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Abstract

We describe a new analysis tool called Stratified unbinned Weighted Histogram Analysis Method 

(Stratified-UWHAM), which can be used to compute free energies and expectations from a 

multicanonical ensemble when a subset of the parallel simulations are far from being equilibrated 

because of barriers between free energy basins which are only rarely (or never) crossed at some 

states. The Stratified-UWHAM equations can be obtained in the form of UWHAM equations but 

with an expanded set of states. We also provide a stochastic solver, Stratified RE-SWHAM, for 

Stratified-UWHAM to remove its computational bottleneck. Stratified-UWHAM and Stratified 

RE-SWHAM are applied to study three test topics: the free energy landscape of alanine dipeptide, 

the binding affinity of a host-guest binding complex, and path sampling for a two dimensional 

double well potential. The examples show that when some of the parallel simulations are only 

locally equilibrated, the estimates of free energies and equilibrium distributions provided by the 

conventional UWHAM (or MBAR) solutions exhibit considerable biases, but the estimates 

provided by Stratified-UWHAM and Stratified RE-SWHAM agree with the benchmark very well. 

Lastly, we discuss features of the Stratified-UWHAM approach which is based on coarse-graining 

in relation to two other maximum likelihood-based methods which were proposed recently, that 

also coarse-grain the multicanonical data.
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1 Introduction

Atomistic molecular dynamics (MD) simulations are widely used to study biological 

systems today to understand how structural ensembles are connected with biological 

functions. However straightforward MD simulations cannot be used to study many 

biological problems since the timescales of transitions between functionally important states 

are much longer than the available simulation length determined by today’s computational 

resources.1–4 The desire to simulate structurally important transitions which occur on longer 

timescales has driven the development of simulation hardware and software.5–7 For 

example, the Anton supercomputer developed by D. E. Shaw research is able to perform 

millisecond-scale simulations for proteins in explicit solvent.7 The World Community Grid 

(WCG) projects of IBM (https://www.worldcommunitygrid.org) are able to combine the 

computational resources (~ 105 – 106 cpus) donated by volunteers all over the world to run 

molecular simulations whose goals are to develop therapies to fight cancer and AIDS. The 

same desire also encourages the development of enhanced sampling methods such as 

umbrella sampling,8–10 replica exchange (RE) techniques11–16 and others.17–25 Compared 

with straightforward MD simulations, those techniques show significantly better sampling 

efficiency on specific problems.

The Weighted Histogram Analysis Method (WHAM) is a powerful algorithm to compute 

free energies and expectations from multicanonical ensemble data.26–30 Along with the 

popularity of enhanced sampling methods running parallel simulations at multiple 

thermodynamic and/or Hamiltonian states, WHAM, which is a standard analysis tool 

associated with those methods, has been studied by many researchers.31–42 The most 

important improvement of WHAM is that a binless extension called the multistate Bennett 

acceptance ratio (MBAR) or unbinned WHAM (UWHAM) was introduced.31,34,36 To avoid 

the requirements of very large memory and computational power to solve the UWHAM 

equations when the input data ensemble is large, we developed stochastic solvers for the 

UWHAM equations based on resampling techniques.43,44

When WHAM or UWHAM is applied, it is assumed that the observations generated from 

each thermodynamic and/or Hamiltonian state are drawn from a distribution Pα that is close 

to equilibrium, where Pα is determined by the Hamiltonian and/or thermostat temperature 

used in the simulations. However, this assumption is not fulfilled if the simulations at some 

thermodynamic and/or Hamiltonian states are far away from convergence. For example, on 

massive but minimally communicating computational grids such as WCG, it is convenient to 
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run multiple independent short MD simulations starting from different initial structures 

(which are not chosen from global equilibrium) at a single or multiple thermodynamic 

and/or Hamiltonian states. Here, our study focuses on how to obtain the optimal estimates of 

density of states, equilibrium distributions and free energy differences for multi-state 

simulations if the simulations at some thermodynamic and/or Hamiltonian state are far from 

convergence due to barrier(s) that are infrequently (or never) crossed at these states but 

frequently crossed at others. Simply combining all the observations of unconverged short 

simulations at a thermodynamic and/or Hamiltonian state as the input of that state for 

UWHAM introduces statistical biases even when the simulations at other thermodynamic 

and/or Hamiltonian states have already converged. To solve this problem, we introduce a 

powerful extension of UWHAM called Stratified-UWHAM. We also introduce the 

corresponding stochastic solver for the Stratified-UWHAM algorithm for cases where the 

input data ensemble is very large.

The remaining part of the paper proceeds as follows: First we review UWHAM (also called 

MBAR). Then we introduce Stratified-UWHAM and its stochastic solver Stratified RE-

SWHAM. In the results and discussion section, we applied Stratified-UWHAM and 

Stratified RE-SWHAM to analyze the simulation data of three test systems — alanine 

dipeptide, a host-guest binding complex, and a Brownian particle in a two-dimensional 

double well potential. For the sake of simplicity, for the remainder of this paper, we refer to 

each of the thermodynamic and/or Hamiltonian states characterized by a specific 

combination of a Hamiltonian function and thermodynamic parameters, as a “λ-state”. We 

refer to each conformational structure of a biological or physical system as a “microstate” 

and to each free energy basin which is separated from other basins by free energy barriers as 

a “macrostate”. A macrostate cluster means a collection of one or more free energy basins 

that can be transversed in the simulations.

The idea underlying Stratified-UWHAM is to coarse-grain the configurational space into 

macrostate clusters and divide λ-states of parallel simulations into two groups based on how 

well-connected the coarse-grained network is at each λ-state. The first group includes the λ-

states at which the simulations are “approximately” equilibrated among macrostate clusters, 

namely, the fully-connected λ-states. Notice that if a simulation at any λ-state is fully 

converged or fully globally equilibrated, running simulations at other λ-states additionally 

and applying UWHAM is redundant because the true density of states can be obtained from 

the fully converged simulation at that λ-state. In this study, the λ-states in the first group are 

those λ-states at which multiple transitions between macrostate clusters have been observed 

in simulations so that the coarse-grained state space is fully connected. The second group 

includes the λ-states at which the simulations are only locally equilibrated within each 

macrostate cluster, namely, the disconnected λ-states. They are also referred to as “locally 

equilibrated λ-states”.
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2 Methods

2.1 Unbinned weighted histogram analysis method (UWHAM)

To illustrate basic ideas, we first review UWHAM36 (also called MBAR34). Suppose that Nα 

observations { Xi
(α): i = 1, …, Nα} are independently drawn from the αth distribution Pα

Pα(Xi
(α))

qα(xαi)
Zα

, (1)

where Zα is the partition function of the αth λ-state; xαi are the coordinates of the 

microstate Xi
(α); and qα(xαi) is the unnormalized probability of observing the microstate Xi

(α)

at the αth λ-state. For example, qα(xγi) equals exp{−βαEα(xγi)} in the canonical ensemble, 

where xγi is the coordinates of the ith observation observed at the γth λ-state Xi
(γ) is the 

potential energy of the microstate Xi
(γ) at the αth λ-state and βα is the inverse temperature of 

the αth λ-state.

The likelihood of the simulated data is

∏
α = 1

M
∏
i = 1

Nα qα(uαi)Ω(uαi)
Zα

, (2)

where Ω(uαi) is the density of states of the reduced (energy) coordinate uαi of the microstate 

Xi
(α). The maximum likelihood estimates (MLEs) of the density of states Ω̂(uγi) and the 

corresponding MLEs Ẑα given the data satisfy the coupled equations

Zα = ∑
γ = 1

M
∑
i = 1

Nγ
qα(uγi)Ω(uγi)

Ω(uγi) = 1
∑κ = 1

M NκZκ
−1qκ(uγi)

.

(3)

The UWHAM estimate of the probability of observing uγi at the αth λ-state is

pα(uγi) = Zα
−1Ω(uγi)qα(uγi) . (4)
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2.2 Stratified-UWHAM

Our new method, called Stratified-UWHAM, is based on the following conditions: the λ-

states are divided into two groups, (S1, S2), such that

i. simulations are approximately equilibrated among the macrostates for each of 

the λ-states in S1; or more generally, the coarse-grained set of macrostates form 

a connected network for each λ-state and together form a globally connected 

network;

ii. simulations are locally equilibrated within each macrostate cluster (R1, …, RK) 

for each of the λ-states in S2, but may be far from equilibrated among the 

macrostates; or more generally, for each λ-state within S2 the coarse-grained set 

of macrostates forms a disconnected network.

