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Abstract

Atypical functional connectivity has been implicated in autism spectrum disorders (ASDs). 

However, the literature to date has been largely inconsistent, with mixed and conflicting reports of 

hypo- and hyper-connectivity. These discrepancies are partly due to differences between various 

neuroimaging modalities. Functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), and magnetoencephalography (MEG) measure distinct indices of 

functional connectivity (e.g., blood-oxygenation level-dependent [BOLD] signal vs. electrical 

activity). Furthermore, each method has unique benefits and disadvantages with respect to spatial 

and temporal resolution, vulnerability to specific artifacts, and practical implementation. Thus far, 

functional connectivity research on ASDs has remained almost exclusively unimodal; therefore, 

interpreting findings across modalities remains a challenge. Multimodal integration of fMRI, EEG, 

and MEG data is critical in resolving discrepancies in the literature, and working toward a 

unifying framework for interpreting past and future findings. The current review aims to provide a 

theoretical foundation for future multimodal research on ASDs. First, we will discuss the merits 

and shortcomings of several popular theories in ASD functional connectivity research, using 

examples from the literature to date. Next, the neurophysiological relationships between imaging 

modalities, including their relationship with invasive neural recordings, will be reviewed. Finally, 

methodological approaches to multimodal data integration will be presented, and their future 

application to ASDs will be discussed. Analyses relating transient patterns of neural activity 

(“states”) are particularly promising. This strategy provides a comparable measure across 

modalities, captures complex spatiotemporal patterns, and is a natural extension of recent dynamic 

fMRI research in ASDs.
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Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by 

deficits in social communication and restricted or repetitive behaviors (American Psychiatric 

Association, 2013). These symptoms typically emerge within the first few years of life, and 

persist throughout the lifespan. ASDs are a major research priority, as the Centers for 

Disease Control and Prevention estimate that 1 in 45 school-aged children in the United 

States are affected (Zablotsky et al., 2015). However, despite extensive neuroimaging 

research over the past decades, the brain bases of ASDs are still not well understood.

Neuroimaging studies of this population have taken various approaches, both structural (e.g., 

anatomical MRI, diffusion weighted imaging) and functional (e.g., functional MRI, 

electroencephalography, magnetoencephalography). The imaging literature broadly indicates 

that ASDs are characterized by altered connectivity within and between brain networks (Di 

Martino et al., 2014). However, reproducible biomarkers of ASDs have yet to be identified. 

This is likely, in part, due to the considerable heterogeneity across individuals on the autism 

spectrum. Phenotypic expression and outcome vary widely (Olsson et al., 2015) and 

etiologically distinct variants of ASDs are probable (Geschwind and State, 2015). However, 

another major source of variability is methodological. Despite obvious advantages of using 

multiple neuroimaging methods, different types of data have distinct neural bases. Failure to 

reconcile these differences has thwarted attempts to synthesize multimodal data into a 

coherent narrative describing atypical functional connectivity in ASDs.

The concept of ‘connectivity’, though widely used, is ill-defined and has been invoked in 

studies that test divergent neural phenomena (Horwitz, 2003). Unsurprisingly, different 

measures of connectivity can show poor correspondence (Reid et al., 2016). Therefore, it is 

essential to carefully define connectivity in the context of a given study, and to evaluate 

methodological choices accordingly. Broadly, ‘connectivity’ can be structural (i.e., physical 

properties of neuronal connections), functional (i.e., statistical relationship between activity 

in two or more regions), or effective (i.e., causal relationship between regions). With each of 

these approaches, connectivity can be further studied at different levels of granularity. For 

example, structural connectivity can refer to large axonal tracts, such as the inferior 

longitudinal fasciculus (detectable in diffusion weighted imaging), or to individual synapses 

connecting two neurons (detectable in microscopy). Structural properties influence 

functional relationships, but do not entirely account for them (Damoiseaux and Greicius, 

2009). Both structural and functional connectivity have been studied extensively in ASDs; 

however, the current review will focus on functional connectivity, with an emphasis on 

multimodal integration.

