sequences and 

thereby enhances such corollaries of the far-field Neumann expansion (237) as the 

smoothness of the scattered intensity at side-scattering directions and the various weak 

localization features at backscattering directions. On the other hand, it eventually yields 

packing density values so high that they cause features in the scattering patterns not implied 

by the far-field Neumann expansion. Therefore, the above qualitative interpretation of 

numerically exact STMM results can become partly or completely inadequate 

[304,305,318]. Fig. 25 shows that this is indeed the case: the black solid curve reveals a 

high-frequency ripple reminiscent of a homogeneous spherical particle with a size parameter 

comparable to that of the entire particulate volume. The corresponding packing density of 

50% is so high that the expansion (237) along with the assumptions of randomness and 

statistical uniformity of particle positions become inapplicable.

Despite this conclusion, the direct solutions of the MMEs displayed in Figs. 22 and 23 do 

demonstrate that the classical corollaries of the low-density limit can survive – at least in a 

semi-quantitative sense – volume packing densities reaching 30%. Such values are typical of 

particle suspensions and many particulate surfaces.

Extensive STMM results reported in [287,296,298,304] have shown that the coherent 

backscattering peaks such as those in Fig. 23 are rounded at Θ = 180° owing to the finite size 

of the respective DRMs. The angular widths of the backscattering peaks and of the 

polarization opposition minimum are inversely proportional to k1R and are independent of N 
until the effects of packing density start to dominate. For the same k1R, the angular widths 

of the backscattering peaks (but not their amplitudes!) are weakly dependent on the particle 

size parameter and refractive index. Mixtures of spherical particles with different size 

parameters or different refractive indices also reveal all typical manifestations of weak 

localization, thereby further corroborating the universal interference nature of this 

phenomenon [307].

In [301], the conventional orientation-averaging procedure developed in the framework of 

the STMM was generalized to include the case of illumination by a finite Gaussian beam. 

Extensive computations demonstrated that all scattering patterns observed in the far zone of 

a random multisphere object and their evolution with decreasing width of the incident beam 

can still be interpreted in terms of forward-scattering interference, coherent backscattering, 

and diffuse background. It was shown in particular that the increasing violation of 

electromagnetic reciprocity with decreasing beam width suppresses and eventually 

eradicates all observable manifestations of weak localization and strongly suppresses the 

forward-scattering interference, while doing virtually nothing to the angular profiles of 

intensity and polarization at intermediate scattering angles.
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To conclude this subsection, let us discuss the applicability of the effective-object 

methodology introduced in Section 6 to Type-1 DRMs. Specifically, we consider the result 

of substituting an imaginary spherical volume filled with a large number of identical 

particles (“inclusions”) by a homogeneous spherical object of the same radius, as shown in 

Fig. 28. Obviously, this substitution belongs to the category of semi-stochastic EOAs. In Fig. 

29, the thick gray curves depict the orientation-averaged far-field STMM results for an 

imaginary k1R = 10 spherical volume populated by N = 15000 identical spherical inclusions, 

each having a size parameter of k1r = 0.2 and a refractive index of m = 1.2. For comparison, 

the thin black curves show the Lorenz–Mie results for the effective-medium counterpart of 

this imaginary spherical volume in the form of a homogeneous spherical particle with k1R = 

10 and meff = 1.023115. Note that this effective refractive-index value follows from the 

Maxwell-Garnett effective-medium rule (EMR) [77] for the resulting 12% volume fraction.

It is patently obvious from Fig. 29 that despite the extremely small size parameter of the 

inclusions and their very large number, the Maxwell-Garnett EMR fails to reproduce the far-

field dimensionless scattering matrix of the Type-1 particulate volume at side- and 

backscattering angles. In fact, the results of extensive Lorenz–Mie computations for 

effective refractive indices other than 1.023115 (not shown) revealed even worse agreement 

with the STMM curves. The likely qualitative explanation of this failure is the “bumpiness” 

effect wherein the discrete inclusions do not reproduce sufficiently well the perfectly smooth 

spherical surface of the effective Maxwell-Garnett scatterer responsible for the large-

amplitude maxima and minima in the Lorenz–Mie curves. Not surprisingly, the Maxwell-

Garnett EMR reproduces the STMM extinction cross section and asymmetry parameter 

much more accurately, the corresponding ratios being Cext
STMM/Cext

MG = 1.0375 and 〈cos Θ〉
STMM/〈cos Θ〉MG = 0.9976.

9. Direct computer modeling of static scattering by Type-2 discrete random 

media

In this section, we discuss the results of representative far-field STMM calculations for 

Type-2 DRMs to analyze how well they can be replicated by the effective-object 

methodology (see also [258,284,321–324,327,328]). For the purposes of our analysis, a 

heterogeneous object is modeled as an actual spherical body randomly filled with N 
identical small spherical inclusions, as shown in Fig. 30a. Following the approach outlined 

in the preceding section, the statistical randomness and uniformity of the object’s interior is 

simulated in two steps. First, we use a random-number generator to create a fixed yet quasi-

random and quasi-uniform configuration of the N inclusions, while making sure that the 

volumes of the inclusions do not cross the object’s boundary and do not overlap. Second, we 

average all far-zone optical observables over the equiprobable orientation distribution of the 

resulting heterogeneous object using the STMM code described in [244].

The STMM results shown in Fig. 31 are obtained by assuming that the size parameter of the 

spherical host is fixed at k1R = 12, while that of the inclusions takes on values k1r = 0.3 and 

1. The respective numbers of the inclusions are N = 12800 and 346, both implying the same 

ρ = 20% volume fraction. The refractive indices of the host and the inclusions are fixed at 

Mishchenko et al. Page 70

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



mhost = 1.33 and mincl = 1.55, respectively. For comparison, we also show the results of 

Lorenz–Mie computations for a homogeneous spherical object with the size parameter k1R 
= 12 and the refractive index mLM = 1.372. This refractive index provides the best fit of the 

Lorenz–Mie scattering matrix to that calculated for the heterogeneous object with N = 12800 

inclusions and, in fact, is very close to the value mMG = 1.3728 predicted by the Maxwell-

Garnett EMR for the given host and inclusion refractive indices and the inclusion volume 

fraction. Again, this EMR is predicated on the replacement of the heterogeneous target by an 

equidimensional homogeneous object with the same outer boundary, as exemplified by Figs. 

30a,b, and belongs to the category of semi-stochastic EOAs. Since the Maxwell-Garnett 

effective refractive index is independent of k1r, the thick gray curves in Fig. 31 represent the 

EMR substitution for both heterogeneous objects.

It is obvious that if the boundary of the host body is perfectly spherical then the Maxwell-

Garnett EMR must reproduce the well-known Lorenz–Mie identity F̃
22 (Θ)/F̃

11(Θ) ≡ 1. 

Therefore, a deviation of the ratio F̃
22 (Θ)/F̃

11(Θ) for a heterogeneous spherical object from 

100% is the most direct and unequivocal indicator of the numerical inaccuracy of the 

effective-medium methodology. Fig. 31 shows that the inclusion size parameter k1r = 0.3 

yields F̃
22(Θ)/F̃

11(Θ) values hardly distinguishable from 100%, whereas the inclusion size 

parameter k1r = 1 causes an obvious failure of the EMR.

Comparison of Figs. 29 and 31 reveals that the performance of the Maxwell-Garnett EMR is 

markedly better in the case of the Type-2 DRM, probably owing to the absence of the 

bumpiness effect. In fact, the nearly perfect agreement between the STMM curves for k1r = 

0.3 and the Lorenz–Mie curves in Fig. 31 provides a convincing numerical validation of the 

effective-object hypothesis underlying the Maxwell-Garnett rule for Type-2 DRMs and 

should motivate efforts to derive this rule analytically from the MMEs. Still the STMM 

results for k1r = 1 in Fig. 31 show that the range of applicability of the EMR in terms of the 

maximal permissible inclusion size parameter can be quite limited. This result should also 

be explained by the analytical derivation.

In general, the optical cross sections and the asymmetry parameter are known to be less 

sensitive functions of the object’s morphology than the elements of the scattering matrix. 

One can therefore expect a somewhat better accuracy of the Maxwell-Garnett prediction of 

the integral radiometric characteristics than that of the angular scattering-matrix profiles 

even for relatively large inclusions. This is indeed the case, the corresponding ratios being 

very close to unity for both inclusion size parameters: Cext
STMM/Cext

MG = 1.0066 and 〈cos Θ〉

STMM/〈cos Θ〉MG = 0.9975 for k1r = 0.3 and Cext
STMM/Cext

MG = 1.0209 and 〈cos Θ〉STMM/〈cos 

Θ〉MG = 0.9779 for k1r = 1.

To further substantiate the effective-medium hypothesis, in Fig. 32 we show the results of T-

matrix computations for a spherical host with k1R = 10 and mhost = 1.33 randomly populated 

by two kinds of k1r = 0.3 inclusions having refractive indices mincl,1 = 1.45 and mincl,2 = 1.6. 

The number of each kind of inclusions is 4000. It is seen that the T-matrix results can be 

reproduced nearly perfectly by the Lorenz–Mie results for a homogeneous spherical object 

with k1R = 10 and mLM = 1.37. Interestingly, almost the same refractive index (mEMR = 
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1.3696) follows from the n-component effective-mixing rule [77]. The agreement between 

the respective extinction cross sections and asymmetry parameters is also excellent: 

Cext
STMM/Cext

LM = 0.9895 and 〈cos Θ〉STMM/〈cos Θ〉LM = 0.9943.

Finally, in Figs. 33 and 34 we display the T-matrix results for two cases when the refractive 

index of the host exceeds that of the inclusions. Specifically, mhost = 1.4 in Fig. 33 and mhost 

= 1.6 in Fig. 34, while the inclusions are spherical voids with mincl = 1. The other 

parameters of both heterogeneous spherical objects are as follows: k1R = 10, k1r = 0.3, and 

N = 8000. It is seen that in these two cases, the diviations of the STMM curves for the 

scattering matrix elements other than the phase function from their best-fit Lorenz–Mie 

counterparts (corresponding to mLM = 1.32 in Fig. 33 and mLM = 1.472 in Fig. 34) are more 

noticeable than before, while the F̃
22 (Θ)/F1̃1(Θ) STMM curve in Fig. 34 signals significant 

problems with the very EMA methodology. Furthemore, the corresponding Maxwell-Garnett 

refractive indices (mMG = 1.3123 and 1.4694, respectively) differ substantially from their 

best-fit Lorenz–Mie values. Yet Table 3 shows that the Maxwell-Garnett refractive indices 

yield more accurate predictions of the extinction cross section and asymmetry parameter 

than the Lorenz–Mie refractive indices inferred by best-fitting the STMM scattering-matrix 

results in Figs. 33 and 34. Again, the still-to-be-developed analytical theory of the 

macroscopic effective-medium regime will need to explain all these numerically exact 

findings.

10. First-order-scattering approximation

Although using a numerically exact computer solver of the MMEs is the preferred way of 

quantifying electromagnetic scattering by a DRM, the applicability of this direct approach is 

still limited in terms of the number of constituent particles and the overall size of the 

particulate volume relative to the wavelength. However, there are two well-defined and 

often-encountered kinds of Type-1 DRM which allow for an explicit use of the far-field 

Foldy equations discussed in Subsection 4.10. As a result, one can derive analytically rather 

simple expressions or equations for key optical observables which provide for much more 

efficient computations by bypassing the calculation of the electromagnetic field itself. The 

particles forming either kind of DRM are sparsely and randomly distributed, but their 

number N must be sufficiently small for the first kind or tend to infinity for the second kind. 

In either case the far-field conditions (89)–(91) do not apply to the whole DRM, which 

makes it necessary to first compute the ensemble-averaged Poynting–Stokes tensor and then 

use it to quantify the energy budget of the DRM and the reading of a near-field WCR [34].

Let us first consider the first kind of Type-1 DRM by assuming that:

• N is sufficiently small and the average interparticle distance is sufficiently large 

that in the framework of the Foldy equations each particle can be considered as 

being “excited” only by the incident field;

• the N-particle DRM is observed from a distance r much greater than any linear 

dimension L of the imaginary volume V circumscribing the DRM:
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r ≫ L; (246)

• the observation point is allowed to be in the near zone of the entire DRM but is 

assumed to be distant enough to reside in the far zone of any of the N particles 

constituting the DRM;

• all N particles are moving randomly and independently of each other throughout 

the imaginary volume V;

• the physical states of the N particles change randomly and independently of each 

other as well as independently of the particle positions, where, as before, the 

physical state of a particle includes all its physical characteristics except 

coordinates.

These requirements are often satisfied in laboratory and in situ measurements of light 

scattering by tenuous collections of small particles such as those discussed in [176,359–

366].

According to the above assumptions, the second term on the right-hand side of Eq. (141) can 

be neglected in comparison with the first term. Let us choose the origin O of the laboratory 

coordinate system close to the geometrical center of the N-particle DRM and assume that 

the observation point resides close enough to be in the near zone of the entire object yet 

sufficiently far to be in the far zone of any of the N constituent particles (Fig. 35). Eqs. (75), 

(85), (86), and (140) then imply that

E∼sca(r) = ∑
i = 1

N
exp (ik1ninc · Ri)

exp (ik1ri)
ri

A i(ri, ninc) · E∼0
inc . (247)

Let us now assume that the N-particle DRM is ergodic so that we can use Eq. (219b). Also, 

all particle positions Ri, as well as all particle physical states ξi (and thus the corresponding 

particle-centered scattering dyadics A↔i (r̂i, n̂inc)) as functions of time are considered to be 

independent random processes. This implies that averaging over all the individual-particle 

physical states and over all the individual-particle coordinates can be performed 

independently:

〈…〉Ψ = 〈〈…〉R〉
ξ

. (248)

To average over the individual particle coordinates, we assume that the corresponding 

coordinate probability density functions are given by
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pR(Ri) =
1/V if Ri ∈ V ,
0 if Ri ∉ V

for any i = 1, …, N . (249)

This means that the individual positions of all the N particles throughout the entire volume 

V are mutually independent and statistically equiprobable. This is consistent with the 

assumption that the average particle packing density is sufficiently small. Finally, we assume 

that that the angular dependence of the individual particle-centered scattering dyadics is 

weak enough that at the large distance r from the DRM,

A i(ri, s) ≈ A i(r, s) for any i, (250)

where r̂ is the unit vector originating at O and pointing in the direction of the observation 

point r (Fig. 35).

Let us first quantify the energy budget of the entire N-particle DRM. This entails 

surrounding the volume V by an imaginary sphere S with a radius r much greater than the 

volume’s typical linear dimension L, as sketched in Fig. 35, and evaluating the integral

〈〈Wabs(t)〉〉 = − Re ∫
S

d2r〈〈S(r, t)〉〉 · r . (251)

The explicit derivation detailed in [34] requires two more assumptions. First, the size 

parameter of the volume V must be much greater than unity:

k1L ≫ 1. (252)

Second, the sum of the individual extinction cross sections of the N particles forming the 

DRM must be much smaller than the geometrical cross section of the volume V. The final 

result, formulated here for the general case of quasi-monochromatic scattering, is as follows:

〈〈Wabs(t)〉〉 = 〈〈Wext(t)〉〉 − 〈〈Wsca(t)〉〉, (253)

where
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〈〈Wext(t)〉〉 = ∑
i = 1

N
[〈K11(ninc; ξi)〉ξi

〈〈Iinc(t)〉〉 + 〈K12(ninc; ξi)〉ξi
〈〈Qinc(t)〉〉 + 〈K13(ninc; ξi)〉ξi

〈〈Uinc(t)〉〉 + 〈K14(ninc; ξi)〉ξi
〈〈V inc(t)〉〉],

(254)

〈〈Wsca(t)〉〉 = ∫
4π

dr ∑
i = 1

N
[〈Z11(r, ninc; ξi)〉ξi

〈〈Iinc(t)〉〉 + 〈Z12(r, ninc; ξi)〉ξi
〈〈Qinc(t)〉〉

+ 〈Z13(r, ninc; ξi)〉ξi
〈〈Uinc(t)〉〉 + 〈Z14(r, ninc; ξi)〉ξi

〈〈V inc(t)〉〉] .

(255)

In the above formulas, K(n̂inc; ξi) and Z(r̂, n̂inc; ξi) are the particle-centered extinction and 

phase matrices of particle i, respectively.

Let us now consider the electromagnetic response of the two distant polarimetric WCRs 

shown in Fig. 36, each having its optical axis centered at the volume element V. Both 

instruments are located in the near zone of the DRM yet sufficiently far from it so that each 

partial wavelet contributing to the right-hand side of Eq. (247) becomes locally flat by the 

time it reaches a WCR. Furthermore, although the acceptance solid angle ΔΩ of either WCR 

is very small, its distance r from the center of the DRM is large enough that the solid angle 

subtended by V, as viewed from the WCR, is smaller than ΔΩ. As a result, either WCR 

captures all N partial wavelets irrespective of particles’ locations within V, while WCR 2 

also captures the incident plane wave.