These conditions can be captured by a stratified model, which assumes that the set of 

observations { Xi
(α): i = 1, …, Nα} are independently drawn from Pα for each α ∈ S1, and the 

set of observations { Xi
(α): Xi

(α) ∈ Rk, i = 1, …, Nα} are independently drawn from Pα 

restricted to macrostates Rk for each α ∈ S2, i.e.,

Pα(Xi
(α))

qα(xαi)
Zα

for α ∈ S1,

Pα(Xi
(α) ∣ (Xi

(α) ∈ Rk))
qαk(xαi)

Zαk
for α ∈ S2,

(5)

where qαk(x) = qα(x)δ{x ∈ Rk}, and δ{x ∈ A} denotes the indicator function for a 

macrostate A, and Zαk and Zα are the partition functions. In other words, the set of 

observations { Xi
(α): i = 1, …, n j} are stratified into macrostates (R1, …, RK) for each λ-state 

α in S2 such that simulations are only locally equilibrated, but are not stratified for each λ-

state α in S1 where transitions between macrostates are enhanced. The likelihood of the 

simulated data from model (5) is

∏
α ∈ S2

∏
k

∏
i: Xi

(α) ∈ Rk

1
Zαk

qα(uαi)Ω(uαi) × ∏
α ∈ S1

∏
i = 1

Nα 1
Zα

qα(uαi)Ω(uαi) . (6)

The method of nonparametric maximum likelihood31 can be used for estimating the density 

of states and subsequently free energies and expectations.

The estimating equations from the maximization of Eq.(6) can be obtained in the form of 

UWHAM equations Eq.(3), but with an expanded set of λ-states. The idea is to split the K 
disconnected macrostates of each λ-state in the S2 group into K λ-states. Suppose there is a 

new λ-state which is made of the kth macrostate of the γth λ-state. The Hamiltonian 

function of this new λ-state is set to be the same as the Hamiltonian function of the γth λ-
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state if the observation belongs to the kth macrostate and positive infinity if the observation 

does not. Then all the observations in the kth macrostate at the γth λ-state are treated as the 

observations observed at this new λ-state. This change of the Hamiltonian function and 

regrouping of the observations are equivalent to putting an infinite barrier covering the entire 

outside of the kth macrostate in the conformational space. Suppose there are M1 λ-states in 

the S1 group and M2 λ-states in the S2 group. After the expansion of λ-states, the total 

number of λ-states increases from M = M1 + M2 to M = M1 + ∑α = 1
M2 Kα, where Kα is the 

total number of macrostates at the αth λ-state in the S2 group. Then the MLEs of the density 

of states and free energy differences of Eq.(6) can be obtained by solving the UWHAM 

equations with an expanded set of λ-states

Zα = ∑
γ = 1

M
∑
i = 1

Nγ
qα(uγi)Ω(uγi) for α ∈ S1,

Zαk = ∑
γ = 1

M
∑
i = 1

Nγ
qαk(uγi)Ω(uγi) for α ∈ S2,

Ω(uγi) = 1
∑α ∈ S1

M1 NαZα
−1qα(uγi) + ∑α ∈ S2

M2 ∑k = 1
Kα NαkZαk

−1qαk(uγi)
,

(7)

where the unnormalized probability of an observation uγi at a new λ-state is

qαk(uγi) =
exp { − βαEα(uγi)} for uγi ∈ Rk

0 for uγi ∉ Rk
(8)

for canonical ensembles. The population ratio between the mth and nth disconnected 

macrostate clusters of a locally equilibrated αth λ-state is estimated based on their free 

energy difference

Pαm
Pαn

= exp −
ΔFαm, αn

kBT =
Zαm

Zαn
=

∑γ = 1
M ∑i = 1

Nγ qαm(uγi)Ω(uγi)

∑γ = 1
M ∑i = 1

Nγ qαn(uγi)Ω(uγi)
. (9)

2.3 Stratified Stochastic WHAM

There is a computational bottleneck in scaling up UWHAM. At minimum, numerical 

solution of the UWHAM equations (3) requires evaluating M unnormalized density 

functions q1(Xi), …, qM(Xi) at each observation Xi for i = 1, …, N. The total number of 
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function evaluations is of order n̄M2, where n̄ = N/M is the average sample size per 

distribution. These unnormalized density values need to be either computed during every 

iteration of the numerical solution or pre-computed and stored in memory. Such a high 

computational cost presents a serious limitation on the use of UWHAM for large-scale 

simulations (for example, M = 240 and N = 3.5 × 107 in our recent work43,44). Although 

Stratified-UWHAM can be applied by directly using the UWHAM software package 

developed before, it can require much more memory and computational time to converge 

because the total number of λ-states can increase substantially.

To remove the computational bottleneck, we recently developed the RE-SWHAM algorithm 

which solves the UWHAM equations stochastically (See Ref.[43] for details). A 

straightforward way to solve the Stratified-UWHAM equations stochastically is by 

performing RE-SWHAM analyses as described in Ref.[43] for the corresponding UWHAM 

equations with an expanded set of λ-states. Note that the direct outputs of RE-SWHAM are 

the estimates of conformational equilibrium distributions at each λ-state. The estimates of 

free energy differences (and the population ratios) between macrostate clusters of a locally 

equilibrated λ-state can then be calculated using thermodynamic cycles similarly as shown 

in Fig. 2b and discussed in detail in Sec.3.1, while applying “free energy perturbation 

formula” (see Eq.(20) in Ref.[43])

We describe a different algorithm called Stratified RE-SWHAM to solve the Stratified-

UWHAM equations stochastically by improving the above straightforward application of 

RE-SWHAM. In the original implementation of RE-SWHAM, every cycle consists of a 

move process and an exchange process, the same as replica exchange simulations. The move 

process for the next observation is chosen from the database of observations at each λ-state 

according to the probability 1/Nα, where nα is the number of observations generated at that 

λ-state. This move process in RE-SWHAM is analogous to the move process of an explicit 

RE simulation when the MD simulation period per cycle is so long that the initial and final 

configurations of the MD simulation period are largely uncorrelated. However, when the 

simulations at some λ-states are only locally equilibrated within macrostates and the coarse-

graining results in a disconnected network of macrostates, the move process in RE-SWHAM 

at these λ-states needs to be adjusted accordingly as follows. In the stratified RE-SWHAM 

analysis, the next observation is chosen from the data elements in the same connected 

macrostate cluster (instead of all the macrostates) with equal probability for each of the λ-

states in the stratified S2 group.

The procedure of running Stratified RE-SWHAM to analyze simulation data is as follows:

1. A database of observations is constructed for each λ-state using all the data 

elements observed at that λ-state. Each data element is tagged by the macrostate 

which it belongs to.

2. Then Stratified RE-SWHAM is run in cycles like replica exchange simulations:

• Move: For each λ-state, one data element is selected from its database 

to associate with the replica at that λ-state. At the fully-connected λ-

states, one of the data elements is chosen with equal probability; at the 

disconnected λ-states, one of the data elements which are in the same 
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connected macrostate cluster as the data element previously associated 

with the replica at that λ-state is chosen with equal probability.

• Exchange: Replica exchange attempts are examined according to the 

multicanonical exchange criterion. If an exchange attempt is accepted, 

the replicas are swapped, and the data elements associated with the 

replicas are also swapped to the database of the other λ-state.

• At the end of the cycle, the data element associated with the replica at 

each λ-state is recorded as the output of that λ-state.

3. The output of each λ-state is the estimate of the equilibrium distribution of that 

λ-state. Further statistical analyses can be applied to the data ensembles 

generated by Stratified RE-SWHAM at those interested λ-states.

Fig. 1 illustrates the procedure of stratified RE-SWHAM.