The most commonly used measures of functional connectivity include functional magnetic 

resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography 

(MEG). Importantly, each modality measures (with specific limitations) a distinct 

physiological signal (see Figure 1), requiring uniquely suitable interpretation. EEG and 

MEG directly measure summated post-synaptic potentials (PSPs), arising mostly from 

pyramidal neurons. Sensors placed at the scalp measure extracellular electrical activity in 

EEG (Niedermeyer et al., 2011), and magnetic fields generated by intracellular currents in 
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MEG (Supek and Aine, 2014). Both provide high temporal resolution, capturing neural 

oscillations across a broad frequency range (Buzsaki, 2006; see Table 1). Within given 

frequency bands, connectivity is typically measured in terms of power (a measure of voltage 

calculated from amplitude, often following time-frequency decomposition of waveforms), or 

coherence (phase-coupling across distant electrodes; for a review of coherence approaches 

see Bowyer, 2016). However, the spatial resolution of these methods is limited, particularly 

for deep brain structures. Additionally, the signal at the scalp represents the summation of 

signal from many sources, and skull and tissue conductivity may cause EEG signals to blur 

across sensors (van den Broek et al., 1998). Short-range coherence is particularly susceptible 

to increase from volume conductance, although this effect is considerably reduced in widely 

separated electrodes and can be minimized by computational methods such as a surface 

Laplacian spatial filter (Srinivasan et al., 2007).

Localizing subcortical structures is similarly challenging in MEG, not due to conductivity, 

but because of the rapidly diminishing strength of magnetic fields as a function of distance 

(Hillebrand and Barnes, 2002). Another limitation of MEG is its failure to detect radial 

currents at the crests of gyri; this method is selectively sensitive to tangential currents, 

generated by pyramidal neurons in sulci. However, as only ~5% of cortical area is 

inaccessible to MEG for this reason, magnetic field strength is thought to be the primary 

limitation of MEG (Hillebrand and Barnes, 2002). Additionally, as in EEG volume 

conductance, magnetic field spread due to the distance separating coils from the scalp 

surface introduces artefact into coherence measures in MEG (Winter et al., 2007). This 

effect on MEG measures of coherence appears to be negligible in sensors separated by 20 

cm or more.

In fMRI, the blood oxygenation level-dependent (BOLD) signal is a hemodynamic proxy for 

neural activity. The BOLD signal is an indirect measure of neural activity, but provides high 

spatial resolution. Unlike EEG and MEG, fMRI can detect signals equally from cerebral 

cortex and deep brain structures. Therefore, fMRI is useful for identifying both localized 

brain activity and correlations among functionally related areas at rest (Biswal et al., 1995; 

Fox and Raichle, 2007). Temporal resolution, however, is limited by low sampling rates 

(typically once every 2 seconds) and the sluggishness of the hemodynamic response, which 

peaks about 5 seconds after corresponding neuronal activity changes. BOLD correlations are 

therefore commonly detected in frequency bands below .1 Hz (Cordes et al., 2000), although 

functional networks may also be detected at slightly higher frequencies (Gohel and Biswal, 

2015).

The relative strengths and limitations of each single technique underscore the necessity of 

multimodal approaches for a comprehensive characterization of neural network organization 

and dynamics. For example, fMRI is heavily impacted by physiological noise (e.g., 

heartbeat, respiration) and head motion (Liu, 2016), while EEG is more vulnerable to 

electric noise from the environment and muscle artifacts (e.g., eye blinks, jaw movement; 

Delorme et al., 2007). A spatial map derived from fMRI contains little information about 

dynamic aspects of brain activity; EEG and MEG reveal a wealth of complementary 

information in the time domain, capturing oscillatory activity inaccessible to fMRI (Buzsaki 

and Draguhn, 2004; Cohen, 2011). Advanced multimodal analyses take advantage of this, 
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building integrated models representing interactions among network features observed 

through different modalities (Lei et al., 2011a).

The remainder of this paper will describe directions for an integrated, multimodal approach 

to studying functional connectivity in ASDs. First, fMRI and EEG/MEG findings from the 

ASD literature will be briefly discussed. A comprehensive review is beyond the scope of this 

paper, but seminal findings and inconsistencies that warrant novel, integrative methods will 

be highlighted. Next, the neurobiological bases of fMRI and EEG/MEG signals will be 

reviewed, including multimodal studies from the human and animal literature describing the 

relationship between them. Finally, different multimodal data fusion strategies will be 

introduced in the context of potential application to the functional connectivity literature on 

ASDs. We hope that these key points will serve as a framework for the integration of 

existing and future neuroimaging work, based in a nuanced understanding of methodological 

strengths and limitations.