According to Subsection 4.5, WCR 1 integrates over its objective lens the time-averaged 

Stokes column vector of the superposition of the N quasi-plane wavelets propagating in 

essentially the same direction r̂1. Since WCR 1 does not capture the incident plane 

wavefront, it can be shown [34] that the quasi-monochromatic response of WCR 1 averaged 

over a sufficiently long period of time is given by

〈〈Signal 1(t)〉〉 =
Sol
r2 ∑

i = 1

N
〈Z(r1, ninc; ξi)〉ξi

〈〈Iinc(t)〉〉 . (256)

The {objective lens, diaphragm} filter of WCR 2 passes the incident plane wave in addition 

to the N partial quasi-plane wavelets. As a consequence, the integration of the resulting 

Stokes column vector over the entrance pupil of WCR 2 yields [34]:
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〈〈Signal 2(t)〉〉 = Sol〈〈Iinc(t)〉〉 − ∑
i = 1

N
〈K(ninc; ξi)〉ξi

〈〈Iinc(t)〉〉
Sol
r2 ∑

i = 1

N
〈Z(ninc, ninc; ξi)〉ξi

〈〈Iinc

(t)〉〉 .

(257)

Eqs. (253)–(257) represent the so-called first-order-scattering approximation for the Type-1 

DRM in the form of a small ergodic group of sparsely distributed particles. Comparison of 

these formulas with their far-field counterparts (205)–(209) shows that the reading of a near-

zone yet sufficiently distant WCR can be quantified by summing up the corresponding 

single-particle far-field readings.

A fundamental consequence of the additivity of the extinction and phase matrices in Eqs. 

(254)–(257) is that the actual N-particle DRM is optically indistinguishable from that 

consisting of N statistically identical particles, each having the same average extinction and 

phase matrices given by

〈K(ninc; ξ)〉ξ = 1
N ∑

i = 1

N
〈K(ninc; ξi)〉ξi

,

〈Z(r, ninc; ξ)〉ξ = 1
N ∑

i = 1

N
〈Z(r, ninc; ξi)〉ξi

.
(258)

The matrices 〈K(n̂inc; ξ)〉ξ and 〈Z(r̂, n̂inc;ξ)〉ξ can be thought of as being averaged over a 

synthetic distribution of physical states of one particle pξ(ξ) derived from the N individual-

particle distributions pξi(ξi). Then Eqs. (254)–(257) take the following simplified form:

〈〈Wext(t)〉〉 = N[〈K11(ninc; ξ)〉
ξ
〈〈Iinc(t)〉〉 + 〈K12(ninc · ξ)〉

ξ
〈〈Qinc(t)〉〉 + 〈K13(ninc; ξ)〉

ξ
〈

〈Uinc(t)〉〉 + 〈K14(ninc; ξ)〉
ξ
〈〈V inc(t)〉〉],

(259)

〈〈Wsca(t)〉〉 = N∫
4π

dr [〈Z11(r, ninc; ξ)〉
ξ
〈〈Iinc(t)〉〉 + 〈Z12(r, ninc; ξ)〉

ξ
〈〈Qinc(t)〉〉

+ 〈Z13(r, ninc; ξ)〉
ξ
〈〈Uinc(t)〉〉 + 〈Z14(r, ninc; ξ)〉

ξ
〈〈V inc(t)〉〉],

(260)
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〈〈Signal 1(t)〉〉 =
Sol
r2 N〈Z(r1, ninc; ξ)〉

ξ
〈〈Iinc(t)〉〉, (261)

〈〈Signal 2(t)〉〉 = Sol〈〈Iinc(t)〉〉 − N〈K(ninc; ξ)〉ξ〈〈Iinc(t)〉〉 +
Sol
r2 N〈Z(ninc, ninc; ξ)〉ξ〈〈Iinc(t)〉

〉 .

(262)

The principal advantage of the first-order-scattering approximation is that it obviates the 

need to explicitly solve the MMEs for a statistically representative set of sparse N-particle 

configurations and replaces this complicated task by the much simpler task of finding the 

far-field solution of the MMEs for one isolated particle followed by averaging this solution 

over a representative distribution of particle physical states. Furthermore, there is no need to 

satisfy the most challenging requirement of the far-field approximation, viz., the inequality 

(91), by applying it to the entire volume V.

The analytical derivation of the first-order-scattering approximation does not involve an 

explicit requirement that the N constituent particles be in the far-zones of each other. 

Instead, the most important explicit requirement leading to Eqs. (259)–(262) is that the 

second term on the right-hand side of Eq. (141) be much smaller than the first term. 

However, this requirement does imply that the average separation between the particles must 

be appropriately large and their total number N must be sufficiently small. These qualitative 

criteria were analyzed using numerically exact STMM results in [288]. Further insight can 

be gained from recalling that Eq. (138) is valid in the near zone as well as in the far zone of 

a DRM. Therefore, far-field STMM computations based on this formula should be a good 

test of the accuracy of Eq. (259). Table 4 shows the values of the ratio 〈〈W̄ext (t)〉〉FOSA/

〈〈W̄
ext(t)〉〉STMM for an imaginary spherical volume with a size parameter k1R = 50 

randomly filled with N identical spherical particles having a size parameter of k1r = 4 and a 

refractive index of m = 1.32. The incident field is assumed to be quasi-monochromatic and 

unpolarized. Also shown are the corresponding values of the packing density ρ = N(r/R)3. It 

is obvious that only packing densities of one percent or less can ensure high numerical 

accuracy of the first-order-scattering approximation.

The main difference between the far-zone formula (98) and the near-zone formula (261) is 

that the latter completely ignores the forward-scattering interference explained in Fig. 21b 

and discussed in Subsection 8.2. Yet at side- and back-scattering angles both formulas 

should give similar results provided that the main requirements of the first-order-scattering 

approximation are met. In particular, the ratios of the elements of the phase matrix must 

become N-independent. Fig. 22 shows that this is the case only when N is smaller than 20. 
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According to Table 4, this again implies that the packing density must be less than one 

percent.

11. Radiative transfer and coherent backscattering

11.1. Radiative transfer theory

Another analytical approach directly derivable from the MMEs is what is traditionally called 

the radiative transfer theory. In this case it is assumed that:

• the N particles forming the Type-1 DRM (Fig. 3a) are separated widely enough 

that each of them is located in the far zones of all the other particles;

• the observation point is located in the far zone of any particle in the group (but, 

in general, in the near zone of the entire group);

• N is very large: N → ∞.

The first assumption implies the applicability of the algebraic far-field FEs (149) and (151). 

According to the second assumption, the total field at any observation point located 

sufficiently far from any particle in the sparse DRM is the superposition of the incident 

plane wave and N partial spherical wavelets contributed by the N particles. The observation 

point does not have to be in the far zone of the entire group and can be anywhere in space, 

including inside the DRM, as long as it resides in the far zones of all the N particles 

constituting the DRM (see Subsection 4.10).

The third assumption implies that we can replace the full far-field Neumann expansion (237) 

by the much simpler so-called Twersky expansion. Indeed, the terms with j = i and l = j in 

the triple summation on the right-hand side of Eq. (237) are excluded, but the terms with l = 

i are retained. Therefore, we can decompose this summation as follows:

∑
i = 1

N
∑
j = 1
j ≠ i

N
∑
l = 1
l ≠ j

N
⋯ = ∑

i = 1

N
∑
j = 1
j ≠ i

N
∑
l = 1
l ≠ i
l ≠ j

N
⋯ + ∑

i = 1

N
∑
j = 1
j ≠ i

N
∑
l = 1

N
δ jl × ⋯, (263)

where δjl is the Kronecker delta. Higher-order summations in Eq. (237) can be decomposed 

similarly. The first group of terms on the right-hand side of Eq. (263) is contributed by “self-

avoiding” sequences of particles, whereas the second group includes contributions from 

sequences that involve a particle more than once. The approximation introduced by Twersky 

[367] helps simplify Eq. (237) by retaining only the terms contributed by all self-avoiding 

multi-particle sequences. In the limit N → ∞ the Twersky approximation accounts for the 

overwhelming majority of multi-particle sequences and thus can be expected to yield 

asymptotically accurate results.

Since we are dealing with a near-field problem, the solution must be based on the calculation 

of the time-averaged Poynting–Stokes tensor or, more generally, the time-averaged dyadic 

correlation function (152). Using the Twersky approximation of the Neumann expansion 
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(237), the Twersky approximation for the dyadic correlation function can be formulated 

diagrammatically according to Fig. 37. The different terms entering the expanded expression 

inside the angular brackets on the right-hand side of this equation can be classified using the 

notation introduced in Fig. 38a. In this particular case, the upper and lower multi-particle 

sequences involve different particles. However, the two multi-particle sequences can involve 

one or more common particles, as indicated in Figs. 38c–f by the dashed connectors. 

Moreover, if the number of common particles in a diagram is two or more then they can 

enter the upper and lower sequences in the same order, as in Fig. 38d, or in the reverse order, 

as in Fig. 38e. The diagrams without crossing connectors are called ladder diagrams. Two 

such diagrams are exemplified by Figs. 21d,e. Fig. 38f gives an example of a mixed diagram 

wherein two common particles appear in the same order while two other common particles 

appear in the reverse order. By the very nature of the Twersky approximation, no particle can 

appear in either the upper or the lower sequence more than once.

According to the preceding discussion, the assumption of full ergodicity of the DRM allows 

us to replace the calculation of the time average 〈〈C↔(r′, r; t)〉〉 by the calculation of the 

ensemble average 〈C↔(r′, r; Ψ)〉Ψ = 〈C↔(r′, r; R, ξ)〉R,ξ, where R denotes the complete 

set of particle coordinates and ξ denotes the complete set of particle physical states. This 

problem is still very complex in general, but becomes more manageable if we further assume 

that:

• The position and physical state of each particle are statistically independent of 

each other and of those of all the other particles.

• The physical states of all the particles have the same statistical characteristics.

• The spatial distribution of the particles throughout the medium is completely 

random and statistically uniform.

• All diagrams with crossing connectors in the diagrammatic expansion of the 

dyadic correlation function can be ignored.

This is the gist of the ladder approximation [368]. The subsequent analytical derivation is 

detailed in [34] (see also [25,187]) and is not dwelled upon in this Report since it contains 

no new concepts and is a straightforward mathematical exercise. An important intermediate 

step is the emergence of the following matrix integro-differential equation:

q · ∇ I∼(r, q) = − n0〈K(q; ξ)〉ξ I∼(r, q) + n0∫4π
dq′〈Z(q, q′; ξ)〉ξ I∼(r, q′) (264)

traditionally called the radiative transfer equation (RTE). Here, n0 = N/V is the average 

number of particles per unit volume; 〈K(q̂; ξ)〉ξ is the single-particle extinction matrix 

averaged over the physical states of all the N particles; 〈Z(q̂, q̂′; ξ)〉ξ is the single-particle 

phase matrix, also averaged over the physical states of all the N particles constituting the 

DRM; and
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I∼(r, q) =

I∼(r, q)
Q
∼(r, q)
U∼(r, q)
V∼(r, q)

(265)

is the real-valued so-called specific intensity column vector. The RTE is supplemented by 

the boundary condition

I∼ (r, q←) r ∈ S
= δ(ninc − q←)〈〈Iinc(t)〉〉, (266)

where S is the boundary of the Type-1 DRM (Fig. 3a), q̂← is any unit vector directed into 
the volume V, and δ(ŝ) is the solid-angle delta function. Note that Eqs. (264)–(266) are valid 

in the general case of the quasi-monochromatic plane-wave incident field (168)–(169).

It is convenient to decompose the total specific intensity column vector into so-called 

coherent (subscript “c”) and diffuse (subscript “d”) components:

I∼(r, q) = δ(ninc − q)Ic(r) + I∼d(r, q) . (267)

It is easily seen that these quantities are solutions of the following boundary-value problems:

ninc · ∇Ic(r) = − n0〈K(ninc; ξ)〉ξIc(r), (268)

Ic(r) ∣r ∈ Sill
= 〈〈Iinc(t)〉〉, (269)

q · ∇ I∼d(r, q) = − n0〈K(q; ξ)〉ξ I∼d(r, q) + n0∫4π
dq′〈Z(q, q′; ξ)〉ξ I∼d(r, q′)

+ n0〈Z(q, ninc; ξ)〉ξIc(r),

(270)

I∼d(r, q←) r ∈ S
= 0, (271)
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where Sill the illuminated part of the boundary S and 0 is a zero four-component column. 

The obvious solution of Eq. (268) is the straightforward matrix generalization of the famous 

Bouguer exponential attenuation law [93,94,100]:

Ic(r) = exp [ − n0s〈K(ninc; ξ)〉ξ]〈〈Iinc(t)〉〉, (272)

where s is the distance between the observation point r and Sill along the straight line 

parallel to n̂inc.

The solution of the RTE can be directly used to compute relevant near-field optical 

observables. For example, the energy-budget problem is solved by using the following 

formula for the time-averaged local Poynting vector:

〈〈S(r, t)〉〉 = ∫
4π

dqqI∼(r, q), (273)

where Ĩ(r, q̂), traditionally called the specific intensity, is the first element of the specific 

intensity column vector (265). The reading of a polarization-sensitive WCR centered around 

the “propagation direction” q̂ per unit time is given by

〈〈Signal (r, q; t)〉〉 = Sol∫ΔΩq
dq′ I∼(r, q′) =

SolIc(r) + SolΔΩ I∼d(r, ninc) if q = ninc,

SolΔΩ I∼d(r, q) if q ≠ ninc,
(274)

where it is assumed that the WCR is placed inside the DRM (Fig. 39) and, as before, ΔΩ is 

the WCR’s acceptance solid angle.

The implications of the derivation of Eqs. (264)–(274) directly from the MMEs are quite 

profound and are discussed in [34], while the genesis of these formulas is traced in [100]. 

There are several efficient computer solvers of the RTE [25,57,59,60,64,66,369–372] which 

make it much easier to deal with the RTE than with the MMEs. The fact that the reading of 

the WCR can be modeled theoretically by solving the RTE often makes the {WCR, RTE} 

combination a useful optical-characterization tool. Moreover, comparison of Eqs. (273) and 

(274) shows that a WCR can be used to measure the local time-averaged Poynting vector by 

integrating its signal over the entire range q̂ ∈ 4π and thereby solve the energy-budget 

problem experimentally. Needless to say, to enable such optical-characterization and energy-

budget applications based on the radiative transfer theory, the DRM must possess the 

specific macro- and microphysical properties discussed in the beginning of this subsection.

11.2. The Tyndall effect

It is easily seen that in the absence of the integral term on the right-hand side of Eq. (264), 

the solution Ĩ(r, q̂) of the RTE subject to the boundary condition (266) would reduce to
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I∼(r, q) = δ(ninc − q)Ic(r) . (275)

This is equivalent to using the coherent-field approximation, i.e., to keeping only the first 

term on the right-hand side of Eq. (218b). As a consequence, the reading of the WCR in Fig. 

39 would be nonzero only if the inward optical axis of the instrument was perfectly aligned 

with the incidence direction (cf. Eq. (274)). The fact that a WCR immersed in or looking at a 

turbid medium and having its axis not aligned with the incidence direction can generate a 

nonzero signal is explained by the presence of the integral term in the RTE causing a non-

zero diffuse specific intensity column vector Ĩd (r, q̂) and the resulting inadequacy of the 

coherent-field approximation. This optical phenomenon was first identified by John Tyndall 

[373,374] and is often called the Tyndall effect. Its physical origin can be traced all the way 

back to the inequalities (187) and (188).

Typical manifestations of the Tyndall effect primarily caused by the last term on the right-

hand side of Eq. (270) are shown in Figs. 30c–e. In Fig. 30c the laser beam is “invisible” 

when it passes through the glass containing pure water but becomes “visible” (i.e., causes a 

nonzero reaction of the photographic camera) when it passes through a colloidal suspension. 

Similarly, the “solar rays” become “visible” upon scattering by haze or fog particles in Figs. 

30d,e.

11.3. Weak localization

We have seen that a major approximation in deriving Eqs. (264)–(274) was keeping only the 

ladder component of the dyadic correlation function. An improvement could be the 

computation of the so-called “cyclical” component caused by pairs of multi-particle 

sequences exemplified by Figs. 21c,f. Indeed, let us again consider the scattering by a 

Type-1 DRM as shown schematically in Fig. 40. The DRM is illuminated by a quasi-

monochromatic plane-wave field. It is straightforward to show that upon statistical 

averaging, the contribution to the total Poynting–Stokes tensor of all the diagrams of the 

type illustrated in Fig. 41 must vanish at near-field observation points located either inside 

(observation point 1) or outside (observation point 2) the object. However, as discussed in 

Subsection 8.2, there is an exception corresponding to the situation when the observation 

point is in the far zone of the entire DRM and is located within its “back-shadow” 

(observation point 3 in Fig. 40). Then the class of diagrams illustrated by Figs. 21c,f and 

41c–e makes a nonzero contribution that causes the coherent backscattering effect. These 

diagrams are called maximally crossed or cyclical [375] because they can be drawn in such a 

way that all connectors cross at one point.

The inclusion of the cyclical diagrams makes the computation of the total Poynting–Stokes 

tensor much more involved [25] and limits the range of problems that can be solved 

analytically [305,318]. A fully analytical solution has so far been derived only for a semi-

infinite layer composed of nonabsorbing Rayleigh scatterers [376]. In general, no closed-

form analytical equation similar to the RTE has been derived for the computation of the 

coherent component of the total Poynting–Stokes tensor. As a consequence, this cyclical 

Mishchenko et al. Page 82

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



component is often computed using the direct Monte Carlo summation of the cyclical 

diagrams [339,377].