Compared with RE-SWHAM with an expanded set of λ-states, Stratified RE-SWHAM does 

not split the λ-states in the S2 group into multiple new λ-states. In the Appendix, we show 

that, without the splitting of locally equilibrated λ-states, the output of Stratified RE-

SWHAM at a locally equilibrated λ-state is the estimate of the equilibrium distribution of 

that λ-state. In particular, the population ratios can be estimated directly as those in the 

estimate of the equilibrium distribution of that λ-state from the output of Stratified RE-

SWHAM, without explicitly invoking the thermodynamic cycle. Therefore, in addition to all 

of the advantages of RE-SWHAM over UWHAM discussed in Ref.[43], one more benefit of 

using Stratified RE-SWHAM to solve the Stratified-UWHAM equations is that the number 

of λ-states does not increase compared with the original system.

3 Results and Discussion

3.1 Example 1: Alanine Dipeptide

To illustrate the problem, first we study the free energy landscape of alanine dipeptide 

(AlaD) in vacuum and in implicit solvent. The ramachandran plots of an AlaD molecule are 

shown in Fig. 2b. In the picture, the A macrostate cluster contains the β/C5, C7eq and αR 

free energy basins on the left side of the plot, and the B macrostate cluster contains the αL 

and C7ax free energy basins on the right side of the plot. The simulation of AlaD in vacuum 

is ~ 6 time faster per step than the simulation of AlaD in implicit solvent (OBC GB model) 

using GROMACS.45,46 However, the free energy barriers between the A and B macrostate 

clusters are much higher for AlaD in vacuum than AlaD in implicit solvent because the 

electrostatic interaction screening of water is absent. Consequently, it turns out that it is 

much more computationally time consuming to obtain the equilibrium distribution of AlaD 

in vacuum by brute force simulations. The first passage times of AlaD in implicit solvent are 

τA→B = (78 ± 3) ns and τB→A = (1.33 ± 0.04) ns; and the first passage times of AlaD in 

vacuum are τA→B = (2.6 ± 0.2) μs and τB→A = (55 ± 4) ns. In this study, the equilibrium 

distribution of AlaD in implicit solvent was obtained by replica exchange simulations first. 

Then two independent simulations of AlaD in vacuum, one starting from the A macrostate 

cluster and the other from B were run. See Supporting Information for simulation details. 

For both simulations, no transitions between the A and B macrostate clusters were observed 
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during the first 100 ns. The goal is to apply UWHAM to estimate the equilibrium 

distributions of AlaD in vacuum based on the data generated by two 100 ns long 

independent simulations of AlaD in vacuum and the previously obtained equilibrium 

distribution of AlaD in implicit solvent. The two λ-states of this model problem will be 

referred to as the implicit solvent (I) state and the vacuum (V) state.

Fig. 2b shows a typical thermodynamic cycle. To calculate the free energy difference 

between the A and B macrostate clusters at the vacuum state ΔFA B
V , the standard 

procedure is to calculate the two vertical legs, ΔFA
V I and ΔFB

I V using BAR (or 

UWHAM), and calculate the lower horizontal leg ΔFA B
I  using the population percentages 

of the two macrostate clusters at the implicit solvent state obtained by simulations.47 Then 

the free energy difference presented by the upper horizontal leg can be calculated by

ΔFA B
V = ΔFA

V I + ΔFA B
I + ΔFB

I V (10)

Given ΔFA B
V , the equilibrium distribution of AlaD in vacuum and the free energy 

difference between an AlaD molecule in vacuum and in implicit solvent can be estimated. 

The results obtained by using the thermodynamic cycle (Eq.(10)) serve as the benchmark for 

this model problem.

On the other hand, conventional UWHAM is inappropriate to be applied straightforwardly to 

estimate the density of states and free energy difference between an AlaD molecule in 

vacuum and in implicit solvent. As mentioned previously, the two simulations of AlaD in 

vacuum are far from converged in 100 ns because there have been no transitions between the 

two macrostate clusters (β/C5, C7eq, αR) and (αL, C7ax). Simply combining the two 

unconverged data sets at the same λ-state does not provide an ensemble drawn from the 

Boltzmann distribution of that λ-state. Therefore, the corresponding UWHAM results are 

not correct. The difference between the conventional UWHAM estimate of ΔFA B
V  and the 

benchmark can be seen in table 1. However, Stratified-UWHAM can be used to process the 

same data to obtain an accurate estimate of the free energy surfaces. We split the vacuum 

state into two λ-states, and applied Stratified-UWHAM to obtain the density of states and 

free energy differences between λ-states for this new system with an expanded set of λ-

states. The free energy difference between the A and B macrostate clusters at the vacuum 

state ΔFA B
V  was calculated according to Eq.(9). As can be seen in table 1, ΔFA B

V

estimated by Stratified-UWHAM agrees very well with the benchmark. And the Stratified 

RE-SWHAM estimate also matches the benchmark within statistical error.

We continued running the two independent MD simulations at the vacuum states to obtain 

better converged raw data until the conventional UWHAM estimates also match the 

benchmark. The evolution of the conventional UWHAM and Stratified-UWHAM estimates 

are shown in Fig. 3. As can be seen, Stratified-UWHAM converges to the benchmark within 

statistical error from the first data point where the simulation time is 100 ns. On the contrary, 
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it takes several microseconds simulation time of AlaD in vacuum for the conventional 

UWHAM estimate to reach a similar precision level as the Stratified-UWHAM estimate. 

Fig. 3 also shows the estimates of ΔFA B
V  based on the independent MD simulations A and 

B. That ΔFA B
V  converges on the same timescale when MD simulations A and B are 

UWHAMMed as when the simulations are considered individually reflects the fact that the 

macrostate clusters must be connected in simulations A and B before the two simulations 

can be UWHAMMed without bias. See more discussion about the convergence of Stratified-

UWHAM estimates in the Supporting Information.

3.2 Example 2: β-cyclodextrin Heptanoate complex

As the second example, we study the binding affinity of a host-guest system—β-

Cyclodextrin Heptanoate complex. The host, β-Cyclodextrin (βCD), is a frustum-shaped 

molecule with a hydrophobic interior core. The narrow opening end of βCD is laced with 7 

primary hydroxyls; and the wide opening end is laced with 14 secondary hydroxyls. Because 

of its chemical nature, βCD can bind with a number of ligands, therefore serves as a classic 

“host” for the study of molecular recognition phenomena. The guest molecule, heptanoate, 

consists of a hydrophilic carboxylate group and hydrophobic alkyl groups. As the 

hydrophobic alkyl groups of heptanoate is nested in the cavity of βCD, the carboxylate 

group of heptanoate can form hydrogen bonds with either the primary or the secondary 

hydroxyls of βCD depending on the orientation of the heptanoate molecule. As shown in 

Fig. 4, β-cyclodextrin heptanoate complex has two binding states, which will be referred to 

as the UP and DOWN macrostates. In our previous research,15,43 we have studied the 

binding affinity of this host-guest system by using BEDAM — a free energy method based 

on replica exchange simulations. In BEDAM simulations, an additional parameter λ is 

introduced to scale the interaction between the host and the guest molecules from none to 

full interaction. The features of β-Cyclodextrin heptanoate binding obtained using replica 

exchange serve as the benchmark for this test case where we employ Stratified-UWHAM to 

combine and analyze the results of independent (uncoupled) MD simulations at each of the 

λ Hamiltonian states.

We ran two sets of 72 ns independent MD simulations at 300 K of the β-cyclodextrin 

Heptanoate complex in implicit solvent (AGBNP GB model48) at 16 λ-states: (0.0, 0.001, 

0.002, 0.004, 0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0). The λ-states are 

chosen to be the same as those in the previous BEDAM simulations.15,43 At the λ = 0.0 

state, there is no interaction between the ligand and the receptor. And the interaction is fully 

turned on at the λ = 1.0 state. However, there is no replica exchange coupling among 

different λ-states. We note that simulations which use computational grids typically do not 

employ replica exchange; this observation serves to motivate example 2. One set of 

independent simulations was started from the UP macrostate; and the other set was started 

from the DOWN macrostate. The simulation details of this example can be found in Ref.

