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Abstract

Introduction—Sleep plays an important role in cardiometabolic health. The sleep-wake cycle is 

partially driven by the endogenous circadian clock, which governs a range of metabolic pathways. 

The association between sleep and cardiometabolic health may be mediated by alterations of the 

human metabolome

Objectives—To better understand the biological mechanism underlying the association between 

sleep and health, we examined human plasma metabolites in relation to sleep duration and sleep 

timing.

Methods—Using an untargeted approach, 329 fasting plasma metabolites were measured in 277 

Chinese participants. We measured sleep timing (midpoint between bedtime and wake up time) 

using repeated time-use surveys (4 weeks during one year) and previous night sleep duration from 

questionnaires completed before sample donation.

Results—We found 64 metabolites that were associated with sleep timing with a false discovery 

rate of 0.2 or lower, after adjusting for potential confounders. Notably, we found that later sleep 

timing was associated with higher levels of multiple metabolites in amino acid metabolism, 

including branched chain amino acids and their gamma-glutamyl dipeptides. We also found 
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widespread associations between sleep timing and numerous metabolites in lipid metabolism, 

including bile acids, carnitines and fatty acids. In contrast, previous night sleep duration was not 

associated with plasma metabolites in our study.

Conclusion—Sleep timing was associated with a large number of metabolites across a variety of 

biochemical pathways. Some metabolite associations are consistent with a relationship between 

late chronotype and adverse effects on cardiometabolic health.
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Introduction

Growing evidence has suggested that sleep plays an important role in multiple 

cardiometabolic conditions: sleep deficiency has been repeatedly associated with higher 

risks of obesity (Wu et al., 2014), type 2 diabetes (Shan et al., 2015, Cappuccio et al., 2010), 

and cardiovascular diseases (CVD) (Cappuccio et al., 2011). Night-shift workers who 

commonly suffer circadian disruption experience larger weight gain (van Drongelen et al., 

2011) and are more likely to develop metabolic syndrome (Wang et al., 2014), diabetes (Gan 

et al., 2015), and CVD (Vyas et al., 2012). Moreover, several recent studies also reported 

that a preference of later sleep schedules (late chronotype) and larger differences in 

weekday/weekend schedules (social jetlag) are associated with worse metabolic health 

(Wittmann et al., 2006, Wong et al., 2015).

The sleep-wake cycle is an important behavioral manifestation of the endogenous circadian 

clock, which governs a range of metabolic pathways. Therefore, the association between 

sleep and cardiometabolic health may be mediated by alterations of the human metabolome 

(Bass and Takahashi, 2010). To date, three studies examined the acute effects of total and 

partial sleep deprivation in controlled laboratory conditions on human metabolome (Bell et 

al., 2013, Davies et al., 2014, Weljie et al., 2015). All three studies reported that sleep 

restriction resulted in widespread changes in circulating metabolites, including reduction of 

carbohydrates and increased levels of certain lipids and amino acids. However, such effects 

may not reflect those caused by habitual sleep conditions, such as chronic sleep deprivation 

or general sleep timing. Moreover, previous studies suggested that late sleep timing may be 

associated with more severe circadian disruption and may be a risk factor for multiple 

cardiometabolic conditions independent of sleep duration (Wong et al., 2015). However, no 

study has examined sleep timing in relation to human metabolome.

In a group of Chinese men and women who completed daily time-use log for four separate 

weeks in a 1-year period, we used an untargeted approach to measure over 300 metabolites 

from fasting plasma samples. We examined metabolite levels in relation to multiple 

measures of sleep timing and sleep duration. The aim of our study is to identify metabolite 

markers that are associated with natural variations in sleep behavior in the general 

population, which may help elucidate the biological mechanisms driving the health effects of 

sleep and circadian rhythm.
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Methods

Study population

Our study included subjects from the Shanghai Physical Activity Study. Details of this study 

have been previously reported (Peters et al., 2010). Briefly, a total of 619 participants were 

randomly selected from two population-based prospective studies, the Shanghai Women’s 

Health Study (Zheng et al., 2005) and Shanghai Men’s Health Study (Shu et al., 2015). 