11.4. Validation of the analytical theory of radiative transfer and weak localization

By virtue of being a direct corollary of the MMEs, the radiative transfer–weak localization 

(RT–WL) theory contains no adjustable parameters inherent in semi-empirical and 

phenomenological approaches. As such, it can unambiguously be compared with computer 

solutions of the MMEs and results of controlled laboratory experiments. This is very 

important, since some of the assumptions made earlier in this section are semi-qualitative 

and thus need to be clarified quantitatively. Indeed, the RT–WL theory is fundamentally 

based on the asymptotic requirements ρ ≪ 1 and N ≫ 1, where, as before, ρ is the particle 

packing density. The first inequality ensures that particle positions inside the volume are 

random, mutually independent, and statistically uniform. Furthermore, in the case of 

particles with sizes comparable to and greater than the wavelength, it ensures that each 

particle is located in the far zones of all the other particles constituting the DRM. The 

second inequality allows one to ignore non-self-avoiding diagrams in the far-field Neumann 

expansion (237). The combination of these inequalities implies that the overall size 

parameter of the DRM must be much greater than unity. While these inequalities are 

essential in the derivation of the RT–WL theory from the MMEs, the derivation in and of 

itself does not yield specific numerical estimates of the largest allowable packing density 

and the smallest allowable number of particles. Such estimates can only be derived from 

quantitative comparisons of the approximate RT–WL results with numerical data obtained 

by either directly solving the MMEs or performing a detailed optical experiment on a fully 

characterized DRM.

An important consequence of the analytical derivation summarized in Subsection 11.1 is that 

although Eq. (274) has been obtained while assuming that the observation point r is located 

in the near zone of the DRM, the entire volume starts to behave like a single far-field 

scatterer as r → ∞ [34]. This makes it possible to validate the RT theory (alone and in 

combination with the WL theory) using far-field STMM computations and the Monte Carlo 

computer simulator described in [339,377]. Some results of this validation [308] (see also 

[295,310,311]) are shown in Fig. 42. The computations were carried out for two models of a 

spherical Type-1 DRM with a size parameter of k1R = 40. All constituent spherical particles 

are identical and have the refractive index m = 1.31 and the size parameter k1r = 2. The 

number of particles and the corresponding packing density are N = 250, ρ = 3.125% in the 

left-hand column and N = 500, ρ = 6.25% in the right-hand column, where, as before, ρ = 

Nr3/R3. Fig. 42 displays separately the RT-only and the combined RT–WL results.

The comparison in Fig. 42 leads to the following instructive conclusions:

• Although the DRMs studied contain modest numbers of particles, the packing 

density deviates from zero significantly, and the size parameter of the DRMs is 

moderate, the quantitative agreement between the exact STMM and approximate 

RT–WL results is quite evident. Overall, this comparison confirms the 

mesoscopic rooting of the RT–WL theory in the MMEs traced in Subsections 8.2 

and 11.1.

Mishchenko et al. Page 83

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



• A scattering-angle range where the STMM and RT results disagree 

fundamentally is that corresponding to forward-scattering directions. This result 

can be explained by different ways of treating the effect of forward-scattering 

interference. Indeed, in the framework of the expressly near-field RT theory, this 

effect is incorporated mathematically in the computation of the exponential 

attenuation rate inside the particulate volume [25,34], whereas, in the framework 

of far-field STMM computations it causes the strong and narrow interference 

peak discussed in Subsection 8.2.11

• Outside a relatively narrow range of backscattering angles, the RT-only and the 

full RT–WL results are very close. This is consistent with the physical 

interpretation of weak localization as a backscattering interference phenomenon.

• The RT-only results do not reproduce the backscattering peaks in the phase 

function F̃
11(Θ) and in the linear and circular polarization ratios defined by Eqs. 

(244) and (245), as well as the asymmetric minimum in the ratio − F̃
12 (Θ)/

F̃
11(Θ) at backscattering angles exhibited by the STMM results. The inclusion of 

the cyclical diagrams serves to reproduce these backscattering features very 

closely, which is again indicative of their weak-localization nature.

• The residual differences between the RT–WL and the STMM results at side- and 

backscattering angles decrease with decreasing packing density, which is an 

expected result. However, they persist even at packing densities as small as ~3%, 

possibly in part because the reduction of ρ is achieved by decreasing N and thus 

violating more significantly the requisite inequality N ≫ 1.

In another recent paper [378], the RT theory was tested against the results of a controlled 

laboratory experiment. Specifically, the results of high-accuracy measurements of the Stokes 

reflection matrix for fully-characterized suspensions of submicrometer-sized latex particles 

in water were compared with the results of a numerically exact computer solution of the 

RTE based on the so-called adding method [57,66]. The quantitative performance of the 

RTE was monitored by increasing the volume packing density of the latex particles from 2% 

to 10%. The results of this study indicate that the RTE can be applied safely to DRMs with 

packing densities up to 2%. Radiative-transfer results for packing densities of the order of 

5% should be taken with great caution, while the polarized bidirectional reflectivity of 

suspensions with larger packing densities cannot be accurately predicted. These conclusions 

are generally consistent with the results of [308].

12. Fixed particulate media

We have seen in Section 8 that the diffuse speckle-free regime naturally develops from the 

speckle regime upon averaging optical observables over changing particle positions. 

Furthermore, we have seen in Subsection 11.1 that it is the averaging over random particle 

coordinates that effectively leads to the RTE (264). In the case of a fixed particulate medium 

such as a powder surface, a sheet of paper, or a layer of paint, the speckle regime caused by 

11Note that in [312] the RT exponential extinction law was reproduced by near-field STMM computations.

Mishchenko et al. Page 84

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



scattering of a collimated monochromatic or quasi-monochromatic beam persists and is 

easily detectable with a WCR having a sufficiently fine angular resolution [44,45,379].

As discussed in Section 5.3 of [238], the speckle regime can get suppressed in many 

practical applications owing to the use of polychromatic sources of light, uncollimated 

illumination, and/or detectors of light integrating over a wide solid angle of scattering 

directions. In particular, it is the non-detection of speckle in such applications that has led to 

the widespread belief that the RT theory or its ad hoc modifications can be used to describe 

electromagnetic scattering by fixed particulate layers.

It is important to recognize however that the RTE has never been derived directly from the 

MMEs by averaging optical observables over a range of incidence and/or scattering 

directions or over a finite spectral range instead of averaging over varying particle positions. 

Therefore, the only way to verify quantitatively whether a fixed particulate medium can 

behave optically as a DRM is to analyze the results of direct computer solutions of the 

MMEs.

Fig. 43 shows the results of STMM computations of the dimensionless scattering matrix for 

two objects. The first one is a fixed configuration of N = 200 particles with k1r = 4 and m = 

1.32 quasi-randomly and quasi-uniformly populating an imaginary k1R = 50 spherical 

volume and yielding a 10% packing density. In this case the scattering matrix is defined 

according to

F∼(Θ) = 4π
Csca

Z(θsca = Θ, φsca = 0; θinc = 0, φinc = 0), (276)

where Csca is given by

Csca = ∫
4π

dnscaZ11(θsca, φsca; θinc = 0, φinc = 0), (277)

and is depicted by thin black curves. The second object is a DRM modeled by assuming a 

uniform orientation distribution of the first object. In this case the scattering matrix is 

defined by Eq. (228) and is depicted by thick gray curves. Consistent with the discussion in 

Subsection 8.1, the sharp large-amplitude oscillations exhibited by the thin black curves 

represent speckles typical of a fixed multi-particle configuration, whereas the smooth thick 

gray curves are representative of a DRM.

Fig. 44 is analogous to Fig. 43, but now the scattering matrix (276) of the fixed multi-

particle configuration computed at a single wavelength is replaced by the average over a 

range of wavelengths:
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F∼(Θ) = 4π
〈Csca〉Δλ

〈Z(θsca = Θ, φsca = 0; θinc = 0, φinc = 0)〉Δλ . (278)

It is assumed that (i) the incident field is a polychromatic parallel beam with quasi-

monochromatic components, and (ii) all quasi-monochromatic components have the same 

Stokes parameters (see Section 13.6 of [34]). The spectral range ΔΩ is equal to 1/10 of the 

central wavelength, which implies that k1R ranges from 47.5 to 52.5 and k1r ranges from 3.8 

to 4.2. The numerical integration over ΔΩ was performed using a Gaussian quadrature 

formula with 100 division points.

The comparison of Figs. 43 and 44 is quite revealing. First of all, it confirms that averaging 

the scattering matrix over a finite spectral range serves as an extremely efficient suppressor 

of speckles generated by a fixed multi-particle configuration. Second of all, it demonstrates 

that as a consequence of spectral averaging the scattering properties of the fixed multi-

particle configuration become very similar to those of the “morphologically-equivalent” 

DRM. This result [380] is qualitatively consistent with Eq. (241) which shows that the phase 

difference between two multi-particle sequences can be randomized not only by changing 

particle positions but also by varying the wavelength.

Although these conclusions should be viewed as preliminary and should be corroborated by 

further research, they appear to support the conventional belief that depending on specific 

measurement settings (e.g., polychromatic illumination), the notion of a DRM can often be 

broadened to encompass fixed particulate media.

13. Concluding remarks

The overall objective of this Report was to outline the first-principles physical framework of 

the discipline of electromagnetic scattering by a (slowly varying) DRM, formulate the 

resulting physical and mathematical problems in maximally rigorous terms, and discuss the 

most robust and well-characterized ways of addressing these problems. We intentionally 

focused on numerically exact computer solutions of the MMEs as the most reliable way of 

obtaining profound physical insights unavailable with phenomenological and heuristic 

theories. We also discussed how the first-order-scattering approximation, the radiative 

transfer theory, and the theory of weak localization of electromagnetic waves can be derived 

directly from the Maxwell equations for very specific and well-defined kinds of particulate 

medium.12 The main advantage of these numerical and analytical corollaries of the MMEs 

is that they obviate the need to introduce fictitious tunable parameters and poorly defined 

notions such as dependent, independent, and incoherent scattering; elementary volume 

elements; incoherent light rays; photons as particles of light or blobs of electromagnetic 

energy without phases; and collective scattering effects. The whole evolution of physics has 

been in the direction of replacing phenomenological and heuristic approaches with first-

12A more detailed discussion of the phenomenological origin of the radiative transfer theory and its recent transformation into a 
legitimate branch of statistical electromagnetics can be found in [100].
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principles ones. A major objective of this Report was to summarize recent contributions to 

this process.

Consistent with this objective, we stayed away from discussing phenomenological and semi-

empirical theories of light scattering by particulate media other than the effective-medium 

approach. As explained in [91,92], facile theories such as those described in [84–90] are 

inherently flawed in that they are typically devoid of primordial physical parameters of a 

DRM involved in the solution of the Maxwell equations and instead feature numerous 

artificial adjustable parameters. As a consequence, they represent little more than a 

conglomerate of contrived yet enticingly simple formulas intended to provide a back-of-an-

envelope solution of the profoundly complex scattering problem. The use of freely tunable 

ad hoc parameters makes these models a flexible interpolation tool capable of fitting almost 

any data. The price one has to pay for this interpolation capability is that the best-fit model 

usually has little (if any) physical meaning.

We hope that this Report serves as a convincing demonstration of substantial recent progress 

that has made the discipline of electromagnetic scattering by a DRM a full-fledged branch of 

physical optics (or, to use a catchy term, of “disordered photonics” [381]). In particular, 

direct computer solutions of the MMEs discussed in Section 8 and straightforward analytical 

derivations reviewed in Section 11 have fully confirmed the purportedly mesoscopic origin 

of the theory of radiative transfer and weak localization [353,354,382–384]. Indeed, they 

clearly demonstrate how the “macroscopic” regime of this theory emerges from the 

“microscopic” particle-level regime of Maxwell’s electromagnetics upon averaging over 

random realizations of a large sparse multi-particle group. Both theoretical and experimental 

studies discussed in Subsection 11.4 (see also [385]) have revealed the inevitable breakdown 

of the RT–WL regime when the particle packing density exceeds a certain threshold. This 

emphasizes the importance of efficient computer solvers of the MMEs which have no 

intrinsic limitations on packing density and, in combination with the ever growing power of 

computer clusters, should eventually facilitate the solution of outstanding problems of 

unprecedented complexity.

Still the range of scattering problems that can be solved exactly remains limited. As a 

consequence, approximate theories of light scattering by DRMs will still be practiced in the 

foreseeable future to handle full-scale “real-life” problems. It is therefore imperative to use 

advanced computer solvers of the MMEs as well as controlled laboratory experiments to 

quantify numerical errors of approximate approaches and understand their origin. Although 

further research is still needed to better validate such popular modeling tools as the first-

order-scattering approximation, the radiative transfer equation, the theory of weak 

localization, and the effective-medium approach, significant progress has already been 

achieved, as discussed in Subsections 8.2 and 11.4 and Sections 9 and 10.

The main subject of this Report can be characterized as the direct scattering problem, i.e., 

the calculation of electromagnetic scattering by a known, well-defined system. We have not 

discussed how to solve the inverse scattering problem, i.e., determine the physical 

characteristics of a particulate object by analyzing its measured scattering and absorption 

properties. The vastness of this applied discipline obviously necessitates a separate review. 
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Similarly left out are the countless specific applications of electromagnetic scattering by 

particulate media in various branches of science and technology.

In this Report we focused on isolated particulate media. Yet there is an urgent need to 

consider even more complex problems involving different combinations of volume and/or 

surface scattering. Good examples would be a densely packed particulate layer bounded 

from below by a plane interface and a layer of continuous fluctuating medium hosting 

randomly positioned discrete particles and bounded by random rough interfaces. It is safe to 

say that the first-principles treatment of such problems is still at an early stage of 

development [305,318,386–389].

Finally we note that an essential assumption made at the very outset of this Report is that the 

infinite host medium surrounding the particles is nonabsorbing. A preliminary first-

principles analysis of the general case of an absorbing host can be found in [179,390,391].

Acknowledgments

We thank an anonymous reviewer for providing helpful comments on the initial version of this Report. We 
appreciate numerous insightful discussions with Yuri Barabanenkov, Matthew Berg, Anatoli Borovoi, Oleg 
Bugaenko, Petr Chýlek, Helmut Domke, Joop Hovenier, Vsevolod Ivanov, Michael Kahnert, George Kattawar, 
Nikolai Khlebtsov, Nikolai Kiselev, Thomas Kulp, Andrew Lacis, K.-N. Liou, Pavel Litvinov, James Lock, Daniel 
Mackowski, M. Pinar Mengüç, Karri Muinonen, Antti Penttilä, Thomas Reichardt, Vera Rosenbush, Yuri 
Shkuratov, Viktor Tishkovets, Cornelis van der Mee, Gorden Videen, and Edgard Yanovitskij. We thank Alexandra 
Ivanova for providing Fig. 14a, Antti Penttilä for providing Figs. 19a and 30a, and Guanglin Tang and Jianing 
Zhang for help with FDTDM and PSTDM computations displayed in Figs. 17 and 18. M.I.M., L.L., B.C., and P.Y. 
acknowledge continued support from the NASA Remote Sensing Theory Project managed by Lucia Tsaoussi, the 
NASA Radiation Sciences Program managed by Hal Maring, and the NASA ACE Project. Some of the numerical 
results reported in this paper were obtained with the “Discover” supercomputer at the NASA Center for Climate 
Simulation. J.M.D. was supported by the National Academy of Sciences of Ukraine under the Main Astronomical 
Observatory GRAPE/GPU/GRID Computing Cluster Project. M.A.Yu. was supported by the Russian Science 
Foundation grant No. 14-15-00155.

References

1. van de Hulst, HC. Light Scattering by Small Particles. Wiley; New York: 1957. 

2. Kerker, M., editor. Electromagnetic Scattering. Macmillan; New York: 1963. 

3. Rowell, RL., Stein, RS., editors. Electromagnetic Scattering. Gordon and Breach; New York: 1967. 

4. Shifrin, KS. Scattering of Light in a Turbid Medium, NASA Technical Translation TT F-477. 
National Aeronautics and Space Administration; Washington, DC: 1968. 

5. Deirmendjian, D. Electromagnetic Scattering on Spherical Polydispersions. Elsevier; New York: 
1969. 

6. Kerker, M. The Scattering of Light and Other Electromagnetic Radiation. Academic Press; New 
York: 1969. 

7. Ishimaru, A. Wave Propagation and Scattering in Random Media. Academic Press; New York: 1978. 

8. Schuerman, DW., editor. Light Scattering by Irregularly Shaped Particles. Plenum Press; New York: 
1980. 

9. Bayvel, LP., Jones, AR. Electromagnetic Scattering and Its Applications. Applied Science 
Publishers; London: 1981. 

10. Newton, RG. Scattering Theory of Waves and Particles. Springer; New York: 1982. 

11. Bohren, CF., Huffman, DR. Absorption and Scattering of Light by Small Particles. Wiley; New 
York: 1983. 

12. Tsang, L., Kong, JA., Shin, RT. Theory of Microwave Remote Sensing. Wiley; New York: 1985. 

Mishchenko et al. Page 88

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



13. Barber, PW., Chang, RK., editors. Optical Effects Associated with Small Particles. World 
Scientific; Singapore: 1988. 

14. Coulson, KL. Polarization and Intensity of Light in the Atmosphere. A. Deepak Publishing; 
Hampton, VA: 1988. 

15. Shifrin, KS. Physical Optics of Ocean Water. American Institute of Physics; New York: 1988. 

16. Barber, PW., Hill, SC. Light Scattering by Particles: Computational Methods. World Scientific; 
Singapore: 1990. 

17. Dolginov, AZ., Gnedin, YuN, Silant’ev, NA. Propagation and Polarization of Radiation in Cosmic 
Media. Gordon and Breach; Basel: 1995. 

18. Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light Scattering by Nonspherical Particles: 
Theory, Measurements, and Applications. Academic Press; San Diego: 2000. 

19. Tsang, L., Kong, JA., Ding, K-H. Scattering of Electromagnetic Waves: Theories and Applications. 
Wiley; New York: 2000. 

20. Mishchenko, MI., Travis, LD., Lacis, AA. Scattering, Absorption, and Emission of Light by Small 
Particles. Cambridge University Press; Cambridge, UK: 2002. http://www.giss.nasa.gov/staff/
mmishchenko/books.html

21. Videen, G., Kocifaj, M., editors. Optics of Cosmic Dust. Kluwer; Dordrecht, The Netherlands: 
2002. 

22. Babenko, VA., Astafyeva, LG., Kuzmin, VN. Electromagnetic Scattering in Disperse Media: 
Inhomogeneous and Anisotropic Particles. Springer; Berlin: 2003. 

23. Kokhanovsky, AA. Light Scattering Media Optics: Problems and Solutions. Springer; Berlin: 2004. 

24. Doicu, A., Wriedt, Th, Eremin, YuA. Null-Field Method with Discrete Sources: Theory and 
Programs. Springer; Berlin: 2006. Light Scattering by Systems of Particles. 

25. Mishchenko, MI., Travis, LD., Lacis, AA. Multiple Scattering of Light by Particles: Radiative 
Transfer and Coherent Backscattering. Cambridge University Press; Cambridge, UK: 2006. http://
www.giss.nasa.gov/staff/mmishchenko/books.html

26. Sharma, SK., Somerford, DJ. Light Scattering by Optically Soft Particles: Theory and 
Applications. Springer; Berlin: 2006. 

27. Tuchin, VV., Wang, LV., Zimnyakov, DA. Optical Polarization in Biomedical Applications. 
Springer; Berlin: 2006. 

28. Borghese, F., Denti, P., Saija, R. Scattering from Model Nonspherical Particles: Theory and 
Applications to Environmental Physics. Springer; Berlin: 2007. 

29. Hoekstra, A.Maltsev, V., Videen, G., editors. Optics of Biological Particles. Springer; Dordrecht, 
The Netherlands: 2007. 

30. Jonasz, M., Fournier, GR. Light Scattering by Particles in Water: Theoretical and Experimental 
Foundations. Elsevier; Amsterdam: 2007. 

31. Mishchenko, MI., Rosenbush, VK., Kiselev, NN., Lupishko, DF., Tishkovets, VP., Kaydash, VG., 
Belskaya, IN., Efimov, YS., Shakhovskoy, NM. Polarimetric Remote Sensing of Solar System 
Objects. Akademperiodyka; Kyiv: 2010. http://arxiv.org/abs/1010.1171

32. Quinten, M. Optical Properties of Nanoparticle Systems. Wiley-VCH; Weinheim, Germany: 2011. 

33. Hergert, W., Wriedt, Th. The Mie Theory: Basics and Applications. Springer; Berlin: 2012. 

34. Mishchenko, MI. Electromagnetic Scattering by Particles and Particle Groups: An Introduction. 
Cambridge University Press; Cambridge, UK: 2014. 

35. Rother, T., Kahnert, M. Electromagnetic Wave Scattering on Nonspherical Particles. Springer; 
Berlin: 2014. 

36. Mishchenko MI. Scale invariance rule in electromagnetic scattering. J Quant Spectrosc Radiat 
Transfer. 2006; 101:411–415.

37. Bangs LB, Meza M. Microspheres. 1: Selection, cleaning, and characterization. IVD Technol. 
1995; 17(3):18–26.

38. Volten H, Muñoz O, Rol E, de Haan JF, Vassen W, Hovenier JW, Muinonen K, Nousiainen T. 
Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J Geophys Res. 2001; 
106:17375–17402.

Mishchenko et al. Page 89

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://www.giss.nasa.gov/staff/mmishchenko/books.html
http://www.giss.nasa.gov/staff/mmishchenko/books.html
http://www.giss.nasa.gov/staff/mmishchenko/books.html
http://www.giss.nasa.gov/staff/mmishchenko/books.html
http://arxiv.org/abs/1010.1171


39. Chamaillard K, Jennings SG, Kleefeld C, Ceburnis D, Yoon YJ. Light backscattering and 
scattering by nonspherical sea-salt aerosols. J Quant Spectrosc Radiat Transfer. 2003; 79–80:577–
597.

40. Khlebtsov NG, Bogatyrev VA, Dykman LA, Melnikov AG. Spectral extinction of colloidal gold 
and its biospecific conjugates. J Colloid Interface Sci. 1996; 180:436–445.

41. Li J, Anderson JR, Buseck PR. TEM study of aerosol particles from clean and polluted marine 
boundary layers over the North Atlantic. J Geophys Res. 2003; 108:4189.

42. Liu L, Mishchenko MI. Scattering and radiative properties of complex soot and soot-containing 
aggregate particles. J Quant Spectrosc Radiat Transfer. 2007; 106:262–273.

43. Burr DW, Daun KJ, Thomson KA, Smallwood GJ. Optimization of measurement angles for soot 
aggregate sizing by elastic light scattering, through design-of-experiment theory. J Quant 
Spectrosc Radiat Transfer. 2012; 113:355–365.

44. Etemad S, Thompson R, Andrejco MJ. Weak localization of photons: universal fluctuations and 
ensemble averaging. Phys Rev Lett. 1986; 57:575–578. [PubMed: 10034097] 

45. Lenke, R., Maret, G. Multiple scattering of light: coherent backscattering and transmission. In: 
Brown, W., Mortensen, K., editors. Scattering in Polymeric and Colloidal Systems. Gordon and 
Breach; Amsterdam: 2000. p. 1-73.

46. Sorensen CM. Light scattering by fractal aggregates: a review. Aerosol Sci Technol. 2001; 35:648–
687.

47. Klusek C, Manickavasagam S, Mengüç MP. Compendium of scattering matrix element profiles for 
soot agglomerates. J Quant Spectrosc Radiat Transfer. 2003; 79–80:839–859.

48. Liu L, Mishchenko MI. Effects of aggregation on scattering and radiative properties of soot 
aerosols. J Geophys Res. 2005; 110:D11211.

49. Liu L, Mishchenko MI, Arnott WP. A study of radiative properties of fractal soot aggregates using 
the superposition T-matrix method. J Quant Spectrosc Radiat Transfer. 2008; 109:2656–2663.

50. Ziman, JM. Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems. 
Cambridge University Press; Cambridge, UK: 1979. 

51. Adler G, Haspel C, Moise T, Rudich Y. Optical extinction of highly porous aerosol following 
atmospheric freeze drying. J Geophys Res Atmos. 2014; 119:6768–6787.

52. Harris JD, Vastenhout JS. Improved sectioning of high-impact polystyrene and styrene/acrylate 
latex using an oscillating diamond knife for transmission electron microscopy. Microsc Microanal. 
2006; 12(Suppl 2):1778–1779.

53. Blackson JH, Garcia-Meitin EI, Darus ME. High resolution scanning electron microscopy 
examination of polymer morphology. Microsc Microanal. 2007; 13(Suppl 2):1062–1063.

54. Diebold, MP. Application of Light Scattering to Coatings: A User’s Guide. Springer; Berlin: 2014. 

55. Chandrasekhar, S. Radiative Transfer. Oxford University Press; Oxford: 1950. 

56. Sobolev, VV. Light Scattering in Planetary Atmospheres. Pergamon Press; Oxford: 1975. 

57. Hansen JE, Travis LD. Light scattering in planetary atmospheres. Space Sci Rev. 1974; 16:527–
610.

58. Van de Hulst, HC. Multiple Light Scattering. Academic Press; New York: 1980. 

59. Lenoble, J., editor. Radiative Transfer in Scattering and Absorbing Atmospheres: Standard 
Computational Procedures. A. Deepak Publishing; Hampton, VA: 1985. 

60. Goody, RM., Yung, YL. Atmospheric Radiation, Theoretical Basis. Oxford University Press; 
Oxford: 1989. 

61. Lenoble, J. Atmospheric Radiative Transfer. A. Deepak Publishing; Hampton, VA: 1993. 

62. Mobley, CD. Light and water: radiative transfer in natural waters. Academic Press; San Diego, CA: 
1994. 

63. Yanovitskij, EG. Light Scattering in Inhomogeneous Atmospheres. Springer; Berlin: 1997. 

64. Thomas, GE., Stamnes, K. Radiative Transfer in the Atmosphere and Ocean. Cambridge University 
Press; Cambridge, UK: 1999. 

65. Liou, KN. An Introduction to Atmospheric Radiation. Academic Press; San Diego, CA: 2002. 

Mishchenko et al. Page 90

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



66. Hovenier, JW., van der Mee, C., Domke, H. Transfer of Polarized Light in Planetary Atmospheres 
– Basic Concepts and Practical Methods. Kluwer; Dordrecht, The Netherlands: 2004. 

67. Zdunkovski, W., Trautmann, T., Bott, A. Radiation in the Atmosphere. Cambridge University 
Press; Cambridge, UK: 2007. 

68. Dombrovsky, LA., Baillis, D. Thermal Radiation in Disperse Systems: an Engineering Approach. 
Begell House: 2010. 

69. Wendisch, M., Yang, P. Theory of Atmospheric Radiative Transfer. Wiley-VCH; Weinheim, 
Germany: 2012. 

70. Modest, MF. Radiative Heat Transfer. Academic Press; San Diego, CA: 2013. 

71. Howell, JR., Mengüç, MP., Siegel, R. Thermal Radiation Heat Transfer. CRC Press; Boca Raton, 
FL: 2015. 

72. Maxwell-Garnett JC. Colours in metal glasses and in metallic films. Philos Trans R Soc A. 1904; 
203:385–420.

73. Bruggeman DAG. Berechnung vershiedener physikalischer Konstanten von heterogenen 
Substanzen. 1. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorperaus isotropen 
Substanzen. Ann Phys (Leipzig). 1935; 24:636–664.

74. Priou, A., editor. Dielectric Properties of Heterogeneous Materials. Elsevier; New York: 1992. 

75. Choy, TC. Effective Medium Theory: Principles and Applications. Clarendon Press; Oxford: 1999. 

76. Sihvola, A. Electromagnetic Mixing Formulae and Applications. IEE Press; London: 1999. 

77. Chýlek, P., Videen, G., Geldart, DJW., Dobbie, JS., Tso, HCW. Effective medium approximations 
for heterogeneous particles. In: Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light 
Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press; 
San Diego, CA: 2000. p. 273-308.

78. Cai, W., Shalaev, V. Optical Metamaterials: Fundamentals and Applications. Springer; New York: 
2010. 

79. Stankevich D, Shkuratov Yu, Grynko Ye, Muinonen K. Computer simulations for multiple 
scattering of light rays in systems of opaque particles. J Quant Spectrosc Radiat Transfer. 2003; 
76:1–16.

80. Stankevich D, Shkuratov Yu. Monte Carlo ray-tracing simulation of light scattering in particulate 
media with optically contrast structure. J Quant Spectrosc Radiat Transfer. 2004; 87:289–296.

81. Stankevich D, Istomina L, Shkuratov Yu, Videen G. The scattering matrix of random media 
consisting of large opaque spheres calculated using ray tracing and accounting for coherent 
backscattering enhancement. J Quant Spectrosc Radiat Transfer. 2007; 106:509–519.

82. Peltoniemi JI. Spectropolarised ray-tracing simulations in densely packed particulate medium. J 
Quant Spectrosc Radiat Transfer. 2007; 108:180–196.

83. Boley CD, Rubenchik AM. Modeling of laser interactions with composite materials. Appl Opt. 
2013; 52:3329–3337. [PubMed: 23669848] 

84. Gershun, AA. The Light Field. ONTI; Leningrad and Moscow: 1936. (in Russian). English 
translation by P. Moon and G. Timoshenko: J. Phys. & Math. 18, (1939) 51–151

85. Kubelka P, Munk F. Ein Beitrag Zur Optik Der Farbanstriche. Z Tech Phys (Leipzig). 1931; 
12:593–601.

86. Kubelka P. New contributions to the optics of intensely light-scattering materials, Part I. J Opt Soc 
Am. 1948; 38:448–457. [PubMed: 18916891] 

87. Kubelka P. New contributions to the optics of intensely light-scattering materials, Part II: 
Nonhomogeneous layers. J Opt Soc Am. 1954; 44:330–335.

88. Wendlandt, WW., Hecht, HG. Reflectance Spectroscopy. Wiley-Interscience; New York: 1966. 

89. Kortüm, G. Reflectance Spectroscopy: Principles, Methods, Applications. Springer; New York: 
1969. 

90. Hapke, B. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press; 
Cambridge, UK: 2012. 

91. Tishkovets VP, Mishchenko MI. Coherent backscattering: conceptions and misconceptions (reply 
to comments by Bruce W. Hapke and Robert M. Nelson). J Quant Spectrosc Radiat Transfer. 2010; 
111:645–649.

Mishchenko et al. Page 91

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



92. Mishchenko MI, Tishkovets VP, Travis LD, Cairns B, Dlugach JM, Liu L, Rosenbush VK, Kiselev 
NN. Electromagnetic scattering by a morphologically complex object: fundamental concepts and 
common misconceptions. J Quant Spectrosc Radiat Transfer. 2011; 112:671–692.

93. Bouguer, P. Essai d’Optique sur la Gradation de la Lumiere. Claude Jombert; Paris: 1729. 

94. Bouguer, P. Traité d’Optique sur la Gradation de la Lumiere, Académie Royale des Sciences, Paris, 
1760. In: Middleton, WEK., translator. Pierre Bouguer’s Optical Treatise on the Gradation of 
Light. University of Toronto Press; Toronto: 1961. 

95. Lambert, JH. Photometry, or on the Measure and Gradations of Light, Colors and Shade. 
Illuminating Engineering Society of North America; New York: 2001. Translation from the Latin 
original by D. L. DiLaura

96. Beer, A. Grundriss des Photometrischen Calcüles. Friedrich Vieweg und Sohn; Braunschweig: 
1854. 

97. Lommel E. Die Photometrie der diffusen Zurückwerfung. Sitzber Acad Wissensch München. 1887; 
17:95–124. Reprinted in Ann Phys. und Chem. (N.F.), 36, (1889), 473–502. 

98. Chwolson O. Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bull 
l’Acad Impériale Sci St Pétersbourg. 1889; 33:221–256.

99. Schuster A. Radiation through a foggy atmosphere. Astrophys J. 1905; 21:1–22.

100. Mishchenko MI. Directional radiometry and radiative transfer: the convoluted path from 
centuries-old phenomenology to physical optics. J Quant Spectrosc Radiat Transfer. 2014; 146:4–
33.

101. Felsen, LB. Transient Electromagnetic Fields. Springer; Berlin: 1976. 

102. Power, EA. Introductory Quantum Electrodynamics. Longmans; London: 1964. 

103. Akhiezer, AI., Berestetskii, VB. Quantum Electrodynamics. Wiley; New York: 1965. 

104. Healy, WP. Non-relativistic Quantum Electrodynamics. Academic Press; London: 1982. 

105. Craig, DP., Thirunamachandran, T. Molecular Quantum Electrodynamics: An Introduction to 
Radiation–Molecule Interactions. Academic Press; London: 1984. 

106. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G. Photons and Atoms: Introduction to Quantum 
Electrodynamics. Wiley; New York: 1989. 

107. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G. Atom–Photon Interactions: Basic Processes 
and Applications. Wiley; New York: 1992. 

108. Weinberg, S. The Quantum Theory of Fields. Vol. 1. Cambridge University Press; Cambridge, 
UK: 1995. 

109. Dodd, JN. Atoms and Light: Interactions. Plenum Press; New York: 1991. 

110. Mandel, L., Wolf, E. Optical Coherence and Quantum Optics. Cambridge University Press; 
Cambridge, UK: 1995. 

111. Grynberg, G., Aspect, A., Fabre, C. Introduction to Quantum Optics: From the Semi-classical 
Approach to Quantized Light. Cambridge University Press; Cambridge, UK: 2010. 

112. Lorentz, HA. The Theory of Electrons. B. G. Teubner; Leipzig: 1916. 

113. Hoek, H. Algemeene theorie der optische activiteit van isotrope media. Leiden University; 
Leiden: 1939. 

114. Rosenfeld, L. Theory of Electrons. North-Holland; Amsterdam: 1951. 

115. Jones, DS. The Theory of Electromagnetism. Pergamon Press; Oxford: 1964. 

116. Oughstun, KE. Electromagnetic and Optical Pulse Propagation 1: Spectral Representations in 
Temporally Dispersive Media. Springer; New York: 2006. 

117. Dyson, FJ. Why is Maxwell’s Theory so hard to understand?. http://
www.clerkmaxwellfoundation.org/DysonFreemanArticle.pdf

118. Boltzmann, L. Vorlesungen über Maxwells Theorie der Elektricität und des Lichtes. Vol. II. J.A. 
Barth; Leipzig: 1893. p. iii

119. Feynman, RP., Leighton, RB., Sands, M. The Feynman Lectures on Physics, Vol. II, The 
Electromagnetic Field. Addison-Wesley; Reading, MA: 1964. Section 1–6

120. Maxwell JC. A dynamical theory of the electromagnetic field. Phil Trans R Soc London. 1865; 
155:459–512.

Mishchenko et al. Page 92

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://www.clerkmaxwellfoundation.org/DysonFreemanArticle.pdf
http://www.clerkmaxwellfoundation.org/DysonFreemanArticle.pdf


121. Maxwell, JC. A Treatise on Electricity and Magnetism. Clarendon Press; Oxford: 1873. (also 
Dover, New York, 1954)

122. Whittaker, E. A History of the Theories of Aether and Electricity: The Classical Theories. 
Philosophical Library; New York: 1951. 