[15]. At the seven λ-states with the largest λ values, because of the strong interaction 

between heptanoate and βCD molecules, it is difficult for the binding complex to switch 

between the UP and DOWN macrostates. During the 72 ns simulations, no transitions 

between the UP and DOWN macrostates were observed at the λ = 1.0, 0.95, 0.9 states; and 
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only one or two transitions were observed at the λ = 0.8, 0.7, 0.6 states. However, when the 

interaction between the ligand and the receptor is further reduced (for λ values smaller or 

equal to 0.2), multiple transitions occurred. See the Supporting Information for the number 

of transitions between macrostates during each simulation. We applied conventional 

UWHAM, Stratified-UWHAM and Stratified RE-SWHAM to estimate the population 

percentage of each macrostate of the β-cyclodextrin Heptanoate complex. To compare the 

equilibrium conformational ensembles estimated by different analysis methods based on the 

raw data from the independent simulations at each of the λ-states, we also examined the 

probability density of the binding energies for each conformational ensemble.

The red line in Fig. 5a shows the equilibrium population percentages of the configurations in 

the DOWN macrostate at each λ-state as determined from the benchmark replica exchange 

data set. According to the benchmark, the population percentage of the DOWN macrostate 

starts from 50% at the λ = 0.0 state, and continues increasing to the highest value 94.5% at 

the λ = 0.8 state. Then the population percentage of the DOWN macrostate decreases to 

80.3% at the λ = 1.0 state. The DOWN macrostate is more favorable at large λ values, this 

comes from the larger entropy when the carboxylate group of the heptanoate molecule is 

located in the wide opening of the βCD molecule. Fig. 5b shows the distributions of binding 

energy of the β-Cyclodextrin Heptanoate complex at the λ = 1.0 state. Although the UP 

macrostate is less favorable at λ = 1 state, heptanoate and βCD can form more hydrogen 

bonds, resulting in more favorable (i.e. more negative) binding energy in this macrostate, 

because of the flexibility of the primary hydroxyls at the narrow opening end of βCD which 

can interact with the heptanoate carboxylate of the UP macrostate. We combined the data 

generated at each λ-state from the two sets (UP and DOWN) of independent simulations and 

applied conventional UWHAM to estimate the population percentage of the DOWN 

macrostate. The results shown in Fig. 5a exhibit significant differences compared with the 

benchmark at all the λ-states whose λ value is larger than 0.2. At the λ = 1.0 state, the 

difference between the benchmark and the conventional UWHAM estimate is as large as 

38.6%. Not surprisingly, Fig. 5c shows that the conventional UWHAM estimate (from the 

32 independent simulations) of the distribution of the binding energies at the λ = 1.0 state 

does not agree with the benchmark either. Then we applied Stratified-UWHAM to analyze 

the data generated by the independent parallel MD simulations (Fig. 5a and Fig. 5d). In this 

case, the λ-states with the largest seven λ values are considered to be only locally 

equilibrated, and are split into 14 new λ-states. As can be seen in Fig. 5a and Fig. 5d, the 

Stratified-UWHAM estimates of the population percentage of the DOWN macrostate at each 

λ-state and the distribution of the binding energies at the λ = 1.0 state agree with the 

benchmark very well. And the estimates obtained by the stochastic RE-SWHAM analysis 

are indistinguishable from the Stratified-UWHAM estimates. In Supporting Information, we 

list the numerical results and uncertainties of the population percentages of the DOWN 

macrostate estimated by Stratified-UWHAM, Stratified RE-SWHAM, and the benchmark. 

We also show the comparisons of the probability density of binding energies estimated by 

Stratified-UWHAM, Stratified RE-SWHAM, and the benchmark at all λ-states.
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3.3 Example 3: Dynamical Path Reweighting

Lastly, we study the trajectories of a Brownian particle moving in a two dimensional double 

well potential. We apply UWHAM and Stratified-UWHAM to analyze the path ensembles 

generated by the transition path sampling method at different Hamiltonian states. Inspired by 

previous research,49,50 the two dimensional potential function is defined via

U(x, y)/(kBT) = 1.25 [64y2(x2 + y2 − 1)2 − exp { − 4(x − 1)2 + y2} − exp { − 4(x + 1)2

+ y2}
+ exp {8(x − 1.25)} + exp { − 8(x + 1.25)} + 4 exp { − 4(y + 0.25)}
+ 12 exp { − 2x2}] .

(11)

Fig.(6a) shows the contours of this potential. As can be seen, U(x, y)/kBT is symmetric with 

respect to a rotation about the y axis. The minimum of U(x, y) equals 1.698 kBT at (x = 

±1.087, y = 0.188). To study the transition events between these two free energy basins, we 

define the region where

(x + 1.087)2 + (y − 0.188)2 < 1.000 (12)

as the reactant (or A) region and

(x − 1.087)2 + (y − 0.188)2 < 1.000 (13)

as the product (or B) region. The barrier between the reactant and product regions has two 

saddle points on the y axis. The upper saddle point is located at (x = 0.000, y = 1.000), 

where U(x, y) is 15.033 kBT; and the lower one is located at (x = 0.000, y = 0.039), where 

U(x, y) is 16.650 kBT. Along the y axis, the maximum potential between these two saddle 

points is located at (x = 0.000, y = 0.574), where U(x, y) is 27.024 kBT. See the supporting 

information for the cross-section of U(x, y) at x = 0. The pathways connecting the reactant 

and product regions are separated into two distinct channels by the peak around (x = 0.000, y 
= 0.574). To categorize paths according to the positions where they cross the barrier between 

the reactant and product regions, we examine the intersection points between the path and 

the y axis (xc = 0, yc). If a path crosses the y axis multiple times, the last intersection point is 

used. The paths with yc larger than 0.574 are tagged as in the UP channel; and the paths with 

yc smaller than 0.574 are tagged as in the DOWN channel. In Fig. 6a, we show two 

transition paths of a Brownian particle connecting the reactant and product regions. One 

transition path goes through the UP channel and the other goes through the DOWN channel.
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The TPS method is applied to sample the path ensembles connecting the reactant and 

product regions. In TPS simulations, the trial paths are generated by the “shooting” 

algorithm. 18 As previous researchers found,49,51,52 like any conventional Monte Carlo (MC) 

simulations, TPS, which is a MC sampling in path space, can be trapped in local minima, 

namely channels. Possible solutions to this problem include combining the replica exchange 

algorithm with TPS,51–53 or applying different transition path sampling techniques.49 Notice 

that the path channels in this example are analogous to the macrostate clusters in the 

previous two examples. The goal is to estimate the population percentage of the paths in 

each channel.

Here we show how to overcome the “trapping” problem by running independent parallel 

TPS at different Hamiltonian states and reweighting paths by Stratified-UWHAM. First we 

introduce a biasing potential to remove the peak which separates transition paths into 

channels

V(x, y)/(kBT) = 1.25 (9.5185 exp { − 9[(y − 0.5741)2 + x2/3]}) (14)

In Fig. 6b the contours of the potential U(x, y) − λV (x, y) with λ = 1.0 are plotted. As can 

be seen, at the λ = 1.0 state the peak around (x = 0, y = 0.574) is removed and the two path 

channels are merged. See the supporting information for the cross-section of U(x, y) − V (x, 
y) at x = 0. Then two sets of independent TPS simulations were run at λ = (0.0, 0.2, 0.4, 0.6, 

0.8, 1.0) states. The initial paths of the first set of simulations are in the UP channel and the 

initial paths of the second set are in the DOWN channel. Each TPS simulation generated 5 

million paths connecting the reactant and product regions. At the λ = 0.0 state, no transitions 

of paths between the two channels were observed during the TPS simulations. In other 

words, at λ = 0.0 state, TPS simulations of paths started in the UP channel remain in the UP 

channel, while paths started in the DOWN channel remain there. The changes of yc during 

each TPS simulation are shown in the Supporting Information. Then we applied 

conventional UWHAM, Stratified-UWHAM and Stratified RE-SWHAM to estimate the 

probability percentage of the paths in the UP and DOWN channels. One of us (B.W.Z.) has 

applied the Weighted Ensemble (WE) algorithm to obtain the correct path ensemble for two 

dimensional potentials like the one shown in Fig. 6.49,50 The WE results are used as the 

benchmark for this test. The simulation details for Langevin dynamics, TPS and WE can be 

found in Ref.[54] and [23]

The red line in Fig. 7a shows the population percentages of the paths in the DOWN channel 

at different λ-states obtained by the WE simulations. At the λ = 0.0 state, the paths in the 

DOWN channel make up ~ 29.3% of the whole path ensemble. First we simply combined 

the data generated from the same λ-state and applied the conventional UWHAM to estimate 

the population percentage of the paths in each channel. It can be seen from Fig. 7a that the 

conventional UWHAM estimate of the population percentage of the DOWN channel shows 

significant differences compared with the benchmark at the smaller λ values. The difference 

is negligible at the λ = 1.0 state but increases to 9% at the λ = 0.0 states. Then we applied 

the Stratified-UWHAM to analyze the path ensembles. For this case, the λ = 0.0, λ = 0.2 
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and λ = 0.4 states are considered to be the locally equilibrated λ-states, and each is split into 

two new λ-states. As can be seen from Fig. 7a, the Stratified-UWHAM estimates of the 

population percentage of the paths in the DOWN channel at each λ-state agree with the WE 

results very well. The estimates obtained from the Stratified RE-SWHAM also match the 

benchmark results. In Supporting Information, we list the numerical results and uncertainties 

of the population percentages of the paths in the DOWN channel estimated by Stratified-

UWHAM, Stratified RE-SWHAM, and the benchmark.

