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Abstract

Introduction—Sleep plays an important role in cardiometabolic health. The sleep-wake cycle is
partially driven by the endogenous circadian clock, which governs a range of metabolic pathways.
The association between sleep and cardiometabolic health may be mediated by alterations of the
human metabolome

Objectives—To better understand the biological mechanism underlying the association between
sleep and health, we examined human plasma metabolites in relation to sleep duration and sleep
timing.

Methods—Using an untargeted approach, 329 fasting plasma metabolites were measured in 277
Chinese participants. We measured sleep timing (midpoint between bedtime and wake up time)
using repeated time-use surveys (4 weeks during one year) and previous night sleep duration from
questionnaires completed before sample donation.

Results—We found 64 metabolites that were associated with sleep timing with a false discovery
rate of 0.2 or lower, after adjusting for potential confounders. Notably, we found that later sleep
timing was associated with higher levels of multiple metabolites in amino acid metabolism,
including branched chain amino acids and their gamma-glutamyl dipeptides. We also found
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widespread associations between sleep timing and numerous metabolites in lipid metabolism,
including bile acids, carnitines and fatty acids. In contrast, previous night sleep duration was not
associated with plasma metabolites in our study.

Conclusion—Sleep timing was associated with a large number of metabolites across a variety of
biochemical pathways. Some metabolite associations are consistent with a relationship between
late chronotype and adverse effects on cardiometabolic health.

Keywords
Sleep duration; sleep timing; metabolomics

Introduction

Growing evidence has suggested that sleep plays an important role in multiple
cardiometabolic conditions: sleep deficiency has been repeatedly associated with higher
risks of obesity (Wu et al., 2014), type 2 diabetes (Shan et al., 2015, Cappuccio et al., 2010),
and cardiovascular diseases (CVD) (Cappuccio et al., 2011). Night-shift workers who
commonly suffer circadian disruption experience larger weight gain (van Drongelen et al.,
2011) and are more likely to develop metabolic syndrome (Wang et al., 2014), diabetes (Gan
et al., 2015), and CVD (Vyas et al., 2012). Moreover, several recent studies also reported
that a preference of later sleep schedules (late chronotype) and larger differences in
weekday/weekend schedules (social jetlag) are associated with worse metabolic health
(Wittmann et al., 2006, Wong et al., 2015).

The sleep-wake cycle is an important behavioral manifestation of the endogenous circadian
clock, which governs a range of metabolic pathways. Therefore, the association between
sleep and cardiometabolic health may be mediated by alterations of the human metabolome
(Bass and Takahashi, 2010). To date, three studies examined the acute effects of total and
partial sleep deprivation in controlled laboratory conditions on human metabolome (Bell et
al., 2013, Davies et al., 2014, Weljie et al., 2015). All three studies reported that sleep
restriction resulted in widespread changes in circulating metabolites, including reduction of
carbohydrates and increased levels of certain lipids and amino acids. However, such effects
may not reflect those caused by habitual sleep conditions, such as chronic sleep deprivation
or general sleep timing. Moreover, previous studies suggested that late sleep timing may be
associated with more severe circadian disruption and may be a risk factor for multiple
cardiometabolic conditions independent of sleep duration (Wong et al., 2015). However, no
study has examined sleep timing in relation to human metabolome.

In a group of Chinese men and women who completed daily time-use log for four separate
weeks in a 1-year period, we used an untargeted approach to measure over 300 metabolites
from fasting plasma samples. We examined metabolite levels in relation to multiple
measures of sleep timing and sleep duration. The aim of our study is to identify metabolite
markers that are associated with natural variations in sleep behavior in the general
population, which may help elucidate the biological mechanisms driving the health effects of
sleep and circadian rhythm.
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Methods

Study population

Our study included subjects from the Shanghai Physical Activity Study. Details of this study
have been previously reported (Peters et al., 2010). Briefly, a total of 619 participants were
randomly selected from two population-based prospective studies, the Shanghai Women’s
Health Study (Zheng et al., 2005) and Shanghai Men’s Health Study (Shu et al., 2015).
Participants were asked to complete a daily activity log for seven consecutive days on four
separate occasions during a one-year study period (roughly one administration in each
season). On average, each participant provided 27.3 days of log data. They also donated
blood samples at the beginning and at the end of the one-year period, but only the samples
donated at the end of the study period were used for metabolomics assay. A previous study
selected 339 men and women for metabolomics assay using the blood samples donated at
the end of the study (Xiao et al., 2016), and among them we excluded subjects with non-
fasting blood samples. The final analytic sample included 277 men and women. A diagram
depicting the study design and sleep variables are presented in Supplementary figure 1.