Participants were asked to complete a daily activity log for seven consecutive days on four 

separate occasions during a one-year study period (roughly one administration in each 

season). On average, each participant provided 27.3 days of log data. They also donated 

blood samples at the beginning and at the end of the one-year period, but only the samples 

donated at the end of the study period were used for metabolomics assay. A previous study 

selected 339 men and women for metabolomics assay using the blood samples donated at 

the end of the study (Xiao et al., 2016), and among them we excluded subjects with non-

fasting blood samples. The final analytic sample included 277 men and women. A diagram 

depicting the study design and sleep variables are presented in Supplementary figure 1.

Measurement of sleep variables

In the activity log, the participants reported the time they went to bed at night and got up in 

the morning. Additionally, before each blood donation, they completed a short questionnaire 

and reported sleep duration in the previous night. From these we calculated two main sleep 

variables: 1) yearly average of the midpoint between bedtime and wake-up time (midpoint of 

time in bed), a common measure of chronotype (Kantermann et al., 2015, Roenneberg et al., 

2003); and 2) sleep duration during the night prior to end-of-study blood donation.

We also calculated several other sleep variables for additional analysis (Supplementary 

figure 1). These include yearly average of total time spent in bed as a proxy of habitual sleep 

duration; average midpoint on nights before weekends, difference between average midpoint 

in weekdays and weekends, standard deviation of repeated measures of midpoint over the 1-

year period, and average previous night sleep duration between the two sample donations at 

the beginning and the end of the study. Moreover, to address the potential U-shaped 

association between sleep duration and metabolites, we also created two categorical 

variables to indicate short, normal, and long sleep for average total time in bed and previous-

night sleep. For previous-night sleep, we defined <6 hr as short sleep and >9 hr as long 

sleep. For total time in bed, we designated the bottom 10% (<7.3 hr) to the short and the 

upper 10% (≥10 hr) to the long category.

Measurement of metabolites

We used EDTA treated fasting plasma samples donated at the end of study year. Metabolite 

levels were measured by Metabolon, Inc. whose platform and procedures have been 

described previously (Evans et al., 2009, DeHaven et al., 2010). Briefly, samples were 

analyzed using ultra high performance liquid-phase chromatography coupled with mass 

spectrometry and tandem mass spectrometry (LC/MS and LC/MS2) and gas chromatography 

coupled with mass spectrometry (GC/MS). For each sample, the batch and position within a 

batch of 32 samples were randomly assigned, and the value for each metabolite was e 
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normalized metabolite to the median for that batch. Individual metabolites were identified by 

comparing the mass spectra peaks to a chemical reference library. Of the 445 metabolites 

that were detected, 329 were of known identity. Identified metabolites were grouped into 8 

chemical classes (amino acids, carbohydrates, cofactors and vitamins, energy metabolites, 

lipids, nucleotide metabolites, peptides, and xenobiotics) and 55 sub-pathways. Previous 

studies have reported a high level of reliability for the metabolomics platform used in this 

study (Sampson et al., 2013). Detailed methods for LC/MS, LC/MS2, and /GC-MS, as well 

as compound identification and curation are reported in Supplementary materials. Reference 

spectral data including retention time and m/z for the 329 metabolites detected in our study 

are presented in Supplementary table 1.

Covariates

The baseline questionnaire of the Shanghai Women’s Health Study and Shanghai Men’s 

Health Study collected demographic information including age and gender. Follow-up in-

person interviews were conducted every two years. Height was measured at baseline and 

weight was measured repeatedly in follow-up interviews. To calculate body mass index 

(BMI, weight (kg)/height(m)2), we used baseline height and weight from the interview that 

was the closest to the date of sample collection (<2 years). Smoking status (current smoker 

or non-smoker) was reported when the plasma samples were taken. We calculated day-time 

napping duration based on activity log. In the same periods when activity log was 

completed, the participants were asked to wear an Actigraph accelerometer on the left hip at 

all times except when sleeping, showering and swimming. Total physical activity was 

calculated using actigraphy data using previously described methods (Peters et al., 2010). 

The time of sample donation was recorded in the study. The distribution of these covariates 

in the overall study and by sex is presented in Supplementary table 2.