When the simulations at the λ-states with a substantial barrier between the paths have not 

converged, the conventional UWHAM estimates of the probabilities of the UP and DOWN 

channel paths at these λ-states strongly depend on the number of UP and DOWN channel 

paths which are input to UWHAM because the conventional UWHAM always assumes the 

input data ensemble at each λ-state is independently drawn from the distribution described 

by Eq.(1) or Eq.(31). Therefore the difference between the conventional UWHAM estimates 

and the true values at the λ = 0.0 state can be much larger than the case that the numbers of 

paths in the UP and DOWN channels generated at the λ = 0.0 state are equal (as shown in 

Fig.(Fig. 7a)). To show this effect, we fixed the number of paths in the UP channel at the λ = 

0.0 state in the input path ensemble nU but changed the number of paths in the DOWN 

channel at the λ = 0.0 state in the input path ensemble nD so that the population ratio nD/(nD 

+ nU) ranges from 1% to 90%. Then these input path ensembles with different value of 

nD/(nD +nU) were fed to the conventional UWHAM, Stratified-UWHAM and Stratified RE-

SWHAM to estimate the population percentage of the paths in each channel at the λ = 0.0 

state. The results are shown in Fig. 7b. As expected, the conventional UWHAM estimates 

for the population percentage of the path in the DOWN channel at the λ = 0.0 state strongly 

depend on the ratio nD/(nD + nU), and changes from 20% to 75% when nD/(nD+nU) changes 

from 1% to 90% while the benchmark is ~ 29.3%. On the other hand, the Stratified-

UWHAM and Stratified RE-SWHAM estimates are independent of the initial condition (i.e. 

the ratio nD/(nD + nU)), and agree with the benchmark.

To further compare path ensembles, we also measured the probability density of transition-

event durations for each path ensemble. The definition of transition-event durations is the 

number of Brownian steps between the Brownian particle last leaving the reactant region 

and first arriving in the product region, namely the path length.54–58 Fig. 8a shows the 

probability density of transition-event durations of paths in each channel and overall path 

ensemble at the λ = 0.0 states obtained by WE simulations. As can been seen, although the 

paths in the DOWN channel are less favorable compared with the paths in the UP channel, 

their average path length is shorter. This makes sense because if a pathway goes through a 

steeper barrier, namely a less favorable path channel, the Brownian particle has less freedom 

to wander along the optimal pathway, which ends in a shorter average path length.54 In Fig. 

8b, we compare the probability densities of transition-event durations at the λ = 0.0 state 

estimated by the conventional UWHAM, Stratified-UWHAM and Stratified RE-SWHAM 

when the population ratio nD/(nD + nU) is 80%. As can be seen, the conventional UWHAM 

estimate shows a significant difference compared with the benchmark. However, the 

Stratified-UWHAM and Stratified RE-SWHAM estimates are indistinguishable and both 

agree with the benchmark very well, which confirms that both Stratified-UWHAM and 

Stratified RE-SWHAM correctly estimate the weight of each individual path following Eq.
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(4). In the supporting information, we show the comparisons of the probability density of 

transition-event durations estimated by Stratified-UWHAM, Stratified RE-SWHAM and the 

benchmark at all λ-states when the number of paths in the UP and DOWN channels in the 

input path ensemble are equal.

3.4 Discussion

Stratified-UWHAM requires that the conformational space be coarse-grained. This can be 

done based on preliminary simulations or from biophysical knowledge, but a more general 

and practical method is to partition the conformational space following procedures used to 

construct Markov States Models. MSMs are a natural choice for the preparation of 

Stratified-UWHAM for the following reasons: MSMs build up a network which coarse-

grains the free energy landscape. The states in the MSM network are defined based on 

structural (order parameters) and kinetic criteria. Each state in an MSM corresponds to a 

cluster of conformations that constitute a basin (or collection of basins) in the free energy 

landscape, and the transition rates between states in an MSM reflect the properties of the 

corresponding (free) energy barriers. The stratified-UWHAM S1 and S2 groups of λ-states 

can be determined by the following procedure:

• choose a set of λ-states as reference states to build the MSM using prior 

knowledge and/or run preliminary simulations, choosing for reference, those 

biased simulations where the relaxation between the slowly equilibrating basins 

are enhanced.

• cluster the data from the other λ-states into MSM states using the same 

definition of MSMs used in the first step.

• identify disconnected macrostates or macrostate clusters based on ergodicity 

analyses for each λ-state in each of the biased simulations. One macrostate 

cluster may contain one or many basins;

• the biased λ-states whose macrostate clusters are fully connected are assigned to 

the S1 group; the λ-states which include disconnected macrostate clusters are 

assigned to the S2 group.

For some problems, the most straightforward applications of the Stratified-UWHAM 

algorithm will fail when metastable basins merge or separate as the Hamiltonian function 

and/or thermodynamic parameters of the λ-states change. To account for this it may be 

necessary to build into the UWHAM stratification procedure more detailed information 

about the correspondence between basins at different λ-states.

Two maximum likelihood-based methods, the dynamic histogram analysis method (DHAM) 

and the general transition-based reweighting analysis method (TRAM),59–62 were proposed 

recently to provide free energy estimates for multi-state simulations when the simulations at 

some λ-states are only locally equilibrated. As we propose for Stratified-UWHAM, both 

DHAM and TRAM require building MSMs first for further analyses. In addition to 

providing estimates of equilibrium distributions, both DHAM and TRAM analysis methods 

provide estimates of the transition rates between states of the MSMs which are not 

accessible by the Stratified-UWHAM analysis. Here we comment on the three methods and 
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explain some possible advantages and drawbacks of Stratified-UWHAM for estimating 

equilibrium populations.

DHAM calculates the estimates of transition rates between states of MSMs first. Then the 

equilibrium distributions are obtained by solving the eigenvalue equation for the transition 

matrix. Suppose there are nb states in the MSM, then for the αth λ-state the transition matrix 

is T(α), where the element T i j
(α) represents the probability of the system transitioning from the 

ith state to the jth state during lag time Δt. The log likelihood function of observing ni j
(α)

transitions from the ith state to the jth state at the αth λ-state during the simulation is59

L(α) = ln ∏
i = 1

nb
∏
j = 1

nb
(T i j

(α))
ni j
(α)

= ∑
i = 1

nb
∑
j = 1

nb
ni j

(α) ln (T i j
(α)) . (15)

DHAM supposes that the transition matrix element T i j
(α) at the αth λ-states can be written as 

T i j
(α) = f j

αci j
(α)T i j, where ci j

(α) is a bias factor, Tij is the ijth elements of an unbiased transition 

matrix T, and f j
α is a normalization factor. With this assumption, DHAM maximizes the 

likelihood function LD = ∏α = 1
M L(α), where L(α) is defined by Eq.(15). Notice that the 

transition probabilities at different λ-states are coupled by the bias factor. If the bias factors 

for the transition rates { ci j
α} are known, DHAM provides better estimates of equilibrium 

populations than conventional UWHAM for multi-state simulations when the simulations at 

some λ-states are far from being equilibrated.59 However, the challenge of applying DHAM 

is that the bias factors { ci j
α} are usually unknown and may be difficult to construct for 

arbitrary multi-state simulations. In contrast, the analogous quantities in Stratified-UWHAM 

— the probabilities of observing a microstate at different λ-states qα(uγi) in Eq.(3) — are 

more readily obtained from the Hamiltonian and Thermodynamic parameters of the multi-

state simulations.