Functional Connectivity in ASD

Despite the large and fast-growing number of functional connectivity studies on ASDs, little 

consensus on atypical functional network patterns in this disorder has emerged. This section 

will present several popular models that have been proposed to reconcile discrepancies in the 

literature, and briefly evaluate the evidence supporting each of these. Functional connectivity 

in ASDs has been comprehensively described in several reviews (Maximo et al., 2014; 

Mohammad-Rezazadeh et al., 2016; Vissers et al., 2012; Wass, 2011), in addition to 

modality-specific reviews focusing on fMRI (Hull et al., 2016; Müller et al., 2011; Rane et 

al., 2015) and EEG/MEG studies (O’Reilly et al., 2017). Rather than fully reiterate this 

literature, this paper aims solely to underscore the often perplexing heterogeneity of 

findings, and the inadequacy of current approaches to resolve apparent inconsistencies.

General Underconnectivity

Early functional connectivity findings in ASDs prompted the hypothesis of general 

underconnectivity within distributed networks. This theory was initially based on reduced 

BOLD signal correlations between several cortical regions during sentence comprehension 

in adults with ASDs (Just et al., 2004). Underconnectivity findings were subsequently 

replicated across a variety of other fMRI tasks involving different cortical regions and 

networks (e.g. Just et al., 2007; Kana et al., 2006; Kleinhans et al., 2008; Koshino et al., 

2008; Mostofsky et al., 2009). Other studies have found more complex patterns of mixed 

over- and under-connectivity associated with memory tasks (Koshino et al., 2005; Noonan et 

al., 2009).

Task-free fMRI studies testing intrinsic functional connectivity (Van Dijk et al., 2010) reveal 

functional network architecture (i.e., BOLD correlations within networks) at rest. This 

approach has been widely applied to research on ASDs. Resting state fMRI studies have 

frequently found mixed patterns of under- and over-connectivity (e.g., Fishman et al., 2014; 

Supekar et al., 2013; for reviews, refer to Hull et al., 2016 and Rane et al., 2015). 

Methodological variables play an important role, as shown in a meta-analysis (Müller et al., 

2011) and empirical comparative methods investigations (Jones et al., 2010; Nair et al., 
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2014), which highlighted the difference between fcMRI studies testing for task-driven 

BOLD correlations and intrinsic fcMRI studies examining spontaneous synchronization of 

BOLD signal changes.

EEG and MEG findings relevant to the underconnectivity hypothesis are equally 

inconsistent, with both increased and decreased coherence observed across various task 

designs (see Vissers et al., 2012). This is further complicated by differences between 

frequency bands and brain regions (Ye et al., 2014) (Kitzbichler et al., 2015). A recent 

review concluded that reduced coherence between distant electrodes, often interpreted as 

underconnectivity, is generally supported, but is found most consistently in low frequencies, 

with mixed findings in higher frequencies (for review, see O’Reilly et al., 2017). However, 

EEG findings in the gamma frequency range (>30 Hz) may be confounded by muscle 

artifact (Muthukumaraswamy, 2013), limiting the reliability of these results. Unlike 

coherence, power appears to be increased in ASDs in low and high frequencies, but 

decreased in middle frequencies, such as alpha and beta (Wang et al., 2013). Although 

power and coherence are each affected by synchronized neural activity, these are ultimately 

different measures of “connectivity”, and it is therefore difficult to interpret their seemingly 

divergent frequency-related patterns. Even more importantly, there is no clear translation 

between these constructs and those measured in fMRI (i.e., BOLD correlations). Therefore, 

EEG and MEG findings may not be readily suited to addressing the fcMRI 

underconnectivity hypothesis.

Long-range Underconnectivity, Local Overconnectivity

A related proposal suggests that ASDs are characterized by reduced connectivity between 

distant regions, but increased local connectivity (Belmonte et al., 2004). At first glance, this 

may appear to be an appealing explanation for the mixed findings described above, but the 

literature suggests that this theory is overly simplistic. As described in the previous section, 

long-range underconnectivity is not generally supported by intrinsic functional connectivity 

findings. In addition, not a single fcMRI study examining local connectivity, using graph 

theory (Itahashi et al., 2015; Keown et al., 2013) or regional homogeneity methods (Dajani 

and Uddin, 2016; Jiang et al., 2015; Maximo et al., 2013; Nair et al., 2017), has supported 

broadly consistent local overconnectivity in ASD. Instead, findings have been mixed and 

region-specific, even in studies analyzing fMRI data without regional homogeneity 

standardization (Maximo et al., 2013; Nair et al., 2017), which could theoretically obscure 

global group differences in local connectivity.