Measurement of sleep variables

In the activity log, the participants reported the time they went to bed at night and got up in
the morning. Additionally, before each blood donation, they completed a short questionnaire
and reported sleep duration in the previous night. From these we calculated two main sleep
variables: 1) yearly average of the midpoint between bedtime and wake-up time (midpoint of
time in bed), a common measure of chronotype (Kantermann et al., 2015, Roenneberg et al.,
2003); and 2) sleep duration during the night prior to end-of-study blood donation.

We also calculated several other sleep variables for additional analysis (Supplementary
figure 1). These include yearly average of total time spent in bed as a proxy of habitual sleep
duration; average midpoint on nights before weekends, difference between average midpoint
in weekdays and weekends, standard deviation of repeated measures of midpoint over the 1-
year period, and average previous night sleep duration between the two sample donations at
the beginning and the end of the study. Moreover, to address the potential U-shaped
association between sleep duration and metabolites, we also created two categorical
variables to indicate short, normal, and long sleep for average total time in bed and previous-
night sleep. For previous-night sleep, we defined <6 hr as short sleep and >9 hr as long
sleep. For total time in bed, we designated the bottom 10% (<7.3 hr) to the short and the
upper 10% (=10 hr) to the long category.

Measurement of metabolites

We used EDTA treated fasting plasma samples donated at the end of study year. Metabolite
levels were measured by Metabolon, Inc. whose platform and procedures have been
described previously (Evans et al., 2009, DeHaven et al., 2010). Briefly, samples were
analyzed using ultra high performance liquid-phase chromatography coupled with mass
spectrometry and tandem mass spectrometry (LC/MS and LC/MS?) and gas chromatography
coupled with mass spectrometry (GC/MS). For each sample, the batch and position within a
batch of 32 samples were randomly assigned, and the value for each metabolite was e
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normalized metabolite to the median for that batch. Individual metabolites were identified by
comparing the mass spectra peaks to a chemical reference library. Of the 445 metabolites
that were detected, 329 were of known identity. Identified metabolites were grouped into 8
chemical classes (amino acids, carbohydrates, cofactors and vitamins, energy metabolites,
lipids, nucleotide metabolites, peptides, and xenobiotics) and 55 sub-pathways. Previous
studies have reported a high level of reliability for the metabolomics platform used in this
study (Sampson et al., 2013). Detailed methods for LC/MS, LC/MS?, and /GC-MS, as well
as compound identification and curation are reported in Supplementary materials. Reference
spectral data including retention time and m/z for the 329 metabolites detected in our study
are presented in Supplementary table 1.

The baseline questionnaire of the Shanghai Women’s Health Study and Shanghai Men’s
Health Study collected demographic information including age and gender. Follow-up in-
person interviews were conducted every two years. Height was measured at baseline and
weight was measured repeatedly in follow-up interviews. To calculate body mass index
(BMI, weight (kg)/height(m)?), we used baseline height and weight from the interview that
was the closest to the date of sample collection (<2 years). Smoking status (current smoker
or non-smoker) was reported when the plasma samples were taken. We calculated day-time
napping duration based on activity log. In the same periods when activity log was
completed, the participants were asked to wear an Actigraph accelerometer on the left hip at
all times except when sleeping, showering and swimming. Total physical activity was
calculated using actigraphy data using previously described methods (Peters et al., 2010).
The time of sample donation was recorded in the study. The distribution of these covariates
in the overall study and by sex is presented in Supplementary table 2.

Statistical analysis

Metabolite levels were first batch normalized and then log-transformed. Values below the
detection threshold were set to the minimum observed value of the metabolite. The median
level of “missingness” before imputation was 1%. Metabolites that were observed in <90%
of the samples were excluded from the analysis. Pairwise correlations among metabolites
were determined using the Pearson correlation coefficient, and correlations among sleep
variables were determined using the Spearman correlation coefficient. Linear regression was
used to estimate the association between each metabolite and sleep variables, adjusted for
age (continuous), clock time at sample collection (continuous), sex (male, female), smoking
status (yes, no), BMI (continuous), napping time (continuous), and physical activity energy
expenditure (continuous). Moreover, because age and time of sample collection are
important confounders and may have a nonlinear relationship with metabolites, we explored
using spline terms for age and time at sample collection, but found the additional flexibility
had little impact on the results. To account for multiple comparisons, we primarily used a
false discovery rate (FDR) <0.2 to define statistical significance for purposes of reporting
associations, but we also reported statistical significance using more stringent Bonferroni
correction method (0.05/329=0.00015). We used the likelihood-ratio test to determine
whether is a statistically significant interaction between sex and sleep in relation to
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metabolites. Because a statistically significant interaction was detected for some metabolites,
we also performed stratified analysis in men and women separately.