In the TRAM method, the estimates of equilibrium distributions and transition rates of 

MSMs are calculated simultaneously. The maximum likelihood function of TRAM is a 

product of the maximum likelihood functions of binless WHAM (population counts) and 

DHAM (transition counts).62 Unlike Stratified-UWHAM, TRAM stratifies every λ-state 

into configuration states (macrostates) of MSMs. The local free energy of each configuration 

state at each λ-state is calculated during each iteration of TRAM analysis: the free energy 

differences between the same configuration states at different λ-states are calculated in a 

binless manner; the free energy differences between configuration states at each λ-state are 

calculated based on the transition counts and the detailed balance condition. Those 

calculations form multiple thermodynamic cycles like the one shown in Fig. 2b. The optimal 

and consistent estimates of all the legs in the thermodynamic cycles, namely the free energy 

differences, and the transition rates are obtained simultaneously by maximizing the 

likelihood function. In Ref.[62] TRAM was applied to obtain the thermodynamic and kinetic 
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information of a protein-ligand binding complex successfully while the MBAR/UWHAM or 

WHAM analysis was found to be unfeasible or less efficient.

Stratified-UWHAM and TRAM each have strength and weakness. Stratified-UWHAM is an 

algorithm that focuses on equilibrium populations, not kinetics. The transition counts 

observed during the multi-state simulations are not used to estimate the equilibrium 

distributions. And Stratified-UWHAM does not provide estimates for transition rates 

although there are methods which can infer transition rates from equilibrium distributions 

estimated from multicanonical simulations.63–67 When we solve the Stratified-UWHAM 

equations, the λ-states in the S1 group (fully-connected λ-states) are not split into new λ-

states so that the density of states obtained by Stratified-UWHAM is global (or globally 

normalized). Therefore, the existence of at least one λ-state in the S1 group seems to be 

essential for applying Stratified-UWHAM. However, it is worth pointing out that this is not a 

requirement of Stratified-UWHAM. Suppose there is a system which has three macrostates. 

The simulations at one λ-state are approximately equilibrated between the first and the 

second macrostates; and the simulations at another λ-state are approximately equilibrated 

between the second and the third macrostates. If the sampled phase space of the second 

macrostate at these two λ-states are well overlapped,68,69 these two λ-states together are 

equivalent to one approximately globally equilibrated λ-state. For such cases, either 

Stratified-UWHAM or Stratified RE-SWHAM can be used to obtain the global density of 

states. A practical criterion to validate the application of Stratified-UWHAM is that if 

Stratified RE-SWHAM is used to analyze the raw data, each replica shall have resampled 

every macrostate of every λ-state during the analysis. In other words, in Stratified RE-

SWHAM, which is a multicanonical resampling analysis analogous to multicanonical 

simulations such as replica exchange, all the macrostates need to be fully-connected when 

the data at all λ-states are combined in order to produce converged results.

On the other hand, as the name implies, TRAM is a transition-based reweighting analysis 

method. Because TRAM stratifies every λ-state, it does not depend on the population ratios 

of different states of the MSM at each λ-state, but approximately converged transition 

counts connecting states at each λ-state are essential for TRAM to obtain the global density 

of states. Note that unconverged transition counts can pollute the TRAM estimates, as 

unconverged population counts pollute the conventional UWHAM estimates as described 

previously in Sec.3. Because each transition matrix element at each λ-state is an unknown 

parameter to be determined by the maximum likelihood algorithm, TRAM has thousands 

more variables to solve than Stratified-UWHAM. Further work on TRAM and Stratified-

UWHAM may benefit from the development of a “population-plus-transition-based” 

reweighting algorithm which inherits the strengths of both methods.

4 Conclusion

We have developed a new analysis tool called Stratified-UWHAM to compute the density of 

states and free energies for data ensembles generated by multi-state simulations when a 

subset of the simulations are only locally equilibrated, macrostate clusters may be 

disconnected at some λ-states, and their population estimates are far from equilibrium. To 

remove the computational bottleneck of Stratified-UWHAM, we developed a stochastic 
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solver for the Stratified-UWHAM equations by extending the RE-SWHAM algorithm. As 

has been shown above, the Stratified-UWHAM equations can be solved in the form of 

UWHAM equations with an expanded set of λ-states; and the Stratified-UWHAM equations 

can be solved stochastically in the form of the original RE-SWHAM with a simple restraint 

introduced in the move procedure.

Stratified-UWHAM and Stratified RE-SWHAM have been applied to three model systems. 

First, we constructed the free energy surfaces of an alanine dipeptide molecule in vacuum by 

analyzing the data generated by two independent MD simulations of AlaD in vacuum 

starting from different macrostate clusters and the known equilibrium distributions of AlaD 

in implicit solvent which can be computed rapidly. Compared with Stratified-UWHAM and 

Stratified RE-SWHAM, the conventional UWHAM requires much longer MD simulations 

to produce estimates matching the benchmark within statistical error. Second, we studied the 

binding affinity of the β-cyclodextrin Heptanoate complex by running two set of 

independent MD simulations starting from different macrostates at 16 λ-states. Since the 

barrier between the “UP” and “DOWN” macrostates of this system is “infinitely” high at 

some λ-states, conventional UWHAM failed to estimate the equilibrium distribution at those 

λ-states correctly. However, the Stratified-UWHAM and Stratified RE-SWHAM estimates 

agree with the benchmark replica exchange simulation results very well. In the third 

example, we showed how to overcome the “trapping” problem of the transition path 

sampling algorithm by running TPS in a two dimensional double well potential at multiple 

λ-states independently and using Stratified-UWHAM and Stratified RE-SWHAM to 

analyze the path ensemble. As far as we know, this is the first time the Onsager-Machlup 

action-based path sampling algorithm has been combined with a UWHAM type analysis 

tool to study kinetics.

Stratified-UWHAM requires that the conformational space be coarse-grained. For the three 

examples we discussed above, the coarse-graining was done based on our preliminary 

knowledge about the system. For an arbitrary problem, we proposed that one can partition 

the conformational space using Markov States Models and suggested a procedure to identify 

locally equilibrated λ-states and macrostate clusters. Features of Stratified-UWHAM were 

compared with DHAM and TRAM. Compared with TRAM and DHAM, one drawback of 

the current version of Stratified-UWHAM is the requirement of manually determining 

locally equilibrated λ-states and macrostate clusters for each λ-state. However, this is 

necessary in order to avoid feeding UWHAM biased information which can pollute the 

estimates of the density of states. Algorithms to combine states of MSMs into macrostates 

and identify disconnected macrostate clusters based on raw simulation data can be 

automated.25 We proposed a criterion to validate the application of Stratified-UWHAM: if 

Stratified RE-SWHAM is used to analyze the raw data, each replica shall have resampled 

every macrostate of every λ-state during the analysis. Unlike DHAM or TRAM, Stratified-

UWHAM does not require the bias factors for transition rates at different λ-states or 

approximately converged transition counts between states of MSMs to obtain equilibrium 

distributions. Last but not least, the stochastic version of Stratified-UWHAM, Stratified RE-

SWHAM, provides a practical analysis tool for multi-state simulations on massive 

computational grids.14
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Appendices

A Stratified RE-SWHAM

Stratified RE-SWHAM is a resampling technique we developed to solve the Stratified-

UWHAM equations stochastically by using the replica exchange simulation protocol (See 

Fig. 1). Like RE simulations, at the end of each cycle, the observation associated with each 

replica is recorded as the output of Stratified RE-SWHAM. Here we use the alanine 

dipeptide problem as an example to show that the output of Stratified RE-SWHAM for a λ-

state in the S2 set which contains disconnected macrostate clusters is the estimate of the 

equilibrium distribution of that λ-state. Therefore, the splits of locally equilibrated λ-states 

are not necessary.