The EEG/MEG literature is highly mixed, with both local hypo- and hyper-connectivity 

revealed through coherence analyses (for review, see O’Reilly et al., 2017). However, EEG 

and MEG may not be suitable for examining local connectivity for several reasons. First, 

these methods lack the spatial resolution to distinguish activity from nearby generators. 

Second, signals from closely spaced EEG electrodes (within 10–15 cm) are confounded by 

volume conduction in EEG (Srinivasan et al., 2007) and field spread in MEG (Winter et al., 

2007). Therefore, while EEG/MEG may be appropriate tools for examining long-range 

connectivity, they are less well-suited to local overconnectivity hypotheses.
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Reduced Network Integration and Segregation

A promising theory of functional connectivity in ASDs relates to overall network 

organization. There is a growing literature suggesting that neural networks in ASDs may be 

inefficiently organized due to poor functional differentiation and integration. Specifically, 

several fMRI studies have revealed reduced connectivity within networks, but increased 

connectivity between networks (Fishman et al., 2014; Rudie et al., 2012b; Shih et al., 2011). 

This theory has found additional support in studies using graph theory metrics to 

characterize network properties of both fMRI (Chen et al., 2017; Keown et al., 2017; Rudie 

et al., 2012a) and EEG/MEG data (Peters et al., 2013; Pollonini et al., 2010; Tsiaras et al., 

2011), suggesting possible consensus at the network level. However, opposite findings have 

also been reported in fMRI, suggesting increased modularity in ASDs (Barttfeld et al., 2011; 

Yerys et al., 2017). Additionally, group differences in network efficiency appear to vary 

across frequency bands (Kitzbichler et al., 2015). Although this is a promising research 

direction, the precise characterization of network organization in ASDs remains an area of 

active, ongoing study.

Developmental Trajectories

The characterization of brain networks in ASDs is further complicated by the 

neurodevelopmental nature of the disorder and by maturational changes in brain network 

organization in typical development (Fair et al., 2010; Supekar et al., 2009). Study samples 

usually include individuals within a limited age range, with relatively few neuroimaging 

studies including very young children or older adults, and no longitudinal studies capturing 

large segments of the lifespan. Therefore, there is little firm knowledge about age 

trajectories of connectivity in ASD. Uddin et al. (2013) proposed that overconnectivity is 

most prevalent in young children with ASD, while underconnectivity is primarily found in 

adolescents and adults. This hypothesis bears some analogy to structural (Courchesne et al., 

2001) and diffusion-tensor imaging evidence (Wolff et al., 2012) suggesting a developmental 

trajectory characterized by very early brain overgrowth, which normalizes over time. 

However, structural findings show brain overgrowth only in the first few years of life, while 

the developmental hypothesis by Uddin et al. predicts overconnectivity in children until 

puberty. Furthermore, although some fMRI findings are consistent with the theory of early 

overconnectivity and later underconnectivity, many others are not (e.g., underconnectivity in 

toddlers reported by Dinstein et al., 2011; Shen et al., 2016; overconnectivity in adolescents 

reported by Shen et al., 2012; Redcay et al., 2013).

Similarly, EEG/MEG findings do not exclusively support overconnectivity early in life. 

Reduced long-range EEG coherence (Righi et al., 2014), and reduced power in all frequency 

bands (Tierney et al., 2012) have been observed in high-risk infants. Furthermore, the 

longitudinal trajectory of EEG power in the first few years of life appears to depend not only 

on eventual diagnostic status, but also on frequency band studied (Tierney et al., 2012). 

These findings do not necessarily refute overconnectivity findings in fMRI; as discussed 

above, connectivity abnormalities are likely affected by age, and differ by regions, networks, 

and frequency bands. Although a clear picture has yet to emerge, developmental stage is 

certainly one of several critical variables when modeling brain networks in a 

neurodevelopmental disorder.
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Missing Links: Toward Multimodal Functional Connectivity Studies

Although several promising themes emerge across the fMRI and EEG literatures, no single 

hypothesis accommodates all reported findings. This highlights the importance of adopting 

multimodal strategies to better understand connectivity in ASDs. To date, few multimodal 

neuroimaging studies in this area have been published. A recent review (Yerys and 

Herrington, 2014) described a small body of literature combining structural methods (e.g., 

structural MRI, DTI) with functional methods (e.g., fMRI, EEG, MEG) to study ASDs. 

However, none of these studies employed multiple functional approaches. To our 

knowledge, only one simultaneous EEG-fMRI study has been published to date, reporting 

reduced EEG beta power and atypically reduced BOLD activation in auditory cortex during 

auditory stimulation in a small sample of adults with ASDs (Hames et al., 2016).