We also evaluated the association between sleep variables and metabolomic patterns.
Specifically, we used sparse principal component analysis (Zou et al., 2006) to create 10
principal components (PCs) with 10 non-zero loadings. We then performed step-wise
regression between sleep variables and 10 PCs adjusted for the same set of covariates. We
calculated the additional percent of variance in sleep variables explained by each of the PCs.
We used Bonferroni correction to evaluate the statistical significance for interaction with sex
(p<0.0078 (0.05/64)). All analyses were performed with SAS (version 9.1.3, SAS Institute,
Cary, NC) and the R statistical language package (version 3.1.2).

The distribution of the two main sleep variables by study characteristics is presented in
Supplementary table 3. Participants with less than elementary school education had earlier
average midpoint of time in bed, and time at sample donation was positively associated with
midpoint. In contrast, sleep duration in the previous night before sample collection was only
associated with clock time at sample collection.

After controlling for all covariates, 64 of the 329 metabolites with known identity were
found to be associated with average midpoint of time in bed with an FDR<0.2 (Table 1,
Figure 1), and they represented all 8 biochemical classes and 29 out of the 55 sub-pathways.
Late midpoint was associated with higher levels of amino acids, carbohydrates, bile acids,
steroids, dipeptides and several xenobiotics. In contrast, midpoint point was inversely
associated with all the carnitines and fatty acids (except for CMPF), as well as bilirubin and
AMP. When we used Bonferroni correction, only three metabolites had a significant
association with midpoint of sleep, and these include cis-4-decenoyl carnitine,
laurylcarnitine, and 1,6-anhydroglucose. Detailed information on the specific metabolites as
well as their effect estimates and p-values are presented in Figure 2, Table 2 (for the 64
metabolites associated with midpoint) and Supplementary table 4 (full list). When we
conducted subgroup analysis by sex focusing on the 64 metabolites significantly associated
with midpoint, the metabolite associations were the same in direction for both men and
women and we did not find any statistically significant interaction with sex (Supplementary
table 5). Additional adjustment of previous night sleep duration or average time spent in bed
had little impact on the results (data not shown).

An individual’s sleep schedule often differs between weekdays and weekends (Wong et al.,
2015). However, in our population the average differences between midpoints on weekdays
and weekends were small (<30 minutes for over 90% subjects and <10 minutes for over
50%). When we conducted a sensitivity analysis focusing on average midpoint on weekend
evenings (Friday and Saturday nights) alone, we found that the results were largely similar
to those for average of all nights (Supplementary table 6). Moreover, we did not find any
metabolite that was associated with standard deviation of repeated measures of midpoint
over the one-year period or the difference between averaged midpoints in weekdays and
weekends (data not shown).
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We investigated the clustering of the 64 metabolites that were significantly associated with
midpoint of time in bed. The overall correlations were moderate to low (Pearson correlation
coefficient<0.4). However, we observed very high correlations (Pearson correlation
coefficient>0.8) among carnitines, branched chain amino acids and dipeptides. We also
found moderate to high correlations (Pearson correlation coefficient, 0.4-0.8) among various
fatty acids, between fatty acids and carnitines, and between amino acids and their dipeptide
derivatives (Figure 3).

We examined metabolites in relation to previous night sleep duration, and we did not find
any metabolite with a significantly (FDR<0.2) association (full list of metabolites
associations are shown in Supplementary table 7). We also did not find any metabolite
associations with yearly average of total time spent in bed as a proxy of habitual sleep
duration (Supplementary table 8). Further analysis showed no metabolite associations with
the short or long categories of total time in bed or previous night sleep duration (data not
shown). Finally, we further compared the metabolite associations for sleep timing, previous
night sleep duration and average time in bed (Figure 4). For a more complete comparison,
we present all the metabolites that were associated with at least one of the sleep variables at
p<0.05. Overall we found the pattern of metabolite associations for the three variables was
quite distinct. Metabolites that showed stronger association with total time in bed and
previous night sleep duration tended to be only weakly associated with midpoint of time in
bed.