In the AlaD problem, the implicit solvent state (I state) is a fully-connected λ-state; the 

vacuum state (V state) is a locally equilibrated λ-state with two disconnected macrostate 

clusters. Suppose the replica at the V state is resampling the observations of the A 

macrostate cluster by the move procedure. During Stratified RE-SWHAM, to switch the 

replica at the V state to resample the observations of the B macrostate cluster requires (i) the 
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other replica at the I state is associated with an observation in the B macrostate cluster, (ii) 
an exchange attempt of these two replicas is accepted. Therefore the probability of switching 

the replica at the V state from resampling the A macrostate cluster to resampling the B 

macrostate cluster is

pI
(B)〈Ψ(UI

(A) + UV
(B) − UV

(A) − UI
(B))〉

V(A)I(B), (16)

where pI
(B) is the probability that the observation associated with the replica at the I state 

belongs to the B macrostate cluster. UV
(X) and UI

(X) the potential energies of an observation of 

the “X” macrostate cluster at the V state and the I state respectively. Notice they are the 

energy values of the same microstate at different λ-states, and suppose the energies are in 

units of kBT. Ψ is the Metropolis function to determine the acceptance ratio70

Ψ(x) = min (1, exp [ − x]) . (17)

The angle brackets and subscript V (A)I(B) represents the ensemble average when the 

observation associated with the replica at the V state belongs to the A macrostate cluster and 

the observation associated with the replica at the I state belongs to the B macrostate cluster.

Similarly, if the replica at the V state is resampling the B macrostate cluster, the probability 

of switching the replica to resample the A macrostate cluster is

pI
(A)〈Ψ(UI

(B) + UV
(A) − UV

(B) − UI
(A))〉

V(B)I(A) . (18)

Because of the requirement of detailed balance, the forward and backward currents of a 

replica moving between the A and B macrostate clusters at the V state are equal, which 

yields

pV
(A)pI

(B)〈Ψ(UI
(A) + UV

(B) − UV
(A) − UI

(B))〉
V(A)I(B)

= pV
(B)pI

(A)〈Ψ(UI
(B) + UV

(A) − UV
(B) − UI

(A))〉
V(B)I(A),

(19)

where pV
(X) is the probability that the observation associated with the replica at the V state 

belongs to the “X” macrostate cluster.

The Metropolis exchange criterion in the Stratified RE-SWHAM analyses satisfies
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Ψ(UI
(A) + UV

(B) − UV
(A) − UI

(B)) exp ( − UV
(A)) exp ( − UI

(B)) = Ψ(UI
(B) + UV

(A) − UV
(B) − UI

(A))
exp ( − UV

(B)) exp ( − UI
(A)) .

(20)

Integrating the equation over the configuration space leads to

QV
(A)QI

(B)∫ Ψ(UI
(A) + UV

(B) − UV
(A) − UI

(B)) exp ( − UV
(A)) exp ( − UI

(B))dqV
(A)dqI

(B)

QV
(A)QI

(B)

= QV
(B)QI

(A)∫ Ψ(UI
(B) + UV

(A) − UV
(B) − UI

(A)) exp ( − UV
(B)) exp ( − UI

(A))dqV
(B)dqI

(A)

QV
(B)QI

(A) ,

(21)

where QY
(X) is the canonical configurational integral of the “X” macrostate cluster at the “Y” 

λ-state,

QY
(X) = ∫ exp ( − UY

(X))dqY
(X) . (22)

Eq.[21] can be rewritten as

〈Ψ(UI
(A) + UV

(B) − UV
(A) − UI

(B))〉
V(A)I(B)

〈Ψ(UI
(B) + UV

(A) − UV
(B) − UI

(A))〉
V(B)I(A)

=
QV

(B)QI
(A)

QV
(A)QI

(B) . (23)

Namely, the log ratio of the acceptance probability 〈Ψ(UI
(A) + UV

(B) − UV
(A) − UI

(B))〉
V(A)I(B)

over 〈Ψ(UI
(B) + UV

(A) − UV
(B) − UI

(A))〉
V(B)I(A) provides the estimate of the free energy 

difference between the two vertical legs in Fig. 2b.

Combining Eq.(19) and (23) yields
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−kBT log
pV

(B)

pV
(A) = − kBT log

pI
(B)

pI
(A) − kBT log

QI
(A)

QV
(A) − kBT log

QV
(B)

QI
(B)

= ΔFA B
I + ΔFA

V I + ΔFB
I V

= ΔFA B
V .

(24)

Eq[24] shows the ratio of pV
(B) over pV

(A) provides the estimate of the upper leg in Fig. 2b. 

Because at the end of each cycle, the observation associated with the replica at the V state is 

recorded as the output of Stratified RE-SWHAM at the V state (see Fig. 1), ( pV
(A)/ pV

(B)) 

equals the population ratio of the A macrostate cluster over the B macrostate cluster in the 

output of the V state. In other words, the output of Stratified RE-SWHAM at the V state is 

the estimate of the equilibrium distribution of the V state.

There is another subtle difference between RE-SWHAM with an expanded set of λ-states 

and Stratified RE-SWHAM. During the analysis of RE-SWHAM with an expanded set of λ-

states, an observation in a macrostate cluster of a locally equilibrated λ-state can possibly be 

exchanged only with an observation in the same macrostate cluster at another λ-state 

because of the infinite barrier covering the outside of that macrostate cluster at the 

corresponding expanded λ-state. Therefore, the number of observations in a macrostate 

cluster of a locally equilibrated λ-state stays as a constant. During the analysis of Stratified 

RE-SWHAM, because an observation in a macrostate cluster of a locally equilibrated λ-
state is allowed to be exchanged with any observation at another λ-state if the exchange 

attempt is accepted (see Fig. 1), the number of observations in a macrostate cluster of a 

locally equilibrated λ-state fluctuates by ±1. However, if the total number of observations in 

each macrostate cluster at each λ-state is large, such fluctuations become negligible.

B Onsager-Machlup Action-based Path Ensemble

In Sec.3.3, we apply Stratified-UWHAM to analyze the path ensembles of a Brownian 

particle moving in a two dimensional double well potential. The stochastic dynamics of the 

Brownian particle in this two dimensional space is governed by the overdamped Langevin 

equation

dx
dt =

Fx
γ + Rx(t)

dy
dt =

Fy
γ + Ry(t),

(25)

where Fx and Fy are the forces acting on the particle; γ is the friction constant; and Rx(t) and 

Ry(t) are the thermal noise taken from Gaussian functions with zero mean and correlation
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〈R(t)R(t′)〉 =
2kBt

γ δ(t − t′) = 2Dδ(t − t′) . (26)

D = kBT/γ in Eq.(26) is the diffusion constant.

Given the two-dimensional potential U(x, y), the probability of a (N − 1)-steps path 

connecting the reactant region and the product region is

Ppath((x0, y0), (x1, y1), ⋯, (xN, yN)) = exp −
U(x0, y0)

kBT

× ∏
i = 0

N − 1
p(xi, xi + 1; U)p(yi, yi + 1; U) .

(27)

p(xi, xi+1; U) and p(yi, yi+1; U) in Eq.(27) are the single-step transition probabilities

p(xi, xi + 1; U) = 1
2πσ

exp −
[xi + 1 − xi − (1/2)(∂U / ∂xi)(2DΔt)]2

2σ2

p(yi, yi + 1; U) = 1
2πσ

exp −
[Y i + 1 − yi − (1/2)(∂U / ∂yi)(2DΔt)]2

2σ2 ,

(28)

where

σ2 = 2
kBT

γ Δt = 2DΔt, (29)

and Δt is the time interval of a single step. By combining Eq.(27) and Eq.(28), the 

probability of a path can be written as a single exponential function
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Ppath = exp −
2U(x0, y0)

γ − 2D(N − 1) log (2πσ2)

− ∑
i = 0

N − 1 [xi + 1 − xi − (1/2)(∂U / ∂xi)(2DΔt)]2

2(Δt)2

− ∑
i = 0

N − 1 [yi + 1 − yi − (1/2)(∂U / ∂yi)(2DΔt)]2

2(Δt)2 /(2D)

= exp −A[x(t), y(t), U(x, y)]
2D .

(30)

where A[x(t), y(t), U(x, y)] is called the Onsager-Machlup action “functional”.71 Compared 

with the probability of a microstate of a mechanical system governed by the canonical 

ensemble, the action functional of a path is analogous to the potential energy of a microstate. 