Statistical analysis

Metabolite levels were first batch normalized and then log-transformed. Values below the 

detection threshold were set to the minimum observed value of the metabolite. The median 

level of “missingness” before imputation was 1%. Metabolites that were observed in ≤90% 

of the samples were excluded from the analysis. Pairwise correlations among metabolites 

were determined using the Pearson correlation coefficient, and correlations among sleep 

variables were determined using the Spearman correlation coefficient. Linear regression was 

used to estimate the association between each metabolite and sleep variables, adjusted for 

age (continuous), clock time at sample collection (continuous), sex (male, female), smoking 

status (yes, no), BMI (continuous), napping time (continuous), and physical activity energy 

expenditure (continuous). Moreover, because age and time of sample collection are 

important confounders and may have a nonlinear relationship with metabolites, we explored 

using spline terms for age and time at sample collection, but found the additional flexibility 

had little impact on the results. To account for multiple comparisons, we primarily used a 

false discovery rate (FDR) <0.2 to define statistical significance for purposes of reporting 

associations, but we also reported statistical significance using more stringent Bonferroni 

correction method (0.05/329=0.00015). We used the likelihood-ratio test to determine 

whether is a statistically significant interaction between sex and sleep in relation to 
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metabolites. Because a statistically significant interaction was detected for some metabolites, 

we also performed stratified analysis in men and women separately.

We also evaluated the association between sleep variables and metabolomic patterns. 

Specifically, we used sparse principal component analysis (Zou et al., 2006) to create 10 

principal components (PCs) with 10 non-zero loadings. We then performed step-wise 

regression between sleep variables and 10 PCs adjusted for the same set of covariates. We 

calculated the additional percent of variance in sleep variables explained by each of the PCs. 

We used Bonferroni correction to evaluate the statistical significance for interaction with sex 

(p<0.0078 (0.05/64)). All analyses were performed with SAS (version 9.1.3, SAS Institute, 

Cary, NC) and the R statistical language package (version 3.1.2).

Results

The distribution of the two main sleep variables by study characteristics is presented in 

Supplementary table 3. Participants with less than elementary school education had earlier 

average midpoint of time in bed, and time at sample donation was positively associated with 

midpoint. In contrast, sleep duration in the previous night before sample collection was only 

associated with clock time at sample collection.

After controlling for all covariates, 64 of the 329 metabolites with known identity were 

found to be associated with average midpoint of time in bed with an FDR<0.2 (Table 1, 

Figure 1), and they represented all 8 biochemical classes and 29 out of the 55 sub-pathways. 

Late midpoint was associated with higher levels of amino acids, carbohydrates, bile acids, 

steroids, dipeptides and several xenobiotics. In contrast, midpoint point was inversely 

associated with all the carnitines and fatty acids (except for CMPF), as well as bilirubin and 

AMP. When we used Bonferroni correction, only three metabolites had a significant 

association with midpoint of sleep, and these include cis-4-decenoyl carnitine, 

laurylcarnitine, and 1,6-anhydroglucose. Detailed information on the specific metabolites as 

well as their effect estimates and p-values are presented in Figure 2, Table 2 (for the 64 

metabolites associated with midpoint) and Supplementary table 4 (full list). When we 

conducted subgroup analysis by sex focusing on the 64 metabolites significantly associated 

with midpoint, the metabolite associations were the same in direction for both men and 

women and we did not find any statistically significant interaction with sex (Supplementary 

table 5). Additional adjustment of previous night sleep duration or average time spent in bed 

had little impact on the results (data not shown).

An individual’s sleep schedule often differs between weekdays and weekends (Wong et al., 

2015). However, in our population the average differences between midpoints on weekdays 

and weekends were small (<30 minutes for over 90% subjects and <10 minutes for over 

50%). When we conducted a sensitivity analysis focusing on average midpoint on weekend 

evenings (Friday and Saturday nights) alone, we found that the results were largely similar 

to those for average of all nights (Supplementary table 6). Moreover, we did not find any 

metabolite that was associated with standard deviation of repeated measures of midpoint 

over the one-year period or the difference between averaged midpoints in weekdays and 

weekends (data not shown).
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We investigated the clustering of the 64 metabolites that were significantly associated with 

midpoint of time in bed. The overall correlations were moderate to low (Pearson correlation 

coefficient<0.4). However, we observed very high correlations (Pearson correlation 

coefficient>0.8) among carnitines, branched chain amino acids and dipeptides. We also 

found moderate to high correlations (Pearson correlation coefficient, 0.4–0.8) among various 

fatty acids, between fatty acids and carnitines, and between amino acids and their dipeptide 

derivatives (Figure 3).