Discussion

Our study is the first to investigate the human metabolome in relation to habitual sleep. The
sleep-wake cycle is driven by the internal circadian clock, which orchestrates a wide range
of metabolic pathways, including carbohydrate, protein and amino acid, and lipid
metabolism (Bailey et al., 2014). We found that sleep timing was associated with the fasting
levels of a large number of metabolites across multiple biochemical pathways, highlighting
the central role of circadian rhythms and sleep in human metabolism.

Amino acids and peptides

Both protein degradation and synthesis are regulated by the circadian system, with increased
protein degradation during sleep and higher protein synthesis during awake time. (Bailey et
al., 2014). Microarray studies have found diurnal variations in genes involved in protein
turnover (Duffield et al., 2002), and previous studies have reported daily fluctuations in
circulating amino acid levels (Dallmann et al., 2012, Weljie et al., 2015, Ang et al., 2012).
We found sleep timing was associated with multiple amino acids. Notably, later sleep timing
was associated higher circulating levels of valine, leucine, isoleucine (branched chain amino
acids (BCAA)) and their gamma-glutamyl dipeptides, as well as several metabolites from
the sulfur amino acids metabolism, and tyrosine and phenylalanine metabolism (alpha-
hydroxybutyrate, alpha-ketobutyrate, Phenylacetate and 3-(4-hydroxyphenyl)lactate).

A growing body of research has linked BCAA metabolism, sulfur amino acids metabolism,
and tyrosine and phenylalanine metabolism pathways to impaired cardiometabolic health
(Adams, 2011, Lynch and Adams, 2014). For example, it has been suggested that higher
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concentrations of circulating BCAAS, alpha-hydroxybutyrate and alpha-ketobutyrate may
serve as markers of insulin resistance (Batch et al., 2014, Tom and Nair, 2006, Ferrannini et
al., 2013, Gall et al., 2010). Moreover, circulating levels of BCAAs and 3-(4-
hydroxyphenyl)lactate were found to be associated with higher BMI (Moore et al., 2014).
Interestingly, a recent study found fasting isoleucine level was elevated after eight nights of
sleep restriction (5.5 hour) in 12 healthy adults (Bell et al., 2013), and another study found
higher levels of leucine and valine following one night sleep restriction (4 hour) in rats
(Weljie et al., 2015). It is worth noting that the magnitude of the associations between sleep
timing and amino acids observed in our study was relatively small — one hour of delay in
midpoint was associated with only <0.1 SD increase in many amino acids in this population,
which may not lead to clinically meaningful difference. However, on average, our study
subjects had an early sleep timing: the average midpoint of sleep of our study population
was 2:30 am, 1 hour earlier than what was reported in previous literature for the same age
group on work-free days (Roenneberg et al., 2007). We cannot exclude the possibility that
the effect of sleep timing on metabolites may be nonlinear, and the potentially adverse effect
of sleep timing may become more pronounced when sleep timing becomes more extremely
late.

Together with the previous findings, our findings suggest that late sleep timing was
associated with systematic changes in several amino acid pathways, some of which were
previously indicated in cardiometabolic disease risk. More future studies are needed to
directly examine the potential role of amino acid metabolism in mediating the health effects
of sleep timing.

Internal circadian clocks control multiple aspects of lipid metabolism (Bailey et al., 2014).
Several recent metabolomics studies reported 24-hr oscillations of multiple lipid metabolites
(Dallmann et al., 2012, Ang et al., 2012, Davies et al., 2014), even when the subjects
followed a constant routine that removed external stimuli such as changes in light, physical
activities and food intakes (Dallmann et al., 2012). In our study, we found that a large
number of compounds in multiple lipid pathways were associated with sleep timing.
However, it is worth noting that because the circulating levels of many lipids show circadian
variation, the associations found in our study may reflect changes in average metabolite
levels, alterations in the amplitude of the fluctuation, or a phase shift in the fluctuation
patterns. Unfortunately we only measured plasma metabolites at one time point during the
day, and therefore we cannot determine which of the aforementioned mechanisms drove the
findings observed in our study.