To jointly benefit from the temporal resolution of electrophysiological methods and the 

spatial resolution of MRI, improved methods of data integration are needed. Because 

EEG/MEG and fMRI are generated by different sources and suited to different analyses, the 

EEG/MEG and fMRI literatures have remained largely separate in ASD research. This has 

limited our ability to draw conclusions spanning findings across modalities. For an 

integrated interpretation of fcMRI, EEG, and MEG findings, the neurophysiological bases of 

different signals must first be reconciled.

Relationships Between Multimodal Signals

Intracortical Recordings and the BOLD signal

The relationships between EEG/MEG signals and neural activity are well-established. The 

BOLD signal, however, is a secondary hemodynamic measure that relies on neurovascular 

coupling, which is not perfectly understood (Hillman, 2014). Simultaneous fMRI and 

intracortical recordings have been used to investigate the neurovascular bases of BOLD 

changes (see summary in Figure 1). Of particular interest is whether BOLD signal changes 

are related to synaptic transmission, like EEG and MEG, as opposed to action potentials 

(i.e., “spiking”). Extracellular electrodes placed in the cortex can measure local field 

potentials (LFP), a measure of surrounding synaptic activity, as well as multiunit activity 

(MUA), which reflects spiking of multiple nearby neurons. Single-unit activity, or the 

spiking of a single neuron, can also be measured using single-unit recordings. Early work 

with anesthetized monkeys found that during visual stimulation BOLD changes in visual 

cortex were more closely associated with LFP than MUA (Logothetis et al., 2001). 

Spontaneous BOLD fluctuations are also related to LFP in awake and anesthetized animals, 

particularly within the gamma band (Hutchison et al., 2015; Magri et al., 2012; Shmuel and 

Leopold, 2008; cf. Bentley et al., 2016) Coupling between LFP gamma power and BOLD 

has been replicated in humans, both during tasks (Conner et al., 2011 ; Gaglianese et al., 

2017; Nir et al., 2007) and at rest (He et al., 2008; Nir et al., 2007; Nir et al., 2008). 

Furthermore, it has been shown that the spiking of single neurons is poorly coupled to LFP 

gamma power and BOLD activity (Nir et al., 2007), suggesting that both BOLD and 

EEG/MEG signals reflect a summation of regional synaptic activity, rather than action 

potentials of specific neurons. However, some studies have found a linear relationship 

between BOLD and MUA as well as LFP in both humans (Mukamel et al., 2005) and 
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animals (Shmuel et al., 2006; Shmuel and Leopold, 2008). This is expected, as spiking and 

synaptic activity tend to be highly correlated despite their partially distinct mechanisms (for 

further discussion see Logothetis, 2008; Shmuel and Maier, 2015).

Finally, intracortical recordings have provided insight into modulatory relationships between 

cortical oscillations at different frequencies (cross-frequency coupling), and BOLD activity 

both locally and across distributed networks, which is relevant to BOLD connectivity. One 

continuous electrocorticography (ECoG) study of epilepsy patients found that slow 

intracortical oscillations (< 4 Hz) and BOLD fluctuations shared similar correlation structure 

across specified ROIs, while gamma band power and BOLD correlations were related only 

when subjects were awake or in rapid eye-movement (REM) sleep, but not during slow-

wave sleep (He et al., 2008). The authors suggested that slow cortical potentials serve as a 

foundational mechanism for modulating higher-frequency oscillations, which reflect 

“online” processing. A study in monkeys found that coherence in low-frequency (<20 Hz) 

LFP bands modulated both regional gamma amplitude and BOLD, but predicted BOLD 

connectivity across ROIs better than gamma coherence (Wang et al., 2012). These findings 

are paralleled by a recent study using simultaneous ECoG and fMRI in humans, reporting 

that BOLD activity is better predicted by a combination of band-limited power and phase-

amplitude coupling (here: the degree to which beta coherence modulates gamma amplitude; 

Murta et al., 2017), compared to a model that only considered the effects of power. Together, 

these findings underscore a potential role of lower frequencies in coordinating high-

frequency local activity across large-scale networks. Importantly, MEG studies have 

demonstrated disrupted alpha-gamma phase-amplitude coupling in ASDs both at rest 

(Berman et al., 2015) and during a face-viewing task (Khan et al., 2013). For an in-depth 

discussion of hierarchical effects of global rhythms on local networks, see Nunez and 

Srinivasan (2014).