We examined metabolites in relation to previous night sleep duration, and we did not find 

any metabolite with a significantly (FDR<0.2) association (full list of metabolites 

associations are shown in Supplementary table 7). We also did not find any metabolite 

associations with yearly average of total time spent in bed as a proxy of habitual sleep 

duration (Supplementary table 8). Further analysis showed no metabolite associations with 

the short or long categories of total time in bed or previous night sleep duration (data not 

shown). Finally, we further compared the metabolite associations for sleep timing, previous 

night sleep duration and average time in bed (Figure 4). For a more complete comparison, 

we present all the metabolites that were associated with at least one of the sleep variables at 

p<0.05. Overall we found the pattern of metabolite associations for the three variables was 

quite distinct. Metabolites that showed stronger association with total time in bed and 

previous night sleep duration tended to be only weakly associated with midpoint of time in 

bed.

Discussion

Our study is the first to investigate the human metabolome in relation to habitual sleep. The 

sleep-wake cycle is driven by the internal circadian clock, which orchestrates a wide range 

of metabolic pathways, including carbohydrate, protein and amino acid, and lipid 

metabolism (Bailey et al., 2014). We found that sleep timing was associated with the fasting 

levels of a large number of metabolites across multiple biochemical pathways, highlighting 

the central role of circadian rhythms and sleep in human metabolism.

Amino acids and peptides

Both protein degradation and synthesis are regulated by the circadian system, with increased 

protein degradation during sleep and higher protein synthesis during awake time. (Bailey et 

al., 2014). Microarray studies have found diurnal variations in genes involved in protein 

turnover (Duffield et al., 2002), and previous studies have reported daily fluctuations in 

circulating amino acid levels (Dallmann et al., 2012, Weljie et al., 2015, Ang et al., 2012). 

We found sleep timing was associated with multiple amino acids. Notably, later sleep timing 

was associated higher circulating levels of valine, leucine, isoleucine (branched chain amino 

acids (BCAA)) and their gamma-glutamyl dipeptides, as well as several metabolites from 

the sulfur amino acids metabolism, and tyrosine and phenylalanine metabolism (alpha-

hydroxybutyrate, alpha-ketobutyrate, Phenylacetate and 3-(4-hydroxyphenyl)lactate).

A growing body of research has linked BCAA metabolism, sulfur amino acids metabolism, 

and tyrosine and phenylalanine metabolism pathways to impaired cardiometabolic health 

(Adams, 2011, Lynch and Adams, 2014). For example, it has been suggested that higher 
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concentrations of circulating BCAAs, alpha-hydroxybutyrate and alpha-ketobutyrate may 

serve as markers of insulin resistance (Batch et al., 2014, Tom and Nair, 2006, Ferrannini et 

al., 2013, Gall et al., 2010). Moreover, circulating levels of BCAAs and 3-(4-

hydroxyphenyl)lactate were found to be associated with higher BMI (Moore et al., 2014). 

Interestingly, a recent study found fasting isoleucine level was elevated after eight nights of 

sleep restriction (5.5 hour) in 12 healthy adults (Bell et al., 2013), and another study found 

higher levels of leucine and valine following one night sleep restriction (4 hour) in rats 

(Weljie et al., 2015). It is worth noting that the magnitude of the associations between sleep 

timing and amino acids observed in our study was relatively small – one hour of delay in 

midpoint was associated with only <0.1 SD increase in many amino acids in this population, 

which may not lead to clinically meaningful difference. However, on average, our study 

subjects had an early sleep timing: the average midpoint of sleep of our study population 

was 2:30 am, 1 hour earlier than what was reported in previous literature for the same age 

group on work-free days (Roenneberg et al., 2007). We cannot exclude the possibility that 

the effect of sleep timing on metabolites may be nonlinear, and the potentially adverse effect 

of sleep timing may become more pronounced when sleep timing becomes more extremely 

late.

Together with the previous findings, our findings suggest that late sleep timing was 

associated with systematic changes in several amino acid pathways, some of which were 

previously indicated in cardiometabolic disease risk. More future studies are needed to 

directly examine the potential role of amino acid metabolism in mediating the health effects 

of sleep timing.

Lipids

Internal circadian clocks control multiple aspects of lipid metabolism (Bailey et al., 2014). 