Most notably, we found that late sleep timing was associated with lower levels of multiple
fatty acids. Moreover we found that sleep timing was also inversely associated with several
acylcarnitines, which play an essential role in transporting fatty acids into mitochondria,
where fatty acid p-oxidation takes place (McCoin et al., 2015). The molecular clock regulate
multiple enzymes involved in fatty acid metabolism (Gooley and Chua, 2014), including
CPT-1, the enzyme that converts acyl-CoA to acylcarnitine (Panda et al., 2002, Hughes et
al., 2009). Interestingly, in a recent study by Weljie et al., human subjects were subject to 5-

Metabolomics. Author manuscript; available in PMC 2018 April 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xiao et al.

Page 8

day sleep restriction (4 hours of sleep per night) and then a night of recovery sleep. The
study found reduced levels of acylcarnitines among subjects who did not recover after sleep
restriction (Weljie et al., 2015). However, another study reported higher levels of
acylcarnitines during total sleep deprivation (Davies et al., 2014). The discrepancy in these
two studies indicates that acute effects induced by sleep deprivation may be different from
chronic sleep debt. Our findings suggest that in addition to chronic sleep debt, habitually late
sleep timing may also be associated with systematic alterations in fatty acid metabolism, and
more future studies are needed to investigate the long-term impact of circadian dysfunction
in real-world situations on lipid metabolism.

Higher levels of bile acids were associated with late sleep timing in our study. Bile acids are
major cholesterol metabolites that are synthesized in the liver. Elevated bile acid levels have
been linked with dyslipidemia and hyperglycemia, and recent studies suggested that bile
acid sequestrants that aim at reducing circulating bile acid levels can cause markedly
improvement in these two conditions (Brinton, 2008). Moreover, we found that higher levels
of lathosteral, an important maker for impaired cholesterol metabolism (Farkkila et al., 1996,
Matthan et al., 2013), was also associated with late sleep timing. Taken together, our
findings are consistent with a disruptive role of late sleep timing on bile acid and cholesterol
homeostasis.

Other metabolites and pathways

A number of xenobiotic metabolites were positively associated with late sleep timing in our
study. Higher levels of markers of coffee consumption such as caffeine, hippurate,
theobromine, and cinnamoylglycine (Guertin et al., 2015) were strongly associated with late
midpoint of time in bed, which is consistent with the established association between coffee
consumption and late sleep timing (Roehrs and Roth, 2008). Additionally, late sleep timing
was also associated with salicylate, a major ingredient in pain medications, suggesting that
certain medical conditions may be in play. Finally, several other metabolites associated with
sleep timing are also potential markers of certain dietary exposures, including glucurionide
(alcohol) (Dinis-Oliveira, 2016), xylitol (sweetner), CMPF (fish intake), 1-linoleoylglycerol
(plant lipids), and prolylhydroxyproline (collagen supplement), stachydrine and chiro
inositol (citrus)) (Guertin et al., 2014). Taken together, lifestyle factors may be responsible
for some of the observed metabolite associations with sleep timing.

Sleep duration

We did not find any metabolite associations with total time in bed or previous night sleep
duration, which may be explained by a number of factors. First, total time in bed may
include other non-sleep-related activity such as reading and watching television. Previous
work showed that total time in bed is a poor measure of sleep behavior and does not
distinguish between controls and patients with insomnia (Natale et al., 2009). On the other
hand, self-reported previous night sleep duration may be more accurate. However, it does not
necessarily reflect habitual sleep duration. Moreover, we had a relatively narrow distribution
of sleep duration and were underpowered to detect meaningful associations with short sleep:
~90% participants reported between 6 and 9 hours of sleep and only 22 participants reported
less than 6 hours of sleep. We believe future studies with better measurement of sleep
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duration and larger sample size will be needed to investigate the metabolic profiles
associated with quantity of sleep.