123. Hunt, BJ. The Maxwellians. Cornell University Press; Ithaca, NY: 1991. 

124. Heaviside, O. Electromagnetic Theory. Dover; New York: 1950. 

125. Lorentz HA. La théorie électromagnétique de Maxwell et son application aux corps mouvants. 
Arch Néerl. 1892; 25:363–552.

126. van Vleck, JH. The Theory of Electric and Magnetic Susceptibilities. Oxford University Press; 
Oxford: 1932. 

127. Russakoff G. A derivation of the macroscopic Maxwell equations. Am J Phys. 1970; 38:1188–
1195.

128. Vlieger J. On the derivation of the integral equation for the propagation of light in dielectric 
crystals. Can J Phys. 1971; 49:1384–1395.

129. de Groot, SR., Suttorp, LG. Foundations of Electrodynamics. North-Holland; Amsterdam: 1972. 

130. Robinson, FNH. Macroscopic Electromagnetism. Pergamon Press; Oxford: 1973. 

131. Felderhof BU. On the propagation and scattering of light in fluids. Physica. 1974; 76:486–502.

132. Crosignani, B., Di Porto, P., Bertolotti, M. Statistical Properties of Scattered Light. Academic 
Press; New York: 1975. 

133. van Kranendonk J, Sipe JE. Foundations of the macroscopic electromagnetic theory of dielectric 
media. Prog Opt. 1977; 15:245–350.

134. Kuz’min VL, Romanov VP, Zubkov LA. Propagation and scattering of light in fluctuating media. 
Phys Rep. 1994; 248:71–368.

135. Il’inskii, YuA, Keldysh, LV. Electromagnetic Response of Material Media. Plenum Press; New 
York: 1994. 

136. Scaife, BKP. Principles of Dielectrics. Clarendon Press; Oxford: 1998. 

137. Jackson, JD. Classical Electrodynamics. Wiley; New York: 1999. 

138. Born, M., Wolf, E. Principles of Optics. Cambridge University Press; Cambridge, UK: 1999. 

139. Barron, LD. Molecular Light Scattering and Optical Activity. Cambridge University Press; 
Cambridge, UK: 2004. 

140. Raab, RE., de Lange, OL. Multipole Theory in Electromagnetism. Clarendon Press; Oxford: 
2005. 

141. Brouder C, Rossano S. Microscopic calculation of the constitutive relations. Eur Phys J B. 2005; 
45:19–31.

142. Silveirinha MG. Poynting vector, heating rate, and stored energy in structured materials: a first-
principles derivation. Phys Rev B. 2009; 80:235120.

143. Poynting JH. On the transfer of energy in the electromagnetic field. Phil Trans R Soc London. 
1884; 175:343–361.

144. Heaviside O. Electromagnetic induction and its propagation. The Electrician. 1885; 14:178–180. 
306–307.

145. ter Haar, D. Elements of Statistical Mechanics. Rinehart; New York: 1954. 

146. Truesdell, C. Ergodic theory in classical statistical mechanics. In: Caldirola, P., editor. Ergodic 
Theories. Academic Press; New York: 1961. p. 21-56.

147. Uhlenbeck, GE., Ford, GW. Lectures in Statistical Mechanics. American Mathematical Society; 
Providence, RI: 1963. 

148. Farquhar, E. Ergodic Theory in Statistical Mechanics. Wiley; London: 1964. 

149. Jancel, R. Foundations of Classical and Quantum Statistical Mechanics. Pergamon; Oxford: 1969. 

150. Landau, LD., Lifshitz, EM. Statistical Physics, Part 1. Pergamon; Oxford: 1980. 

151. Schram K. Quantum statistical derivation of the macroscopic Maxwell equations. Physica. 1960; 
26:1080–1090.

152. Akhiezer, AI., Peletminskii, SV. Methods of Statistical Physics. Pergamon Press; Oxford: 1981. 

Mishchenko et al. Page 93

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



153. Ho S-T, Kumar P. Quantum optics in a dielectric: macroscopic electromagnetic-field and medium 
operators for a linear dispersive lossy medium – a microscopic derivation of the operators and 
their commutation relations. J Opt Soc Am B. 1993; 10:1620–1636.

154. Lukš, A., Peřinová, V. Quantum Aspects of Light Propagation. Springer; Berlin: 2009. 

155. Huffman, DR. The applicability of bulk optical constants to small particles. In: Barber, PW., 
Chang, RK., editors. Optical Effects Associated with Small Particles. World Scientific; 
Singapore: 1988. p. 279-324.

156. Ungureanu C, Rayavarapu RG, Manohar S, van Leeuwen TG. Discrete dipole approximation 
simulations of gold nanorod optical properties: choice of input parameters and comparison with 
experiment. J Appl Phys. 2009; 105:102032.

157. Silver, S., editor. Microwave Antenna Theory and Design. McGraw-Hill; New York: 1949. 

158. Müller, C. Foundations of the Mathematical Theory of Electromagnetic Waves. Springer; Berlin: 
1969. 

159. Mishchenko MI, Travis LD. Gustav Mie and the evolving discipline of electromagnetic scattering 
by particles. Bull Amer Meteorol Soc. 2008; 89:1853–1861.

160. Mishchenko MI. Gustav Mie and the fundamental concept of electromagnetic scattering by 
particles: a perspective. J Quant Spectrosc Radiat Transfer. 2009; 110:1210–1222.

161. Rothwell, EJ., Cloud, MJ. Electromagnetics. CRC Press; Boca Raton, FL: 2009. 

162. Kirsch A. An integral equation approach and the interior transmission problem for Maxwell’s 
equations. Inverse Probl Imaging. 2007; 1:107–127.

163. Costabel M, Darrigrand E, Koné EH. Volume and surface integral equations for electromagnetic 
scattering by a dielectric body. J Comput Appl Math. 2010; 234:1817–1825.

164. Dmitriev, VI., Zakharov, EV. Integral Equations in Boundary Problems of Electrodynamics. 
Moscow State University Press; Moscow: 1987. (in Russian)

165. Saxon, DS. Lectures on the scattering of light, Scientific Report No. 9. Department of 
Meteorology, University of California; Los Angeles: 1955. 

166. van Beurden MC, van Eijndhoven SJL. Well-posedness of domain integral equations for a 
dielectric object in inhomogeneous background. J Eng Math. 2008; 62:289–302.

167. Yaghjian AD. Electric dyadic Green’s function in the source region. IEEE Proc. 1980; 68:248–
263.

168. Yurkin MA, Hoekstra AG. The discrete dipole approximation: an overview and recent 
developments. J Quant Spectrosc Radiat Transfer. 2007; 106:558–589.

169. Lippmann BA, Schwinger J. Variational principles for scattering processes. Phys Rev. 1950; 
79:469–480.

170. Goldberger, ML., Watson, KM. Collision Theory. Wiley; New York: 1964. 

171. Mishchenko MI. Far-field approximation in electromagnetic scattering. J Quant Spectrosc Radiat 
Transfer. 2006; 100:268–276.

172. Saxon DS. Tensor scattering matrix for the electromagnetic field. Phys Rev. 1955; 100:1771–
1775.

173. Novotny, L., Hecht, B. Principles of Nano-Optics. Cambridge University Press; Cambridge, UK: 
2012. 

174. Mishchenko MI. Measurement of electromagnetic energy flow through a sparse particulate 
medium: a perspective. J Quant Spectrosc Radiat Transfer. 2013; 123:122–134.

175. Goodman, JW. Introduction to Fourier Optics. Roberts & Company; Englewood, CO: 2005. 

176. Muñoz O, Hovenier JW. Laboratory measurements of single light scattering by ensembles of 
randomly oriented small irregular particles in air. A review. J Quant Spectrosc Radiat Transfer. 
2011; 112:1646–1657.

177. Darecki M, Stramski D, Sokólski M. Measurements of high-frequency light fluctuations induced 
by sea surface waves with an Underwater Porcupine Radiometer System. J Geophys Res. 2011; 
116:C00H09.

178. Hovenier JW, van de Hulst HC, van der Mee CVM. Conditions for the elements of the scattering 
matrix. Astron Astrophys. 1986; 157:301–310.

Mishchenko et al. Page 94

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



179. Mishchenko MI. Electromagnetic scattering by a fixed finite object embedded in an absorbing 
medium. Opt Express. 2007; 15:13188–13202. [PubMed: 19550587] 

180. Tsang L, Kong JA. Multiple scattering of electromagnetic waves by random distributions of 
discrete scatterers with coherent potential and quantum mechanical formalism. J Appl Phys. 
1980; 51:3465–3485.

181. Prishivalko, AP., Babenko, VA., Kuzmin, VN. Scattering and Absorption of Light by 
Inhomogeneous and Anisotropic Spherical Particles. Nauka i Tekhnika; Minsk: 1984. (in 
Russian)

182. Heaviside, O. Electromagnetic Theory. The Electrician; London: p. 1893§ 182

183. Martin, PA. Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. 
Cambridge University Press; Cambridge, UK: 2006. 

184. Lock JA, Mishchenko MI. A persistent feature of multiple scattering of waves in the time-domain: 
a tutorial. J Quant Spectrosc Radiat Transfer. 2015; 162:221–240.

185. Barton JP, Ma W, Schaub SA, Alexander DR. Electromagnetic field for a beam incident on two 
adjacent spherical particles. Appl Opt. 1991; 30:4706–4715. [PubMed: 20717273] 

186. Fuller KA. Optical resonances and two-sphere systems. Appl Opt. 1991; 30:4716–4731. 
[PubMed: 20717274] 

187. Mishchenko MI. The Poynting–Stokes tensor and radiative transfer in discrete random media: the 
microphysical paradigm. Opt Express. 2010; 18:19770–19791. [PubMed: 20940872] 

188. Priestley, MB. Spectral Analysis and Time Series. Academic Press; London: 1992. 

189. Kimble HJ, Mandel L. Photoelectric detection of polychromatic light. Phys Rev A. 1984; 30:844–
850.

190. Berne, BJ., Pecora, R. Biology, and Physics. Wiley; New York: 1976. Dynamic Light Scattering 
with Applications to Chemistry. (also: Dover, Mineola, NY, 2000)

191. Brown, W., editor. Dynamic Light Scattering: The Method and Some Applications. Oxford 
University Press; Oxford: 1993. 

192. García-Valenzuela A, Barrera RG. Electromagnetic response of a random half-space of Mie 
scatterers within the effective-field approximation and the determination of the effective optical 
coefficients. J Quant Spectrosc Radiat Transfer. 2003; 79–80:627–647.

193. Barrera RG, Reyes-Coronado A. Nonlocal nature of the electrodynamic response of colloidal 
systems. Phys Rev B. 2007; 75:184202.

194. Bohren CF. Applicability of effective-medium theories to problems of scattering and absorption 
by nonhomogeneous atmospheric particles. J Atmos Sci. 1986; 43:468–475.

195. Barrera RG, García-Valenzuela A. Coherent reflectance in a system of random Mie scatterers and 
its relation to the effective-medium approach. J Opt Soc Am A. 2003; 20:196–311.

196. García-Valenzuela A, Barrera RG, Gutierrez-Reyes E. Rigorous theoretical framework for particle 
sizing in turbid colloids using light refraction. Opt Express. 2008; 16:19741–19756. [PubMed: 
19030060] 

197. Gutiérrez-Reyes E, García-Valenzuela A, Barrera RG. Overview of an effective-medium approach 
to the reflection and refraction of light at a turbid colloidal half-space. Phys Status Solidi B. 
2012; 249:1140–1147.

198. García-Valenzuela A, Gutiérrez-Reyes E, Barrera RG. Multiple-scattering model of the coherent 
reflection and transmission of light from a disordered monolayer of particles. J Opt Soc Am A. 
2012; 29:1161–1179.

199. Vázquez-Estrada O, García-Valenzuela A. Optical reflectivity of a disordered monolayer of 
highly scattering particles: coherent scattering model versus experiment. J Opt Soc Am A. 2014; 
31:745–754.

200. Lorenz L. Lysbevægelsen i og uden for en af plane Lysbølger belyst Kugle. K Dan Vidensk Selsk 
Skr. 1890; 6:1–62.

201. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Physik. 1908; 
25:377–445.

202. Stratton, JA. Electromagnetic Theory. McGraw Hill; New York: 1941. (also: Wiley, Hoboken, NJ, 
2007)

Mishchenko et al. Page 95

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



203. Mikulski JJ, Murphy EL. The computation of electromagnetic scattering from concentric 
spherical structures. IEEE Trans Antennas Propag. 1963; 11:169–177.

204. Wait JR. Electromagnetic scattering from a radially inhomogeneous sphere. Appl Sci Res Sect B. 
1963; 10:441–450.

205. Oguchi T. Scattering properties of oblate raindrops and cross polarization of radio waves due to 
rain: calculations at 19.3 and 34.8 GHz. J Radio Res Lab Japan. 1973; 20:79–118.

206. Asano S, Yamamoto G. Light scattering by a spheroidal particle. Appl Opt. 1975; 14:29–49. 
[PubMed: 20134829] 

207. Onaka T. Light scattering by spheroidal grains. Ann Tokyo Astron Observ. 1980; 18:1–54.

208. Voshchinnikov NV, Farafonov VG. Optical properties of spheroidal particles. Astrophys Space 
Sci. 1993; 204:19–86.

209. Farafonov VG, Voshchinnikov NV, Somsikov VV. Light scattering by a core-mantle spheroidal 
particle. Appl Opt. 1996; 35:5412–5426. [PubMed: 21127540] 

210. Ciric, IR., Cooray, FR. Separation of variables for electromagnetic scattering by spheroidal 
particles. In: Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light Scattering by Non-
spherical Particles: Theory, Measurements, and Applications. Academic Press; San Diego: 2000. 
p. 89-130.

211. Li, L-W., Kang, X-K., Leong, M-S. Spheroidal Wave Functions in Electromagnetic Theory. 
Wiley; New York: 2002. 

212. Volakis, JL., Chatterjee, A., Kempel, LC. Finite Element Method for Electromagnetics. IEEE 
Press; New York: 1998. 

213. Jin, J. The Finite Element Method in Electromagnetics. Wiley; New York: 2002. 

214. Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in 
isotropic media. IEEE Trans Antennas Propag. 1966; 14:302–307.

215. Kunz, KS., Luebbers, RJ. Finite Difference Time Domain Method for Electromagnetics. CRC 
Press; Boca Raton, FL: 1993. 

216. Yang, P., Liou, KN. Finite difference time domain method for light scattering by non-spherical 
and inhomogeneous particles. In: Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light 
Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press; 
San Diego: 2000. p. 173-221.

217. Taflove, A., Hagness, SC. Computational Electrodynamics: The Finite-Difference Time-Domain 
Method. Artech House; Boston: 2005. 

218. Inan, US., Marshall, RA. Numerical Electromagnetics: The FDTD Method. Cambridge 
University Press; Cambridge, UK: 2011. 

219. Liu QH. The PSTD algorithm: a time-domain method requiring only two cells per wavelength. 
Microwave Opt Tech Lett. 1997; 15:158–165.

220. Panetta RL, Liu C, Yang P. A pseudo-spectral time domain method for light scattering 
computation. Light Scattering Rev. 2013; 8:139–188.

221. Berenger BJ. A perfectly matched layer for the absorption of electromagnetic waves. J Comput 
Phys. 1994; 114:185–200.

222. Berenger BJ. Three-dimensional perfect matched layer for the absorption of electromagnetic 
waves. J Comput Phys. 1996; 127:363–379.

223. Purcell EM, Pennypacker CR. Scattering and absorption of light by nonspherical dielectric grains. 
Astrophys J. 1973; 186:705–714.

224. Lakhtakia A, Mulholland GW. On two numerical techniques for light scattering by dielectric 
agglomerated structures. J Res Natl Inst Stand Technol. 1993; 98:699–716. [PubMed: 28053494] 

225. Miller, EK., Medgyesi-Mitschang, LN., Newman, EH. Computational Electromagnetics: 
Frequency Domain Method of Moments. IEEE Press; New York: 1991. 

226. Draine BT, Flatau PJ. Discrete dipole approximation for scattering calculations. J Opt Soc Am A. 
1994; 11:1491–1499.

227. Draine, BT. The discrete dipole approximation for light scattering by irregular targets. In: 
Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light Scattering by Nonspherical Particles: 
Theory, Measurements, and Applications. Academic Press; San Diego: 2000. p. 131-45.

Mishchenko et al. Page 96

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



228. Yurkin MA, Hoekstra AG. The discrete-dipole-approximation code ADDA: capabilities and 
known limitations. J Quant Spectrosc Radiat Transfer. 2011; 112:2234–2247.

229. Waterman PC. Symmetry, unitarity and geometry in electromagnetic scattering. Phys Rev D. 
1971; 3:825–839.

230. Peterson B, Ström S. T matrix for electromagnetic scattering from an arbitrary number of 
scatterers and representations of E(3)*. Phys Rev D. 1973; 8:3661–3678.

231. Peterson B, Ström S. T-matrix formulation of electromagnetic scattering from multilayered 
scatterers. Phys Rev D. 1974; 10:2670–2684.

232. Doicu, A., Eremin, YuA, Wriedt, T. Acoustic and Electromagnetic Scattering Analysis Using 
Discrete Sources. Academic Press; San Diego: 2000. 