Several recent metabolomics studies reported 24-hr oscillations of multiple lipid metabolites 

(Dallmann et al., 2012, Ang et al., 2012, Davies et al., 2014), even when the subjects 

followed a constant routine that removed external stimuli such as changes in light, physical 

activities and food intakes (Dallmann et al., 2012). In our study, we found that a large 

number of compounds in multiple lipid pathways were associated with sleep timing. 

However, it is worth noting that because the circulating levels of many lipids show circadian 

variation, the associations found in our study may reflect changes in average metabolite 

levels, alterations in the amplitude of the fluctuation, or a phase shift in the fluctuation 

patterns. Unfortunately we only measured plasma metabolites at one time point during the 

day, and therefore we cannot determine which of the aforementioned mechanisms drove the 

findings observed in our study.

Most notably, we found that late sleep timing was associated with lower levels of multiple 

fatty acids. Moreover we found that sleep timing was also inversely associated with several 

acylcarnitines, which play an essential role in transporting fatty acids into mitochondria, 

where fatty acid β-oxidation takes place (McCoin et al., 2015). The molecular clock regulate 

multiple enzymes involved in fatty acid metabolism (Gooley and Chua, 2014), including 

CPT-1, the enzyme that converts acyl-CoA to acylcarnitine (Panda et al., 2002, Hughes et 

al., 2009). Interestingly, in a recent study by Weljie et al., human subjects were subject to 5-
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day sleep restriction (4 hours of sleep per night) and then a night of recovery sleep. The 

study found reduced levels of acylcarnitines among subjects who did not recover after sleep 

restriction (Weljie et al., 2015). However, another study reported higher levels of 

acylcarnitines during total sleep deprivation (Davies et al., 2014). The discrepancy in these 

two studies indicates that acute effects induced by sleep deprivation may be different from 

chronic sleep debt. Our findings suggest that in addition to chronic sleep debt, habitually late 

sleep timing may also be associated with systematic alterations in fatty acid metabolism, and 

more future studies are needed to investigate the long-term impact of circadian dysfunction 

in real-world situations on lipid metabolism.

Higher levels of bile acids were associated with late sleep timing in our study. Bile acids are 

major cholesterol metabolites that are synthesized in the liver. Elevated bile acid levels have 

been linked with dyslipidemia and hyperglycemia, and recent studies suggested that bile 

acid sequestrants that aim at reducing circulating bile acid levels can cause markedly 

improvement in these two conditions (Brinton, 2008). Moreover, we found that higher levels 

of lathosteral, an important maker for impaired cholesterol metabolism (Farkkila et al., 1996, 

Matthan et al., 2013), was also associated with late sleep timing. Taken together, our 

findings are consistent with a disruptive role of late sleep timing on bile acid and cholesterol 

homeostasis.

Other metabolites and pathways

A number of xenobiotic metabolites were positively associated with late sleep timing in our 

study. Higher levels of markers of coffee consumption such as caffeine, hippurate, 

theobromine, and cinnamoylglycine (Guertin et al., 2015) were strongly associated with late 

midpoint of time in bed, which is consistent with the established association between coffee 

consumption and late sleep timing (Roehrs and Roth, 2008). Additionally, late sleep timing 

was also associated with salicylate, a major ingredient in pain medications, suggesting that 

certain medical conditions may be in play. Finally, several other metabolites associated with 

sleep timing are also potential markers of certain dietary exposures, including glucurionide 

(alcohol) (Dinis-Oliveira, 2016), xylitol (sweetner), CMPF (fish intake), 1-linoleoylglycerol 

(plant lipids), and prolylhydroxyproline (collagen supplement), stachydrine and chiro 

inositol (citrus)) (Guertin et al., 2014). Taken together, lifestyle factors may be responsible 

for some of the observed metabolite associations with sleep timing.

Sleep duration

We did not find any metabolite associations with total time in bed or previous night sleep 

duration, which may be explained by a number of factors. First, total time in bed may 

include other non-sleep-related activity such as reading and watching television. Previous 

work showed that total time in bed is a poor measure of sleep behavior and does not 

distinguish between controls and patients with insomnia (Natale et al., 2009). On the other 

hand, self-reported previous night sleep duration may be more accurate. However, it does not 

necessarily reflect habitual sleep duration. Moreover, we had a relatively narrow distribution 

of sleep duration and were underpowered to detect meaningful associations with short sleep: 

~90% participants reported between 6 and 9 hours of sleep and only 22 participants reported 

less than 6 hours of sleep. We believe future studies with better measurement of sleep 
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duration and larger sample size will be needed to investigate the metabolic profiles 

associated with quantity of sleep.