Strengths and limitations

Conclusion

A major strength of our study is that we have repeated measures (~28 days) of sleep over a
one-year period, which allowed us to more accurately assess habitual sleep. Moreover, using
an untargeted approach to examine the metabolome, we were able to measure a large
number of metabolites across a broad range of biochemical pathways, many of which have
never been examined before in relation to sleep. However, there are also several limitations
of our study. First, as mentioned above, we did not have information on habitual sleep
duration. Second, our population has a fairly stable sleep routine with small overall variation
and little difference between weekdays and weekends, probably due to their older age and
the fact that most of our study participants were retired at the time of the study. This limited
our ability to examine metabolites in relation to shift sleep schedule between weekday and
weekends, which has been previously shown to be an important cardiometabolic risk factor
(Wong et al., 2015). However, the stability in sleep routines also has important advantage,
because it suggests that in this population, day-time schedule might have little impact on
sleep timing. Therefore, our measurement may well reflect the intrinsic preference of sleep
timing (chronotype). Third, we have identified a number of metabolites that were markers of
diet, coffee drinking and alcohol consumption, which suggest that uncontrolled lifestyle
factors may had an impact on our results. Particularly, dietary intake and timing of the last
meal may be associated with both sleep timing and plasma levels of certain metabolites.
Unfortunately we don’t have information on the last meal before blood donation and could
not control for its confounding effects. Moreover, although we adjusted for several health
behaviors, including napping, physical activity and smoking, confounding due to other
lifestyle factors and environmental factors may also have an impact on our results. Finally,
we did not have multiple measurements of metabolites at different times of the day, and
therefore we were unable to assess the diurnal fluctuation patterns of metabolite levels.

In summary, we found late sleep timing was associated with a large number of metabolites
across a variety of biochemical pathways. Although we cannot rule out confounding
completely, many metabolites associated with sleep timing in our study were also previously
linked with cardiometabolic health and warrant further investigation, particularly in lipid and
amino acid metabolism. Overall, our study provides new insight into the biological
mechanisms underlying the health effects of sleep and points to the need for future studies to
better understand the role of circadian rhythms in metabolic regulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plot of metabolites associations with midpoint of time spent in bed

Metabolomics. Author manuscript; available in PMC 2018 April 12.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Xiao et al.

Aminoacid

N-methyl proline
alpha-ketobutyrate
phenylacetate
2-hydroxybutyrate (AHB)
3-(4-hydroxyphenyl)lactate
N-acetylthreonine
isoleucine

leucine

valine

Carbohydrate
1,6-anhydroglucose
arabitol

xylitol

Cofactor and vitamin
bilirubin (E,E)

bilirubin (E,Zorz,E)
Energy

succinate

phosphate

Lipid

taurocholate
taurochenodeoxycholate
chiro-inositol
taurolithocholate 3-sulfate
taurodeoxycholate
glycolithocholatesulfate

3-carboxy-4-methyl-5-propyh2. prop:
lathosterol

epiandrosterone sulfate
1-linoleoylglycerol (1-monolinolein)
2-oleoylglycerophosphoethanolamine
cortisol

ylglycerophosphoett
arachidonate (20:4n6)

linoleate(18:2n6)
dihomo-linolenate(20:3n3 or n6)
17-methylstearate

linolenate [alpha or gamma; (18:3n3 or 6)]
docosapentaenoate (n3 DPA; 22:5n3)
dihomo-linoleate (20:2n6)
3-hydroxyoctanoate
docosapentaenoate (n6 DPA; 22:5n6)
myristoleate (14:1n5)
3-hydroxydecanoate

hexanoylcarnitine

cis-4-decenoyl carnitine
decanoylcarnitine

octanoylcarnitine

laurylcarnitine

Nucleotide

urate

N1-methyladenosine

adenosine 5'-monophosphate (AMP)
Peptide
pro-hydroxy-pro
gamma-glutamylisoleucine
gamma-glutamylleucine
gamma-glutamylvaline
gamma-glutamyltyrosine
Xenobiotics

salicylate

caffeine

theobromine
cinnamoylglycine
stachydrine

ethyl glucuronide
hippurate

saccharin
1,7-dimethylurate

Figure 2.

(CMPF)

Page 14

ES?