233. Litvinov P, Ziegler K. Rigorous derivation of superposition T-matrix approach from solution of 
inhomogeneous wave equation. J Quant Spectrosc Radiat Transfer. 2008; 109:74–88.

234. Bi L, Yang P, Kattawar GW, Mishchenko MI. Efficient implementation of the invariant imbedding 
T-matrix method and the separation of variables method applied to large nonspherical 
inhomogeneous particles. J Quant Spectrosc Radiat Transfer. 2013; 116:169–183.

235. Mishchenko MI, Zakharova NT, Khlebtsov NG, Wriedt T, Videen G. Comprehensive thematic T-
matrix reference database: a 2013–2014 update. J Quant Spectrosc Radiat Transfer. 2014; 
146:349–354.

236. Mishchenko, MI., Wiscombe, WJ., Hovenier, JW., Travis, LD. Overview of scattering by 
nonspherical particles. In: Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light Scattering 
by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press; San 
Diego: 2000. p. 29-60.

237. Kahnert FM. Numerical methods in electromagnetic scattering theory. J Quant Spectrosc Radiat 
Transfer. 2003; (79–80):775–824.

238. Goodman, JW. Speckle Phenomena in Optics: Theory and Applications. Roberts & Company; 
Englewood, CO: 2007. 

239. Dogariu A, Carminati R. Electromagnetic field correlations in three-dimensional speckles. Phys 
Rep. 2015; 559:1–29.

240. Mackowski DW. Calculation of total cross sections of multiple-sphere clusters. J Opt Soc Am A. 
1994; 11:2851–2861.

241. Mishchenko MI, Mackowski DW. Light scattering by randomly oriented bispheres. Opt Lett. 
1994; 19:1604–1606. [PubMed: 19855595] 

242. Mackowski DW, Mishchenko MI. Calculation of the T matrix and the scattering matrix for 
ensembles of spheres. J Opt Soc Am A. 1996; 13:2266–2278.

243. Mackowski DW, Mishchenko MI. A multiple sphere T-matrix Fortran code for use on parallel 
computer clusters. J Quant Spectrosc Radiat Transfer. 2011; 112:2182–2192.

244. Mackowski DW. A general superposition solution for electromagnetic scattering by multiple 
spherical domains of optically active media. J Quant Spectrosc Radiat Transfer. 2014; 133:264–
270.

245. Tsang L, Mandt CE, Ding KH. Monte Carlo simulations of the extinction rate of dense media 
with randomly distributed dielectric spheres based on solution of Maxwell’s equations. Opt Lett. 
1992; 17:314–316. [PubMed: 19784312] 

246. Zurk LM, Tsang L, Ding KH, Winebrenner DP. Monte Carlo simulations of the extinction rate of 
densely packed spheres with clustered and nonclustered geometries. J Opt Soc Am A. 1995; 
12:1772–1781.

247. Zurk LM, Tsang L, Winebrenner DP. Scattering properties of dense media from Monte Carlo 
simulations with application to active remote sensing of snow. Radio Sci. 1996; 31:803–819.

248. Lu CC, Chew WC, Tsang L. The application of recursive aggregate T-matrix algorithm in the 
Monte Carlo simulations of the extinction rate of random distribution of particles. Radio Sci. 
1995; 30:25–28.

249. Bruning JH, Lo YT. Multiple scattering of EM waves by spheres. I. Multipole expansion and ray-
optical solutions. IEEE Trans Antennas Propag. 1971; 19:378–390.

Mishchenko et al. Page 97

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



250. Gérardy JM, Ausloos M. Absorption spectrum of clusters of spheres from the general solution of 
Maxwell’s equations: the long wavelength limit. Phys Rev B. 1980; 22:4950–4959.

251. Hamid AK, Ciric IR, Hamid M. Electromagnetic scattering by an arbitrary configuration of 
dielectric spheres. Can J Phys. 1990; 68:1419–1428.

252. Mackowski DW. Analysis of radiative scattering for multiple sphere configurations. Proc R Soc 
London A. 1991; 433:599–614.

253. Fuller, KA., Mackowski, DW. Electromagnetic scattering by compounded spherical particles. In: 
Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light Scattering by Non-spherical Particles: 
Theory, Measurements, and Applications. Academic Press; San Diego: 2000. p. 225-272.

254. Tseng SH, Taflove A, Maitland D, Backman V. Pseudospectral time domain simulations of 
multiple light scattering in three-dimensional macroscopic random media. Radio Sci. 2006; 
41:RS4009.

255. Tseng SH, Huang B. Comparing Monte Carlo simulation and pseudospectral time-domain 
numerical solutions of Maxwell’s equations of light scattering by a macroscopic random 
medium. Appl Phys Lett. 2007; 91:051114.

256. Tseng SH. Optical characteristics of a cluster of closely-packed dielectric spheres. Opt Commun. 
2008; 281:1986–1990.

257. Ding M, Chen K. Numerical investigation on polarization characteristics of coherent enhanced 
backscattering using SLPSTD. Opt Express. 2010; 18:27639–27649. [PubMed: 21197038] 

258. Liu C, Panetta RL, Yang P. Inhomogeneity structure and the applicability of effective medium 
approximations in calculating light scattering by inhomogeneous particles. J Quant Spectrosc 
Radiat Transfer. 2014; 146:331–348.

259. Penttilä A, Lumme K, Kuutti L. Light-scattering efficiency of starch acetate pigments as a 
function of size and packing density. Appl Opt. 2006; 45:3501–3509. [PubMed: 16708095] 

260. Yurkin MA, Semyanov KA, Maltsev VP, Hoekstra AG. Discrimination of granulocyte subtypes 
from light scattering: theoretical analysis using a granulated sphere model. Opt Express. 2007; 
15:16561–16580. [PubMed: 19550946] 

261. Penttilä, A., Lumme, K. Coherent backscattering effects with Discrete Dipole Approximation 
method. In: Videen, G.Mishchenko, M.Mengüç, MP., Zakharova, N., editors. Peer-Reviewed 
Abstracts of the Tenth Conference on Electromagnetic & Light Scattering; Bodrum. 2008; p. 
157-160.

262. Sukhov A, Haefner D, Dogariu A. Coupled dipole method for modeling optical properties of 
large-scale random media. Phys Rev E. 2008; 77:066709.

263. Parviainen H, Lumme K. Scattering from rough thin films: discrete-dipole-approximation 
simulations. J Opt Soc Am A. 2008; 25:90–97.

264. Penttilä A, Lumme K. The effect of the properties of porous media on light scattering. J Quant 
Spectrosc Radiat Transfer. 2009; 110:1993–2001.

265. Tausendfreund A, Patzelt S, Goch G. Parallelisation of rigorous light scattering simulation 
algorithms for nanostructured surfaces. CIRP Ann. 2010; 59:581–584.

266. Petty GW, Huang W. Microwave backscatter and extinction by soft ice spheres and complex snow 
aggregates. J Atmos Sci. 2010; 67:769–787.

267. Ding K-H, Xu X, Tsang L. Electromagnetic scattering by bicontinuous random microstructures 
with discrete permittivities. IEEE Trans Geosci Remote Sens. 2010; 48:3139–3151.

268. Lumme K, Penttilä A. Model of light scattering by dust particles in the solar system: applications 
to cometary comae and planetary regoliths. J Quant Spectrosc Radiat Transfer. 2011; 112:1658–
1670.

269. Haridas M, Basu JK, Tiwari AK, Venkatapathi M. Photoluminescence decay rate engineering of 
CdSe quantum dots in ensemble arrays embedded with gold nano-antennae. J Appl Phys. 2013; 
114:064305.

270. Ori D, Maestri T, Rizzi R, Cimini D, Montopoli M, Marzano FS. Scattering properties of modeled 
complex snowflakes and mixed-phase particles at microwave and millimeter frequencies. J 
Geophys Res Atmos. 2014; 119:9931–9947.

Mishchenko et al. Page 98

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



271. Kylling A, Kahnert M, Lindqvist H, Nousiainen T. Volcanic ash infrared signature: porous non-
spherical ash particle shapes compared to homogeneous spherical ash particles. Atmos Meas 
Tech. 2014; 7:919–929.

272. Kirchschlager F, Wolf S. Effect of dust grain porosity on the appearance of protoplanetary disks. 
Astron Astrophys. 2014; 568:A103.

273. Virkki A, Muinonen K, Penttilä A. Radar albedos and circular-polarization ratios for realistic 
inhomogeneous media using the discrete-dipole approximation. J Quant Spectrosc Radiat 
Transfer. 2014; 146:480–491.

274. Donelli M. Design of graphene-based terahertz nanoantenna arrays. Microwave Opt Technol Lett. 
2015; 57:653–657.

275. Kärkkäinen KK, Sihvola AH, Nikoskinen KI. Effective permittivity of mixtures: numerical 
validation by the FDTD method. IEEE Trans Geosci Remote Sens. 2000; 38:1303–1308.

276. Starosta MS, Dunn AK. Three-dimensional computation of focused beam propagation through 
multiple biological cells. Opt Express. 2009; 17:12455–12469. [PubMed: 19654647] 

277. Starosta MS, Dunn AK. Far-field superposition method for three-dimensional computation of 
light scattering from multiple cells. J Biomed Opt. 2010; 15:055006. [PubMed: 21054088] 

278. Cui Z, Han Y, Xu Q. Numerical simulation of multiple scattering by random discrete particles 
illuminated by Gaussian beams. J Opt Soc Am A. 2011; 28:2200–2208.

279. Cui Z-W, Han Y-P, Li C-Y. Simulation of electromagnetic scattering by random discrete particles 
using a hybrid FE-BI-CBFM technique. Waves Random Complex Media. 2012; 22:234–248.

280. Cui Z, Han Y, Ai X. Multiple scattering of arbitrarily incident Bessel beams by random discrete 
particles. J Opt Soc Am A. 2013; 30:2320–2327.

281. Cui Z, Han Y. A review of the numerical investigation on the scattering of Gaussian beam by 
complex particles. Phys Rep. 2014; 538:39–75.

282. Mishchenko MI. Coherent backscattering by two-sphere clusters. Opt Lett. 1996; 21:623–625. 
[PubMed: 19876104] 

283. Siqueira PR, Sarabandi K. T-matrix determination of effective permittivity for three-dimensional 
dense random media. IEEE Trans Antennas Propag. 2000; 48:317–327.

284. Doicu A, Wriedt T. Equivalent refractive index of a sphere with multiple spherical inclusions. J 
Opt A Pure Appl Opt. 2001; 3:204–209.

285. Mackowski DW. An effective medium method for calculation of the T matrix of aggregated 
spheres. J Quant Spectrosc Radiat Transfer. 2001; 70:441–464.

286. Mishchenko MI, Liu L. Weak localization of electromagnetic waves by densely packed many-
particle groups: exact 3D results. J Quant Spectrosc Radiat Transfer. 2007; 106:616–621.

287. Mishchenko MI, Liu L, Mackowski DW, Cairns B, Videen G. Multiple scattering by random 
particulate media: exact 3D results. Opt Express. 2007; 15:2822–2836. [PubMed: 19532520] 

288. Mishchenko MI, Liu L, Videen G. Conditions of applicability of the single-scattering 
approximation. Opt Express. 2007; 15:7522–7527. [PubMed: 19547076] 

289. Mishchenko MI, Liu L, Hovenier JW. Effects of absorption on multiple scattering by random 
particulate media: exact results. Opt Express. 2007; 15:13182–13187. [PubMed: 19550586] 

290. Tse, KK., Tsang, L., Chan, CH., Ding, KH. Multiple scattering of waves by random distribution 
of particles for applications in light scattering by metal nanoparticles. In: Maradudin, AA., editor. 
Light Scattering and Nanoscale Surface Roughness. Springer; New York: 2007. p. 341-370.

291. Doyle TE, Robinson DA, Jones SB, Warnick KH, Carruth BL. Modeling the permittivity of two-
phase media containing monodisperse spheres: effects of microstructure and multiple scattering. 
Phys Rev B. 2007; 76:054203.

292. Mishchenko MI. Multiple scattering, radiative transfer and weak localization in discrete random 
media: unified microphysical approach. Rev Geophys. 2008; 46:RG2003.

293. Okada Y, Kokhanovsky AA. Light scattering and absorption by densely packed groups of 
spherical particles. J Quant Spectrosc Radiat Transfer. 2009; 110:902–917.

294. Mishchenko MI, Liu L. Electromagnetic scattering by densely packed particulate ice at radar 
wavelengths: exact theoretical results and remote-sensing implications. Appl Opt. 2009; 
48:2421–2426. [PubMed: 19412198] 

Mishchenko et al. Page 99

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



295. Voit F, Schäfer J, Kienle A. Light scattering by multiple spheres: comparison between Maxwell 
theory and radiative-transfer-theory calculations. Opt Lett. 2009; 34:2593–2595. [PubMed: 
19724500] 

296. Mishchenko MI, Dlugach JM, Liu L, Rosenbush VK, Kiselev NN, Shkuratov YuG. Direct 
solutions of the Maxwell equations explain opposition phenomena observed for high albedo solar 
system objects. Astrophys J. 2009; 705:L118–L122.

297. Auger JC, Martinez VA, Stout B. Theoretical study of the scattering efficiency of rutile titanium 
dioxide pigments as a function of their spatial dispersion. J Coat Technol Res. 2009; 6:89–97.

298. Mishchenko MI, Dlugach JM, Liu L. Azimuthal asymmetry of the coherent backscattering cone: 
theoretical results. Phys Rev A. 2009; 80:053824.

299. Doyle TE, Tew AT, Jain R, Robinson DA. Effects of aggregation on the permittivity of random 
media containing monodisperse spheres. J Appl Phys. 2009; 106:114104.

300. Voit F, Schäfer J, Kienle A. Light scattering by multiple spheres: solutions of Maxwell theory 
compared to radiative transfer theory. Proc SPIE. 2009; 7371:73711G.

301. Mackowski DW, Mishchenko MI. Direct simulation of multiple scattering by discrete random 
media illuminated by Gaussian beams. Phys Rev A. 2011; 83:013804.

302. Mishchenko MI, Mackowski DW. Coherent backscattering in the cross-polarized channel. Phys 
Rev A. 2011; 83:013829.

303. Penttilä A, Lumme K. Optimal cubature on the sphere and other orientation averaging schemes. J 
Quant Spectrosc Radiat Transfer. 2011; 112:1741–1746.

304. Dlugach JM, Mishchenko MI, Liu L, Mackowski DW. Numerically exact computer simulations of 
light scattering by densely packed, random particulate media. J Quant Spectrosc Radiat Transfer. 
2011; 112:2068–2078.

305. Tishkovets VP, Petrova EV, Mishchenko MI. Scattering of electromagnetic waves by ensembles 
of particles and discrete random media. J Quant Spectrosc Radiat Transfer. 2011; 112:2095–
2127.

306. Kolokolova L, Liu L, Buratti B, Mishchenko MI. Modeling variations in near-infrared caused by 
the coherent backscattering effect. J Quant Spectrosc Radiat Transfer. 2011; 112:2175–2181.

307. Mishchenko MI, Dlugach JM, Mackowski DW. Coherent backscattering by polydisperse discrete 
random media: exact T-matrix results. Opt Lett. 2011; 36:4350–4352. [PubMed: 22089560] 

308. Muinonen K, Mishchenko MI, Dlugach JM, Zubko E, Penttilä A, Videen G. Coherent 
backscattering verified numerically for a finite volume of spherical particles. Astrophys J. 2012; 
760:118.

309. Auger J-C, Stout B. Dependent light scattering in white paint films: clarification and application 
of the theoretical concepts. J Coat Technol Res. 2012; 9:287–295.

310. Voit F, Hohmann A, Schäfer J, Kienle A. Multiple scattering of polarized light: comparison of 
Maxwell theory and radiative transfer theory. J Biomed Opt. 2012; 17:045003. [PubMed: 
22559677] 

311. Hohmann A, Voit F, Schäfer J, Kienle A. Comparison of Monte Carlo simulations with exact 
Maxwell solutions for polarized light scattering by multiple absorbing spheres. J Phys Conf Ser. 
2012; 369:012007.

312. Mackowski DW, Mishchenko MI. Direct simulation of extinction in a slab of spherical particles. J 
Quant Spectrosc Radiat Transfer. 2013; 123:103–112.

313. Virkki A, Muinonen K, Penttilä A. Circular polarization of spherical-particle aggregates at 
backscattering. J Quant Spectrosc Radiat Transfer. 2013; 126:150–159.

314. Tishkovets VP, Petrova EV. Coherent backscattering by discrete random media composed of 
clusters of spherical particles. J Quant Spectrosc Radiat Transfer. 2013; 127:192–206.

315. Penttilä A. Quasi-specular reflection from particulate media. J Quant Spectrosc Radiat Transfer. 
2013; 131:130–137.

316. Dlugach, ZhM, Mishchenko, MI. Coherent backscattering and opposition effects observed in 
some atmosphereless bodies of the Solar system. Solar Syst Res. 2013; 47:454–462.

Mishchenko et al. Page 100

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



317. Ejeta C, Muinonen K, Boehnhardt H, Bagnulo S, Kolokolova L, Guirado D, Tozzi GP. 
Polarization of Saturn’s moon Iapetus. III. Models of the bright and the dark sides. Astron 
Astrophys. 2013; 554:A117.

318. Tishkovets VP, Petrova EV. Light scattering by densely packed systems of particles: near-field 
effects. Light Scattering Rev. 2013; 7:3–36.