Strengths and limitations

A major strength of our study is that we have repeated measures (~28 days) of sleep over a 

one-year period, which allowed us to more accurately assess habitual sleep. Moreover, using 

an untargeted approach to examine the metabolome, we were able to measure a large 

number of metabolites across a broad range of biochemical pathways, many of which have 

never been examined before in relation to sleep. However, there are also several limitations 

of our study. First, as mentioned above, we did not have information on habitual sleep 

duration. Second, our population has a fairly stable sleep routine with small overall variation 

and little difference between weekdays and weekends, probably due to their older age and 

the fact that most of our study participants were retired at the time of the study. This limited 

our ability to examine metabolites in relation to shift sleep schedule between weekday and 

weekends, which has been previously shown to be an important cardiometabolic risk factor 

(Wong et al., 2015). However, the stability in sleep routines also has important advantage, 

because it suggests that in this population, day-time schedule might have little impact on 

sleep timing. Therefore, our measurement may well reflect the intrinsic preference of sleep 

timing (chronotype). Third, we have identified a number of metabolites that were markers of 

diet, coffee drinking and alcohol consumption, which suggest that uncontrolled lifestyle 

factors may had an impact on our results. Particularly, dietary intake and timing of the last 

meal may be associated with both sleep timing and plasma levels of certain metabolites. 

Unfortunately we don’t have information on the last meal before blood donation and could 

not control for its confounding effects. Moreover, although we adjusted for several health 

behaviors, including napping, physical activity and smoking, confounding due to other 

lifestyle factors and environmental factors may also have an impact on our results. Finally, 

we did not have multiple measurements of metabolites at different times of the day, and 

therefore we were unable to assess the diurnal fluctuation patterns of metabolite levels.

Conclusion

In summary, we found late sleep timing was associated with a large number of metabolites 

across a variety of biochemical pathways. Although we cannot rule out confounding 

completely, many metabolites associated with sleep timing in our study were also previously 

linked with cardiometabolic health and warrant further investigation, particularly in lipid and 

amino acid metabolism. Overall, our study provides new insight into the biological 

mechanisms underlying the health effects of sleep and points to the need for future studies to 

better understand the role of circadian rhythms in metabolic regulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of metabolites associations with midpoint of time spent in bed
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Figure 2. 
Forest plot of metabolites associations with midpoint of time spent in bed. Associations 

shown on the plot are statistically significant, defined as false discovery rate<0.2. a Effect 

estimate expressed as changes in metabolite level (standard deviation, log scale) per 1 hour 

delay in midpoint of time. Results adjusted for age (continuous), sex (male, female), body 

mass index (continuous), smoking status (nonsmoker, smoker), napping (continuous), 

physical activity (continuous) and sampling time (continuous). Abbreviation: ES, effect size.
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Figure 3. 
This heat map shows the correlation among the known metabolites significantly a associated 

with midpoint of time in bed. The colors represent Pearson correlation coefficient: very dark 

red, ≥0.8; dark red, 0.6-<0.8; medium red, 0.4-<0.6; light red, 0-<0.4; light green, −0.4 - <0. 
a Statistical significance was determined using a false discovery rate threshold of 0.2.
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Figure 4. 
This heat map shows the associations between metabolites and three sleep variables, average 

sleep timing, average time in bed and previous night sleep duration. Metabolites that are 

included in this figure have at least one association with a p-value<0.05. The 8 color codes 

represent different z-scores: very dark green, <−3.29 (p-value <0.001); dark green, −3.29 – <

−2.58 (0.001-<0.01); medium green, −2.58 – <−1.96 (0.01-<0.05); light green, −1.96 – <0 

(0.05–1); light red, >0 – 1.96 (0.05–1); medium red, >1.96 – 2.58 (0.01–<0.05); dark red, 

>2.58 – 3.29 (0.001–<0.01); very dark red >3.29 (<0.001). Positive z-scores suggest positive 

association (higher levels of metabolites with later midpoint) while negative z-scores suggest 

inverse association (higher levels of metabolites with earlier midpoint). All models were 

adjusted for age (continuous), sex (male, female), body mass index (continuous), smoking 

status (nonsmoker, smoker), napping (continuous), physical activity (continuous) and 

sampling time (continuous).
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