Urea cycle; arginine-, proline-, - 0.44
Cysteine, ionine, SAM, taurine - 0.10
Phenylalanine & tyrosine metabolism e 0.10
Cysteine, methionine, SAM, taurine metabolism . 0.09
Phenylalanine & tyrosine metabolism ] 0.06
Glycine, serineand threonine metabolism o 0.04
Valine, leucine and isoleucine metabolism » 0.03
Valine, leucine and isoleucine metabolism » 0.03
Valine, leucine and isoleucine metabolism 4 0.02
y pyruvate - 0.19
Nucleotid pentose i o— 0.18
| pentose - 0.17
Hemoglobin and porphyrin metabolism —— -0.18
Hemoglobin and porphyrin metabolism . -0.14
Krebscycle L | -0.04
Oxidative phosphorylation 3 0.02
Bile acid metabolism —_— 115
Bile acid metabolism —_— 0.84
Inositol metabolism — 0.66
Bileacid metabolism — 0.45
Bile acid metabolism —— 0.34
Bile acid metabolism —— 0.29
Fatty acid, dicarboxylate Le— 0.13
Sterol/Steroid * 0.13
Sterol/Steroid - 0.12
Monoacylglycerol L 3 0.08
Lysolipid L 2 0.08
Sterol/Steroid o 0.07
Lysolipid . 0.06
Long chain fatty acid L -0.06
Essential fatty acid L -0.06
Essential fatty acid L2 -0.07
Fatty acid, branched 4l -0.08
Essential fatty acid * -0.08
Essential fatty acid Y -0.10
Long chain fatty acid & -0.11
Fatty acid, monohydroxy - -0.11
Essential fatty acid - -0.12
Long chain fatty acid o -0.14
Fatty acid, monohydroxy - -0.16
Carnitine metabolism - -0.18
Carnitine metabolism B -0.21
Carnitine metabolism e -0.22
Carnitine metabolism —— -0.25
Carnitine metabolism - -0.28
Purine metabolism, urate metabolism ® 0.03
Purine metabolism, adenine containing > 0.02
Purine metabolism, adenine containing o -0.11
Dipeptide . 0.06
gamma-glutamyl o 0.06
gamma-glutamyl » 0.04
gamma-glutamyl B 0.04
gamma-glutamyl ® 0.03
Drug ° 4.82
Xanthine metabolism — 1.16
Xanthine metabolism o 0.34
Food component/Plant —— 0.33
Food component/Plant —— 0.31
Detoxification metabolism | o— 0.26
Benzoate metabolism —e— 0.20
Food component/Plant |l o— 0.16
Xanthine metabolism - 0.14
Xanthine metabolism o 0.11

1
-1 0 1 2 5

Standard deviation

Forest plot of metabolites associations with midpoint of time spent in bed. Associations
shown on the plot are statistically significant, defined as false discovery rate<0.2. 2 Effect
estimate expressed as changes in metabolite level (standard deviation, log scale) per 1 hour
delay in midpoint of time. Results adjusted for age (continuous), sex (male, female), body

mass index (continuous), smoking status (nonsmoker, smoker), napping (continuous),

physical activity (continuous) and sampling time (continuous). Abbreviation: ES, effect size.
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Figure 3.
This heat map shows the correlation among the known metabolites significantly @ associated

with midpoint of time in bed. The colors represent Pearson correlation coefficient: very dark
red, =0.8; dark red, 0.6-<0.8; medium red, 0.4-<0.6; light red, 0-<0.4; light green, —0.4 - <0.
a Statistical significance was determined using a false discovery rate threshold of 0.2.

Metabolomics. Author manuscript; available in PMC 2018 April 12.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Xiao et al.

Page 16

Midpoint of time Previous night

-

ine-, metabolism

Urea e e-, prol
Tryptophan metabolism
Lysolipid

3
H

Jycerophosphoethanolamine
Wi-5-propyl-2-furanpropanoate (CVPF) L

. urate metabolism

Xenobiotics
Energy

Amino acid
Peptide

Carbohydrate
Amino acid
Xe

ose metabolism
AM, taurine metabolism

ine, SAM, taurine metabolism —

ucine metabolism

Xenobiotics
Upid
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Figure 4.
This heat map shows the associations between metabolites and three sleep variables, average

sleep timing, average time in bed and previous night sleep duration. Metabolites that are
included in this figure have at least one association with a p-value<0.05. The 8 color codes
represent different z-scores: very dark green, <-3.29 (p-value <0.001); dark green, —3.29 — <
-2.58 (0.001-<0.01); medium green, —2.58 — <-1.96 (0.01-<0.05); light green, —1.96 — <0
(0.05-1); light red, >0 — 1.96 (0.05-1); medium red, >1.96 — 2.58 (0.01-<0.05); dark red,
>2.58 — 3.29 (0.001-<0.01); very dark red >3.29 (<0.001). Positive z-scores suggest positive
association (higher levels of metabolites with later midpoint) while negative z-scores suggest
inverse association (higher levels of metabolites with earlier midpoint). All models were
adjusted for age (continuous), sex (male, female), body mass index (continuous), smoking
status (nonsmoker, smoker), napping (continuous), physical activity (continuous) and
sampling time (continuous).
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