319. Hohmann A, Voit F, Schäfer J, Kienle A. Multiple scattering of polarized light: influence of 
absorption. Phys Med Biol. 2014; 59:2583–2597. [PubMed: 24785964] 

320. Virkki A, Muinonen K, Penttilä A. Inferring asteroid surface properties from radar albedos and 
circular-polarization ratios. Meteor Planet Sci. 2014; 49:86–94.

321. Mishchenko MI, Liu L, Mackowski DW. Morphology-dependent resonances of spherical droplets 
with numerous microscopic inclusions. Opt Lett. 2014; 39:1701–1704. [PubMed: 24690873] 

322. Mishchenko MI, Liu L, Cairns B, Mackowski DW. Optics of water cloud droplets mixed with 
black-carbon aerosols. Opt Lett. 2014; 39:2607–2610. [PubMed: 24784057] 

323. Mishchenko MI, Dlugach ZhM, Zakharova NT. Direct demonstration of the concept of 
unrestricted effective-medium approximation. Opt Lett. 2014; 39:3935–3938. [PubMed: 
24978775] 

324. Kahnert M. Modelling radiometric properties of inhomogeneous mineral dust particles: 
applicability and limitations of effective medium theories. J Quant Spectrosc Radiat Transfer. 
2015; 152:16–27.

325. Kristensson G. Coherent scattering by a collection of randomly located obstacles – an alternative 
integral equation formulation. J Quant Spectrosc Radiat Transfer. 2015; 164:97–108.

326. Rezvani Naraghi R, Sukhov S, Sáenz JJ, Dogariu A. Near-field effects in mesoscopic light 
transport. Phys Rev Lett. 2015; 115:203903. [PubMed: 26613441] 

327. Liu L, Mishchenko MI. Optics of water microdroplets with soot inclusions: exact versus 
approximate results. J Quant Spectrosc Radiat Transfer. 2016 in press. 

328. Mishchenko MI, Dlugach JM, Liu L. Applicability of the effective-medium approximation to 
heterogeneous aerosol particles. J Quant Spectrosc Radiat Transfer. 2016 in press. 

329. Roux L, Mareschal P, Vukadinovic N, Thibaud J-B, Greffet J-J. Scattering by a slab containing 
randomly located cylinders: comparison between radiative transfer and electromagnetic 
simulation. J Opt Soc Am A. 2001; 18:374–384.

330. Greffet, J-J., Thibaud, J-B., Roux, L., Mareschal, P., Vukadinovic, N. Scattering by a thin slab: 
comparison between radiative transfer and electromagnetic simulation. In: Sebbah, P., editor. 
Waves and Imaging Through Complex Media. Springer; Dordrecht, The Netherlands: 2001. p. 
299-305.

331. Lee S-C. Wave propagation through a dielectric layer containing densely packed fibers. J Quant 
Spectrosc Radiat Transfer. 2011; 112:143–150.

332. Tseng SH, Greene JH, Taflove A, Maitland D, Backman V, Walsh JT Jr. Exact solution of 
Maxwell’s equations for optical interactions with a macroscopic random medium. Opt Lett. 
2004; 29:1393–1395. [PubMed: 15233446] 

333. Tseng SH, Kim YL, Taflove A, Maitland D, Backman V, Walsh JT Jr. Simulation of enhanced 
backscattering of light by numerically solving Maxwell’s equations without heuristic 
approximations. Opt Express. 2005; 13:3666–3672. [PubMed: 19495273] 

334. Pekonen O, Kärkkäinen K, Sihvola A, Nikoskinen KI. Numerical testing of dielectric mixing 
rules by FDTD method. J Electromagn Waves Appl. 1999; 13:67–87.

335. Bi L, Yang P. Accurate simulation of the optical properties of atmospheric ice crystals with the 
invariant imbedding T-matrix method. J Quant Spectrosc Radiat Transfer. 2014; 138:17–35.

336. Yang P, Liou KN, Mishchenko MI, Gao B-C. Efficient finite-difference time domain scheme for 
light scattering by dielectric particles: application to aerosols. Appl Opt. 2000; 39:3727–3737. 
[PubMed: 18349948] 

337. Liu C, Panetta RL, Yang P. Application of the pseudo-spectral time domain method to compute 
particle single-scattering properties for size parameters up to 200. J Quant Spectrosc Radiat 
Transfer. 2012; 113:1728–1740.

338. Yurkin MA, Maltsev VP, Hoekstra AG. Convergence of the discrete dipole approximation. II. An 
extrapolation technique to increase the accuracy. J Opt Soc Am A. 2006; 23:2592–2601.

Mishchenko et al. Page 101

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



339. Muinonen, K., Penttilä, A., Videen, G. Multiple scattering of light in particulate planetary media. 
In: Kolokolova, L.Hough, J., Levasseur-Regourd, A-C., editors. Polarimetry of Stars and 
Planetary Systems. Cambridge University Press; Cambridge, UK: 2015. p. 114-129.

340. Mishchenko MI. On the nature of the polarization opposition effect exhibited by Saturn’s rings. 
Astrophys J. 1993; 411:351–361.

341. Shkuratov, YuG, Muinonen, K., Bowell, E., Lumme, K., Peltoniemi, JI., Kreslavsky, MA., 
Stankevich, DG., Tishkovets, VP., Opanasenko, NV., Melkumova, LY. A critical review of 
theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. 
Earth Moon Planets. 1994; 65:201–246.

342. Lyot B. Recherches sur la polarisation de la lumière des planetes et de quelques substances 
terrestres. Ann Observ Paris, Sect Meudon. 1929; 8(1) English translation: Research on the 
polarization of light from planets and from some terrestrial substances, NASA Tech. Transl. 
NASA TT F-187, Washington, DC, 1964. 

343. Shkuratov, Yu, Ovcharenko, A., Zubko, E., Miloslavskaya, O., Muinonen, K., Piironen, J., 
Nelson, R., Smythe, W., Rosenbush, V., Helfenstein, P. The opposition effect and negative 
polarization of structural analogs for planetary regoliths. Icarus. 2002; 159:396–416.

344. van Albada MP, van der Mark MB, Lagendijk A. Observation of weak localization of light in a 
finite slab: anisotropy effects and light-path classification. Phys Rev Lett. 1987; 58:361–364. 
[PubMed: 10034914] 

345. van Albada MP, van der Mark MB, Lagendijk A. Polarization effects in weak localization of light. 
J Phys D: Appl Phys. 1988; 21:S28–S31.

346. Oetking P. Photometric studies of diffusely reflecting surfaces with applications to the brightness 
of the Moon. J Geophys Res. 1966; 71:2505–2513.

347. Watson KM. Multiple scattering of electromagnetic waves in an underdense plasma. J Math Phys. 
1969; 10:688–702.

348. Kuga Y, Ishimaru A. Retroreflectance from a dense distribution of spherical particles. J Opt Soc 
Am A. 1984; 1:831–835.

349. Tsang L, Ishimaru A. Backscattering enhancement of random discrete scatterers. J Opt Soc Am 
A. 1984; 1:836–839.

350. van Albada MP, Lagendijk A. Observation of weak localization of light in a random medium. 
Phys Rev Lett. 1985; 55:2692–2695. [PubMed: 10032213] 

351. Wolf P-E, Maret G. Weak localization and coherent backscattering of photons in disordered 
media. Phys Rev Lett. 1985; 55:2696–2699. [PubMed: 10032214] 

352. Barabanenkov, YuN, Kravtsov, YuA, Ozrin, VD., Saichev, AI. Enhanced backscattering in optics. 
Prog Opt. 1991; 29:65–197.

353. van Rossum MCW, Nieuwenhuizen ThM. Multiple scattering of classical waves: microscopy, 
mesoscopy and diffusion. Rev Mod Phys. 1999; 71:313–371.

354. Akkermans, E., Montambaux, G. Mesoscopic Physics of Electrons and Photons. Cambridge 
University Press; Cambridge, UK: 2007. 

355. Mishchenko MI, Dlugach JM. Coherent backscatter and the opposition effect for E-type asteroids. 
Planet Space Sci. 1993; 41:173–181.

356. Videen, G.Yatskiv, Ya, Mishchenko, M., editors. Photopolarimetry in Remote Sensing. Kluwer; 
Dordrecht, The Netherlands: 2004. 

357. Mishchenko, MI.Yatskiv, YaSRosenbush, VK., Videen, G., editors. Polarimetric Detection, 
Characterization, and Remote Sensing. Springer; Dordrecht, The Netherlands: 2011. 

358. Kolokolova, L.Hough, J., Levasseur-Regourd, A-C., editors. Polarimetry of Stars and Planetary 
Systems. Cambridge University Press; Cambridge, UK: 2015. 

359. Hovenier, JW. Measuring scattering matrices of small particles at optical wavelengths. In: 
Mishchenko, MI.Hovenier, JW., Travis, LD., editors. Light Scattering by Nonspherical Particles: 
Theory, Measurements, and Applications. Academic Press; San Diego: 2000. p. 355-365.

360. Volten H, Muñoz O, Rol E, de Haan JF, Vassen W, Hovenier JW, Muinonen K. Scattering 
matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J Geophys Res. 2001; 
106:17375–17402.

Mishchenko et al. Page 102

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



361. Muñoz O, Moreno F, Guirado D, Ramos JL, López A, Girela F, Jerónimo JM, Costillo LP, 
Bustamante I. Experimental determination of scattering matrices of dust particles at visible 
wavelengths: the IAA light scattering apparatus. J Quant Spectrosc Radiat Transfer. 2010; 
111:187–196.

362. Muñoz O, Moreno F, Guirado D, Dabrowska DD, Volten H, Hovenier JW. The Amsterdam–
Granada Light Scattering Database. J Quant Spectrosc Radiat Transfer. 2012; 113:565–574.

363. Wagner R, Linke C, Naumann K-H, Schnaiter M, Vragel M, Gangl M, Horvath H. A review of 
optical measurements at the aerosol and cloud chamber AIDA. J Quant Spectrosc Radiat 
Transfer. 2009; 110:930–949.

364. Schnaiter M, Büttner S, Möhler O, Skrotzki J, Vragel M, Wagner R. Influence of particle size and 
shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber 
measurements in the context of contrail and cirrus microphysics. Atmos Chem Phys. 2012; 
12:10465–10484.

365. David G, Thomas B, Coillet E, Miffre A, Rairoux P. Polarization-resolved exact light 
backscattering by an ensemble of particles in air. Opt Express. 2013; 21:18624–18639. [PubMed: 
23938779] 

366. Dolgos G, Martins VJ. Polarized Imaging Nephelometer for in situ airborne measurements of 
aerosol light scattering. Opt Express. 2014; 22:21972–21990. [PubMed: 25321572] 

367. Twersky V. On propagation in random media of discrete scatterers. Proc Symp Appl Math. 1964; 
16:84–116.

368. Dolginov AZ, Gnedin YuN, Silant’ev NA. Photon polarization and frequency change in multiple 
scattering. J Quant Spectrosc Radiat Transfer. 1970; 10:707–754.

369. Marchuk, GI., Mikhailov, GA., Nazaraliev, MA., Darbinjan, RA., Kargin, BA., Elepov, BS. The 
Monte Carlo Methods in Atmospheric Optics. Springer; Berlin: 1980. 

370. Marshak, A., Davis, AB., editors. 3D Radiative Transfer in Cloudy Atmospheres. Springer; 
Berlin: 2005. 

371. Kokhanovsky AA, Budak VP, Cornet C, Duan M, Emde C, Katsev IL, Klyukov DA, Korkin SV, 
C-Labonnote L, Mayer B, Min Q, Nakajima T, Ota Y, Prikhach AS, Rozanov VV, Yokota T, Zege 
EP. Benchmark results in vector atmospheric radiative transfer. J Quant Spectrosc Radiat 
Transfer. 2010; 111:1931–1946.

372. Emde C, Barlakas V, Cornet C, Evans F, Korkin S, Ota Y, C-Labonnote L, Lyapustin A, Macke A, 
Mayer B, Wendisch M. IPRT polarized radiative transfer model intercomparison project – phase 
A. J Quant Spectrosc Radiat Transfer. 2015; 164:8–36.

373. Tyndall, J. The Glaciers of the Alps. John Murray; London: 1860. 

374. Tyndall, J. Essays on the Floating-Matter of the Air in Relation to Putrefaction and Infection. D. 
Appleton and Co; New York: 1888. 

375. Barabanenkov, YuN. Wave corrections to the transfer equation for “back” scattering. Radiophys 
Quantum Electron. 1973; 16:65–71.

376. Amic E, Luck JM, Nieuwenhuizen ThM. Multiple Rayleigh scattering of electromagnetic waves. 
J Phys I (France). 1997; 7:445–483.

377. Muinonen K. Coherent backscattering of light by complex random media of spherical scatterers: 
numerical solution. Waves Random Media. 2004; 14:365–388.

378. Mishchenko MI, Goldstein D, Chowdhary J, Lompado A. Radiative transfer theory verified by 
controlled laboratory experiments. Opt Lett. 2013; 38:3522–3525. [PubMed: 24104804] 

379. Kaveh M, Rosenbluh M, Edrei I, Freund I. Weak localization and light scattering from disordered 
solids. Phys Rev Lett. 1986; 57:2049–2052. [PubMed: 10033619] 

380. Mishchenko MI, Dlugach JM, Zakharova NT. Demonstration of numerical equivalence of 
ensemble and spectral averaging in electromagnetic scattering by random particulate media. J 
Opt Soc Am A. 2016 in press. 

381. Wiersma DS. Disordered photonics. Nat Photon. 2013; 7:188–196.

382. Lagendijk A, van Tiggelen BA. Resonant multiple scattering of light. Phys Rep. 1996; 270:143–
215.

Mishchenko et al. Page 103

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



383. van Tiggelen, BA., Skipetrov, SE., editors. Wave Scattering in Complex Media: From Theory to 
Applications. Kluwer; Dordrecht, The Netherlands: 2003. 

384. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Springer; 
Berlin: 2006. 

385. Ishimaru A, Kuga Y. Attenuation constant of a coherent field in a dense distribution of particles. J 
Opt Soc Am. 1982; 72:1317–1320.

386. Mackowski DW. Exact solution for the scattering and absorption properties of sphere clusters on a 
plane surface. J Quant Spectrosc Radiat Transfer. 2008; 109:770–788.

387. Doicu A, Schuh R, Wriedt T. Scattering by particles on or near a plane surface. Light Scattering 
Rev. 2008; 3:109–130.

388. Mudaliar S. Multiple scattering volume-surface interactions. IEEE Trans Antennas Propag. 2013; 
61:3225–3236.

389. Lee S-C. Scattering by multiple parallel radially stratified infinite cylinders buried in a lossy half 
space. J Opt Soc Am A. 2013; 30:1320–1327.

390. Mishchenko MI. Multiple scattering by particles embedded in an absorbing medium 1 Foldy–Lax 
equations, order-of-scattering expansion and coherent field. Opt Express. 2008; 16:2288–2301. 
[PubMed: 18542308] 

391. Mishchenko MI. Multiple scattering by particles embedded in an absorbing medium. 2. Radiative 
transfer equation. J Quant Spectrosc Radiat Transfer. 2008; 109:2386–2390.

392. Gelfand, IM., Minlos, RA., Shapiro, ZYa. Representations of the Rotation and Lorentz Groups 
and their Applications. Pergamon Press; New York: 1963. 

393. Varshalovich, DA., Moskalev, AN., Khersonskii, VK. Quantum Theory of Angular Momentum. 
World Scientific; Singapore: 1988. 

Appendix A. Benchmark STMM results

Owing to the equiprobable orientation distribution, the dimensionless scattering matrix (232) 

has the following symmetric structure [1,34]:

F∼(Θ) =

F∼11(Θ) F∼21(Θ) F∼13(Θ) F∼14(Θ)

F∼21(Θ) F∼22(Θ) F∼23(Θ) F∼24(Θ)

−F∼13(Θ) −F∼23(Θ) F∼33(Θ) F∼34(Θ)

F∼14(Θ) F∼24(Θ) −F∼34(Θ) F∼44(Θ)

. (A.1)

Table A.1 is a tabulation of the 10 independent elements of the scattering matrix computed 

with the STMM program [244] for the randomly oriented compound object shown in Fig. 

14a and specified in Section 7. Note that this table well exemplifies Eq. (246). In Table A.2, 

we also tabulate the coefficients appearing in the expansions of the numerically most 

significant scattering matrix elements in Wigner d-functions dmn
s (Θ) or, equivalently, in 

generalized spherical functions Pmm′
n ( cos Θ) = im − m′dmm′

n (Θ) [20,25,34,66,392,393]:

F∼11(Θ) = ∑
n = 0

nmax
α1

nP00
n ( cos Θ) = ∑

n = 0

nmax
α1

nd00
n (Θ), (A.2)
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F∼22(Θ) + F∼33(Θ) = ∑
n = 0

nmax
(α2

n + α3
n)P22

n ( cos Θ) = ∑
n = 0

nmax
(α2

n + α3
n)d22

n (Θ), (A.3)

F∼22(Θ) − F∼33(Θ) = ∑
n = 0

nmax
(α2

n − α3
n)P2, − 2

n ( cos Θ) = ∑
n = 0

nmax
(α2

n − α3
n)d2, − 2

n (Θ), (A.4)

F∼44(Θ) = ∑
n = 0

nmax
α4

nP00
n ( cos Θ) = ∑

n = 0

nmax
α4

nd00
n (Θ), (A.5)

F∼21(Θ) = ∑
n = 0

nmax
β1

nP02
n ( cos Θ) = − ∑

n = 0

nmax
β1

nd02
n (Θ), (A.6)

F∼34(Θ) = ∑
n = 0

nmax
β2

nP02
n ( cos Θ) = − ∑

n = 0

nmax
β2

nd02
n (Θ), (A.7)

Note that

〈 cos Θ〉 = 1
3α1

1 . (A.8)

The number of nonzero terms in the expansions (A.2)–(A.7) is, strictly speaking, infinite. In 

practice, however, a finite upper summation limit nmax is chosen such that the corresponding 

truncated sums differ from the respective scattering matrix elements within the requisite 

numerical accuracy on the entire interval Θ ∈ [0, π] of scattering angles. All numerical 

accuracy parameters in the STMM program were increasingly tightened until the numbers in 

Tables A.1 and A.2 converged to within plus/minus a few units in the last decimals given.
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Table A.1

Elements of the normalized scattering matrix calculated with the STMM computer program.