With this understanding, many enhanced sampling methods and analysis tools which have 

been developed to explore the conformational space such as replica exchange and UWHAM, 

can be applied straightforwardly to the transition path space.53,72,73 The transition path 

sampling (TPS) method is a MC simulation in the path space to draw pathway 

Xi
α: i = 1, ⋯, Nα according to the distribution

Pα(Xi
α)

exp { − A[xαi(t), yαi(t), U(x, y)]/(2D)}
Zα

, (31)

where Zα is the normalizing constant (analogous to the partition function of a canonical 

ensemble) of the αth λ-state.17,18
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Figure 1. 
An illustration of the Stratified RE-SWHAM algorithm. This drawing shows two λ-states 

with “grey” or “cyan” color. Each λ-state has two macrostates A and B. The grey λ-state is 

locally equilibrated while the simulations at the cyan λ-state are approximately equilibrated 

among the macrostates. The white gap between macrostates at the grey λ-state represents an 

uncrossable barrier for the “move” procedure during the Stratified RE-SWHAM analysis. 

Beforehand, we construct each λ-state a database which contains all the observations 

obtained from that λ-state, and each observation is tagged by the macrostate which it 

belongs to. As shown in the picture, the observations are separated into two subgroups A and 

B. Then Stratified RE-SWHAM is run in cycles, which consists of a “move” procedure and 

an “exchange” procedure. In the move procedure, Stratified RE-SWHAM chooses an 

observation to associate with the replica at each λ-state. At the cyan λ-state, the next 

observation is chosen from the whole database of that λ-state with equal probability. 

However, at the grey λ-state, the next observation is chosen from the subgroup which the 

previous observation belongs to with equal probability. In the exchange procedure, if the 

exchange attempt is accepted, in addition to the swap of the replicas, the observations 

associated with the replicas are also swapped to the database of the other λ-state. At the end 

of each cycle, the observation associated with each replica is recorded as the output of 

Stratified RE-SWHAM.
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Figure 2. 
Thermodynamic cycle of alanine dipeptide (AlaD) in vacuum and implicit solvent. (a) It is 

much more computationally time consuming to obtain the equilibrium distribution of AlaD 

in vacuum than AlaD in implicit solvent by brute force simulations. (b)The upper picture is 

the ramachandran plot of AlaD in vacuum, and the lower picture is the ramachandran plot of 

AlaD in implicit solvent. The free energy difference of the A and B macrostate clusters in 

vacuum equals to the sum of the other three legs.
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Figure 3. 
Dependence of the conventional UWHAM and Stratified-UWHAM estimates of the free 

energy difference between the A and B macrostate clusters of AlaD in vacuum ΔFA B
V  on 

the simulation length of the simulations of AlaD in vacuum. The red line is the benchmark 

— the estimates of thermodynamic cycle. The blue dash line is the estimates of Stratified-

UWHAM when the vacuum state is split into two new λ-states. The black dash line is the 

estimates of the conventional UWHAM estimates when the data at the vacuum states are 

simply combined as the input of that λ-state. The green and cyan dash lines are the estimate 

based on the independent MD simulations starting from the A and B macrostate clusters 

respectively. It takes MD simulations lasting several microseconds of AlaD in vacuum for 

the conventional UWHAM estimates to match the benchmark compared with Stratified-

UWHAM which converges within 100 ns. The Stratified-UWHAM estimates are visually 

identical with the benchmark.
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Figure 4. 
β-cyclodextrin Heptanoate binding complex. (a) UP macrostate. (b) DOWN macrostate.
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Figure 5. 
Population percentage of the configurations in the DOWN macrostates and probability 

density of binding energy at the λ = 1.0 state. The red line is the benchmark — the BEDAM 

(replica exchange simulation) results. (a) Comparison of the population percentages of the 

configurations in the DOWN macrostate estimated by Conventional UWHAM, Stratified-

UWHAM, Stratified RE-SWHAM (based on the raw data generated by two sets of 72 ns 
independent MD simulations) and the benchmark. The blue stars are the Stratified-UWHAM 

estimates when the data at the largest seven λ-states are clustered into UP and DOWN 

macrostates. The black circles are the Stratified RE-SWHAM estimates; and the black line 

with dots are the conventional UWHAM estimates when the data at the unconverged λ-

states are simply combined as the input of that λ-state. (b) the probability density of binding 

energy at the λ = 1.0 state obtained by replica exchange simulations. The blue line is the 

probability density of binding energy of the configurations in the UP macrostate; the green 

line is the probability density of binding energy of the configurations in the DOWN 

macrostate; and the red line is the overall probability density of binding energy at the λ = 

1.0 state. (c) Comparison of the probability density of binding energy at the λ = 1.0 state 

estimated by conventional UWHAM to the 32 independent simulations and the benchmark. 

The bars show the UWHAM estimates. (d) Comparison of the probability density of binding 

energy at the λ = 1.0 state estimated by Stratified-UWHAM, Stratified RE-SWHAM and 

benchmark. The blue dots are the Stratified-UWHAM estimates. The bars are the Stratified 

RE-SWHAM estimates. As can be seen by comparing the four figures, only the Stratified-

UWHAM and Stratified RE-SWHAM estimates agree with the benchmark.
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Figure 6. 
Two dimensional double well potentials. (a) contours of the double well potential U(x, y) 

defined via Eq.(11). The red trajectories show two paths connecting the reactant (A) and 

product (B) regions. One goes through the UP channel and the other goes through the 

DOWN channel. (b) contours of the biased potential U(x, y) − V (x, y), where V (x, y) is 

defined via Eq.(14).
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Figure 7. 
Population percentage of the paths in the DOWN channel. The red line is the benchmark — 

the results obtained by weighted ensemble (WE) simulations. The blue stars are the 

Stratified-UWHAM estimates when the data at the smallest three λ-states are clustered into 

UP and DOWN states; the black circles are the Stratified RE-SWHAM estimates; and the 

black line with dots are the conventional UWHAM estimates when the data at the locally 

equilibrated λ-states are simply combined as the input of that λ-state. (a) Comparison of the 

population percentages of the paths in the DOWN channel at each λ-state estimated by 

conventional UWHAM, Stratified-UWHAM, Stratified RE-SWHAM and benchmark when 

the number of the paths in the UP and DOWN channels in the input path ensembles are 

equal. (b) Comparison of the population percentages of the paths in the DOWN channel at 

the λ = 0.0 state estimated by conventional UWHAM, Stratified-UWHAM, Stratified RE-

SWHAM and benchmark when the population ratio nD/(nD + nU) changes from 1% to 90%, 

where nD is the number of paths in the DOWN channel at the λ = 0.0 state in the input path 

ensemble; and nU is the number of paths in the UP channel at the λ = 0.0 state in the input 

path ensemble. As can be seen by comparing the two figures, only the Stratified-UWHAM 

and Stratified RE-SWHAM estimates agree with the benchmark. And the conventional 
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UWHAM estimate for the λ = 0.0 state strongly depends on the population ratio nD/(nD + 

nU).
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Figure 8. 
probability densities of transition-event durations at the λ = 0.0 state. (a) the probability 

density of transition-event durations at the λ = 0.0 state obtained by WE simulations. The 

blue line is the probability density of transition-event durations of the paths in the UP 

channel; the green line is the probability density of transition-event durations of the paths in 

the DOWN channel; and the red line is the overall probability density of transition-event 

durations at the λ = 0.0 state. (b) Comparison of the probability density of transition-event 

durations at the λ = 0.0 state estimated by Stratified-UWHAM, Stratified RE-SWHAM and 

the benchmark when the population ratio nD/(nD + nU) is 80%. The blue dots are the 

Stratified-UWHAM estimates; the bars are the Stratified RE-SWHAM estimates and the 

dash line is the conventional UWHAM estimates. The conventional UWHAM estimates 

show a significant difference compared with the benchmark, while Stratified-UWHAM and 

Stratified RE-SWHAM estimates agree with the benchmark very well.
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Table 1

Free energy difference between the A and B macrostate clusters of AlaD in vacuum ΔFA B
V  estimated by 

thermodynamic cycle, the conventional UWHAM, Stratified-UWHAM and Stratified RE-SWHAM. Standard 

errors are estimated by the block bootstrap method.

T Cycle Stratified-UWHAM Stratified RE-SWHAM UWHAM

ΔFA B
V (kcal/mol)

2.41 ± 0.04 2.42 ± 0.04 2.45 ± 0.05 0.1060 ± 0.0007
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