Θ (deg) F̃11 F̃21 F̃13 F̃14 F̃22 F̃23 F̃24 F̃33 F̃34 F̃44

0 49.71733 0.00000 0.00000 −0.00014 49.70581 0.00322 0.00000 49.70581 0.00000 49.69506

10 12.42281 −0.38719 0.00002 −0.00000 12.41798 0.00155 −0.00002 12.31709 1.48848 12.31480

20 3.82084 −0.65502 0.00002 0.00037 3.81143 0.00028 0.00001 3.66047 −0.77437 3.65477

30 2.46558 0.32314 −0.00004 −0.00033 2.45656 −0.00048 −0.00001 2.41573 0.25041 2.41197

40 2.96876 −0.02893 −0.00002 0.00015 2.95631 −0.00032 0.00002 2.89553 −0.57369 2.88959

50 1.00871 0.22695 −0.00003 −0.00019 0.99662 0.00000 −0.00016 0.89948 0.28267 0.89468

60 1.04317 −0.09226 0.00002 −0.00008 1.03129 0.00054 −0.00002 0.98187 −0.26947 0.97817

70 0.40002 0.19768 0.00001 −0.00012 0.39089 0.00027 0.00003 0.29308 0.03631 0.29193

80 0.53819 −0.09156 0.00001 0.00004 0.52842 0.00018 −0.00003 0.49913 −0.11133 0.49892

90 0.24845 0.13979 −0.00013 0.00018 0.24058 −0.00015 0.00013 0.15711 −0.03949 0.15781

100 0.16012 −0.03083 0.00000 0.00010 0.14943 −0.00039 −0.00008 0.12980 −0.01340 0.13269

110 0.19072 0.09828 −0.00024 −0.00043 0.17921 0.00032 −0.00024 0.10879 −0.04054 0.11226

120 0.10523 0.01397 −0.00007 0.00000 0.08762 0.00003 −0.00023 0.02627 −0.06017 0.03571

130 0.17251 0.04556 0.00023 −0.00022 0.14978 0.00007 0.00001 0.10869 −0.00973 0.12077

140 0.32879 0.00751 0.00023 −0.00009 0.29739 −0.00018 −0.00050 0.04533 −0.27640 0.06741

150 0.14684 0.02090 0.00016 0.00075 0.09466 0.00010 0.00066 0.03747 −0.04800 0.07547

160 0.76055 0.01776 −0.00121 0.00079 0.70377 −0.00073 0.00117 0.39784 −0.52574 0.44526

170 0.40934 0.22432 0.00055 −0.00063 0.37337 −0.00021 0.00003 0.24795 −0.04579 0.27032

180 0.38852 0.00000 0.00000 −0.00581 0.24250 0.00000 0.00000 −0.24250 0.00000 −0.09647

Table A.2

Expansion coefficients calculated with the STMM computer program.

n α1
n α2

n α3
n α4

n β1
n β2

n

0 1.00000 0.00000 0.00000 0.90630 0.00000 0.00000

1 1.86553 0.00000 0.00000 1.89662 0.00000 0.00000

2 2.29661 3.61509 3.43653 2.21923 −0.09381 0.13309

3 1.86558 2.44923 2.45022 1.91094 −0.02746 0.00610

4 1.94148 2.23947 2.13993 1.92623 −0.04024 0.18993

5 1.82032 1.92938 1.86526 1.79708 0.00112 −0.05645

6 1.96397 2.10089 2.06841 1.96043 0.05146 0.21263

7 2.17566 2.09321 2.04990 2.15775 0.12290 −0.02730

8 2.51398 2.61833 2.58468 2.50124 0.13264 0.12198

9 2.79420 2.70146 2.69891 2.82529 0.23022 −0.11972

10 2.80854 3.03972 2.98293 2.79412 0.21611 −0.04008

11 2.83598 2.74434 2.74189 2.88242 0.29442 −0.20541

12 2.56817 2.85635 2.82965 2.61048 0.21075 −0.07325

13 2.73807 2.57889 2.48558 2.70521 0.26578 −0.20495
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n α1
n α2

n α3
n α4

n β1
n β2

n

14 2.55909 2.82990 2.84695 2.63705 0.10429 0.00955

15 3.05048 2.82332 2.72507 3.01411 0.13466 −0.19354

16 3.04930 3.32459 3.32160 3.10138 −0.02963 0.03529

17 3.36077 3.16079 3.22556 3.51389 −0.27596 −0.19771

18 2.99934 3.37988 3.27850 3.00480 −0.46426 −0.79836

19 2.08446 2.05418 2.00679 2.13122 −0.04756 −0.78261

20 1.23452 1.52855 1.26855 1.03331 0.17120 −0.84357

21 0.03859 0.01828 0.00073 0.02990 0.22586 −0.01528

22 0.10947 0.12174 0.10523 0.09718 0.03328 −0.02163

23 0.03300 0.03695 0.03270 0.02979 0.01255 −0.00690

24 0.00812 0.00913 0.00803 0.00728 0.00372 −0.00150

25 0.00171 0.00192 0.00166 0.00150 0.00091 −0.00026

26 0.00032 0.00036 0.00030 0.00027 0.00019 −0.00004

27 0.00005 0.00006 0.00005 0.00004 0.00004 0.00000

28 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000

29 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Appendix B. List of acronyms

DDA discrete-dipole approximation

DRM discrete random medium

EMA effective-medium approximation

EMR effective-medium rule

EOA effective-object approximation

FDTDM finite-difference time-domain method

FEs Foldy equations

II-TMM invariant-imbedding T-matrix method

MMEs macroscopic Maxwell equations

PSTDM pseudo-spectral time-domain method

QED quantum electrodynamics

RT radiative transfer

RTE radiative transfer equation

STMM superposition T-matrix method

TMM T-matrix method
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VIE volume integral equation

WCR well-collimated radiometer

WL weak localization
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Fig. 1. 
Examples of manmade and natural small particles. (a) Commercial glass spheres (after [37]). 

(b) Sahara desert sand (after [38]). (c) Dry sea-salt particles (after [39]). (d) A 6-mm-

diameter falling raindrop. (e) 40-nm-diameter gold particles (after [40]). (f) Interplanetary 

dust particle U2012C11 collected by a NASA U2 aircraft. (g) Red blood cells.
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Fig. 2. 
(a) Natural and (b) modeled soot fractals (after [41–43]).

Mishchenko et al. Page 110

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 3. 
Two types of discrete random medium. (a) Type 1: particles are randomly distributed 

throughout an imaginary volume V. (b) Type 2: particles are randomly distributed 

throughout a host volume V having a refractive index different from that of the surrounding 

infinite space.
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Fig. 4. 
Examples of natural discrete random media. (a) Clouds of interstellar dust, arranged in huge 

patches and tentacles, appears dark when they are silhoutted against the stars in the mid-

plane of the galaxy NGC 891. Image taken with NASA’s Hubble Space Telescope. (b) 

Ghostly glow caused by the scattering of sunlight by the interplanetary dust cloud. (c) The 

dusty atmosphere of the comet ISON photographed on 10 April 2013 with NASA’s Hubble 

Space Telescope. (d) Particulate Saturn’s rings photographed from NASA’s Cassini 

spacecraft. (e) Jovian clouds photographed from NASA’s Cassini spacecraft. (f) Thin diffuse 

clouds in the atmosphere of Mars photographed from NASA’s Opportunity rover. Cirrus (g) 

and liquid-water (h) clouds in the Earth’s atmosphere. (i) Raw milk.
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Fig. 5. 
Examples of natural and manmade discrete random media. (a) Cross-section of a ~2.2-μm 

highly porous natural organic-matter aerosol particle (after [51]). (b) Transmission electron 

micrograph of a high-impact polystyrene sample cut with an oscillating diamond knife. The 

large composite particle has a diameter of ~3 μm (after [52]). (c) Backscattered electron 

micrograph of the cross section of an olefin polymer blend polished using an oscillating 

diamond knife at room temperature (after [53]). (d) Particulate surface composed of glass 

microspheres. (e) Electron micrograph of a paint film formed by TiO2 particles immersed in 

a binder. (f) Dense coating formed by 30-nm Y2O3 crystals.
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Fig. 6. 
Standard electromagnetic scattering problem. The fixed finite scattering object consists of N 
distinct and potentially inhomogeneous components. The shaded areas collectively represent 

the interior region VINT, while the unshaded exterior region VEXT is unbounded in all 

directions.
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Fig. 7. 
Scattering in the far zone of the object.
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Fig. 8. 
Optical scheme of a well-collimated radiometer.
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Fig. 9. 
Examples of well-collimated radiometers. (a) 26-in refractor of the Pulkovo Observatory. (b) 

NASA’s 34-m Goldstone radio telescope. (c) NASA’s Hubble Space Telescope. (d) Human 

eye. (e) Digital photographic camera. (f) Light scattering setup built at the University of 

Amsterdam (after [176]). (g) Gershun tube (after [177]).
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Fig. 10. 
The response of a polarization-sensitive well-collimated radiometer depends on the line of 

sight.
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Fig. 11. 
Energy budget of a finite volume enclosing (a) the entire scattering object or (b) a part of the 

object.
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Fig. 12. 
Vector notation used in the far-field Foldy equations.
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Fig. 13. 
Effective-medium methodology.

Mishchenko et al. Page 121

Phys Rep. Author manuscript; available in PMC 2018 April 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 14. 
(a) Model compound scatterer. (b) Scattering geometry.
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Fig. 15. 
Elements of the dimensionless scattering matrix computed using the STMM and DDA for 

the randomly oriented composite object shown in Fig. 14a. The nx = 64 and nx = 128 DDA 

results are shown only in the F̃
22/F̃

11 panel.
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Fig. 16. 
As in Fig. 15, but for STMM vs. II-TMM results.
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Fig. 17. 
As in Fig. 15, but for STMM vs. FDTDM results.
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Fig. 18. 
As in Fig. 15, but for STMM vs. PSTDM results.
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Fig. 19. 
(a) An imaginary spherical volume populated by randomly positioned spherical particles. (b) 

Angular coordinates used in Fig. 20.
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Fig. 20. 
(a) Angular distributions of the scattered intensity for two fixed spherical particulate 

volumes. (b) As in panel (a), but averaged over random particle positions. The gray scale is 

individually adjusted in order to maximally reveal the fine structure of each scattering 

pattern. Fig. 19b shows the angular coordinates used for all three panels.
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Fig. 21. 
(a) Interference origin of speckle. (b) Forward-scattering interference. (c) Interference origin 

of weak localization. (d) Interference origin of the diffuse background. (e) A pair of particle 

sequences contributing to the time-averaged diffuse background. (f) A pair of particle 

sequences contributing to time-averaged weak localization. (g) Interference origin of the 

polarization opposition effect.
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Fig. 22. 
Elements of the dimensionless scattering matrix computed for an imaginary k1R = 50 

spherical volume of discrete random medium uniformly populated by N = 1, 2, …, 600 

particles with k1r = 4 and m= 1.32.
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Fig. 23. 
Elements of the dimensionless scattering matrix and polarization ratios computed for an 

imaginary k1R = 50 spherical volume of discrete random medium uniformly populated by N 
= 1, 2, …, 600 particles with k1r = 4 and m= 1.32.
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Fig. 24. 
Elements of the dimensionless scattering matrix for two realizations of an imaginary 

spherical volume of discrete random medium with k1R = 50, N = 200, k1r = 4, and m= 1.32.
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Fig. 25. 
Polarization opposition effects.
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Fig. 26. 
Polarization measurements for a particulate surface composed of small magnesia particles.
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Fig. 27. 
Measurements of intensity and polarization of light backscattered by a particulate surface 

composed of small magnesia particles.
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Fig. 28. 
An equidimensional homogeneous spherical particle replaces the imaginary spherical 

volume filled with a large number of identical inclusions.
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Fig. 29. 
Orientation-averaged elements of the dimensionless scattering matrix for an imaginary 

spherical volume of discrete random medium with k1R = 10, N = 15000, k1r = 0.2, and m = 

1.2. The thin black curves show the result of using the Maxwell-Garnett approximation.
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Fig. 30. 
(a, b) Heterogeneous spherical target and its effective-medium counterpart. (c–e) 

Manifestations of the Tyndall effect.
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Fig. 31. 
Elements of the dimensionless scattering matrix for randomly heterogeneous and 

homogeneous spherical objects with a fixed size parameter k1R = 12 (see text).
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Fig. 32. 
Elements of the dimensionless scattering matrix for randomly heterogeneous and 

homogeneous spherical objects with a fixed size parameter k1R = 10 (see text).
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Fig. 33. 
Elements of the dimensionless scattering matrix for randomly heterogeneous and 

homogeneous spherical objects with a fixed size parameter k1R = 10 (see text).
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Fig. 34. 
Elements of the dimensionless scattering matrix for randomly heterogeneous and 

homogeneous spherical objects with a fixed size parameter k1R = 10 (see text).
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Fig. 35. 
The Type-1 DRM is composed of a small number of particles sparsely populating an 

imaginary volume V and is observed from a sufficiently large distance r.
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Fig. 36. 
Near-field measurements of electromagnetic scattering by a small sparse DRM.
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Fig. 37. 
The Twersky approximation for the dyadic correlation function. Each arrow denotes the 

local incident field; each dot denotes the left-multiplication by the corresponding scattering 

dyadic; and each horizontal line denotes multiplication by the corresponding g-function 

(150).
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Fig. 38. 
Classification of various terms entering the expanded Twersky approximation for the dyadic 

correlation function.
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Fig. 39. 
A WCR placed inside the DRM. The size of the WCR is exaggerated relative to that of the 

DRM for demonstration purposes. The uniform shading is intended to emphasize that the 

constituent particles move randomly throughout the volume V during the measurement.
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Fig. 40. 
Electromagnetic scattering by a sparse Type-1 DRM. The size of the DRM is exaggerated 

relative to its distance from observation point 3 for demonstration purposes.
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Fig. 41. 
Diagrams with crossing connectors.
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Fig. 42. 
Scattering by a spherical Type-1 DRM with a size parameter of k1R = 40 and packing 

densities of ρ = 3.125% and 6.250%, populated with identical spherical particles with a size 

parameter of k1r = 2 and a refractive index of m = 1.31. The solid, dotted, and thick gray 

curves depict the STMM, RT-only, and RT–WL results, respectively. The RT phase 

functions are shifted downward to match the RT–WL phase functions at Θ = 150°.
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Fig. 43. 
Elements of the dimensionless scattering matrix computed for an imaginary k1R = 50 

spherical volume populated by N = 200 particles with k1r = 4 and m = 1.32. Black curves: 

the multi-particle configuration is fixed. Gray curves: the results are averaged over the 

uniform orientation distribution of the multi-particle configuration.
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Fig. 44. 
Elements of the dimensionless scattering matrix computed for an imaginary spherical 

volume populated by N = 200 particles with m = 1.32. Black curves: the multi-particle 

configuration is fixed and the results are averaged over a range of wavelengths such that k1R 
varies from 47.5 to 52.5 and k1r varies from 3.8 to 4.2. Gray curves: the results are averaged 

over the uniform orientation distribution of the multi-particle configuration at a single 

wavelength such that k1R = 50 and k1r = 4.
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Mishchenko et al. Page 153

Table 1

Cartesian coordinates of 10 spherical inclusions.

n xn yn zn

1 −0.215062 6.479603 0.616824

2 −3.756010 −2.754431 5.549602

3 0.650697 0.515307 −0.017826

4 −2.364920 0.805033 −4.337800

5 5.008396 −4.096047 1.241592

6 −4.504373 −4.444519 −0.820851

7 7.303638 0.831435 −0.230329

8 4.725006 5.314130 1.544096

9 −0.219794 −7.116933 −0.691158

10 3.957806 1.528642 −4.454259
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Table 3

Extinction cross-section and asymmetry parameter ratios.

mhost
Cext

STMM

Cext
LM

Cext
STMM

Cext
MG

〈 cos Θ〉STMM

〈 cos Θ〉LM
〈 cos Θ〉STMM

〈 cos Θ〉MG

1.4 1.0755 1.0235 1.0348 1.0121

1.6 0.9061 0.9903 0.9035 0.9926
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Table 4

Comparison of STMM and first-order-scattering approximation results.

N ρ 〈〈Wext(t)〉〉FOSA

〈〈Wext(t)〉〉STMM

1 0.0005 1

2 0.0010 1.0001

5 0.0026 1.0059

20 0.0102 1.0336

50 0.0256 1.4451

100 0.0512 1.6952

200 0.1024 2.4506

400 0.2048 4.7936

600 0.3072 7.0776
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