EEG Power and BOLD Activity

Intracortical recordings have provided important insights about the neural basis of BOLD 

signal change that can only be inferred from invasive measures. Simultaneous EEG and 

fMRI acquisition is less invasive and therefore far more widely used in human studies (note 

that simultaneous MEG and fMRI recording remains infeasible). EEG-fMRI studies have 

sought to further clarify the relationship between electrical signals measured at the scalp, 

localized BOLD activity, and BOLD correlations across networks (for reviews, see Mulert, 

2013; Murta et al., 2015). We will first focus on relationships between EEG power and local 

BOLD fluctuations (i.e., “BOLD activity”), and then turn to BOLD correlations across 

regions (i.e., “BOLD connectivity”) in the next section (for summary, see Figure 1).

Kilner et al. (2005) proposed a heuristic relating BOLD activity to EEG and LFP power 

based on mathematical assumptions about energy dissipation. This model posits that 

increased BOLD activity should be associated with increased power in high-frequency EEG 

and LFP, and that increases in lower frequency EEG and LFP should accompany BOLD 

decreases. Although this theory is partially supported (as described below), it somewhat 

oversimplifies the relationship between electrophysiological and BOLD activity.
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Alpha rhythms (~8–12 Hz) are dominant at rest, and have been most widely studied in 

relation to spontaneous BOLD signal changes. Increases in alpha power are associated with 

reduced BOLD activity in frontal, occipital, and parietal areas (Bridwell et al., 2013; 

Goldman et al., 2002; Laufs et al., 2003; Olbrich et al., 2009); a similar relationship has 

been reported for beta power increases (Murta et al., 2017; Scheeringa et al., 2011). 

However, a consistently positive relationship has been found between alpha power and 

BOLD activity in the thalamus (Bridwell et al., 2013; de Munck et al., 2007; Goldman et al., 

2002). Although the direction of these relationships is well-established, less is understood 

about their temporal lag structure. In particular, thalamic BOLD signal increases have been 

found to precede corresponding increases in EEG alpha power by several seconds (de 

Munck et al., 2007; Feige et al., 2005; Feige et al., 2017). This has been generally observed 

for positive EEG-BOLD relationships, but not negative ones (Feige et al., 2017). These 

findings warrant further study, and may be particularly relevant in ASD, considering 

evidence of atypical lag structure in this population (Mitra et al., 2017).

Although most early studies focused on the alpha frequency band, different EEG 

frequencies, each associated with distinct functional states (Buzsaki, 2006), may relate 

differently to the BOLD signal. Unique relationships between ICA-derived BOLD networks 

and specific EEG frequency bands have been demonstrated (Mantini et al., 2007; Neuner et 

al., 2014b). In line with the LFP and ECoG literature, EEG gamma power and BOLD 

activity have consistently been found to be positively associated (Bridwell et al., 2013; 

Murta et al., 2017; Scheeringa et al., 2011). Scheeringa and colleagues (2011) reported that 

fast (gamma) and slower (alpha and beta) oscillations predict unique variance in the BOLD 

signal.

EEG Power and BOLD Connectivity

The relationship between EEG power and interregional BOLD correlations is particularly 

relevant to the study of functional connectivity in ASDs. Despite the large literature relating 

EEG features to local BOLD increases and decreases, less is understood about links with 

BOLD correlations within and between networks. One relatively consistent finding is an 

inverse relationship between alpha power and coupling (positive or negative) between 

networks; in other words, increased alpha power is associated with less positive BOLD 

correlations in correlated networks, and less negative BOLD correlations in anticorrelated 

networks (Allen et al., 2017; Chang et al., 2013; Scheeringa et al., 2012). Chang and 

colleagues (2013) propose that reduced vigilance/attention may cause a shift away from 

alpha rhythms toward lower frequencies, as well as stronger differentiation between resting 

and task-driven networks (e.g., default-mode and dorsal attention networks). However, one 

study reported state-dependent relationships between BOLD connectivity and both alpha and 

beta power (Tagliazucchi et al., 2012). This study also identified many BOLD connections 

that were positively associated with gamma (which, however, may be confounded by muscle 

activity (Muthukumaraswamy, 2013).

BOLD connectivity within the default-mode network (DMN) has been reported to be 

positively and negatively related with beta and delta power, respectively (Hlinka et al., 

2010). However, a recent study found that BOLD covariance matrices and source-localized 
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EEG covariance matrices were most similar for low EEG frequency bands (Deligianni et al., 

2014). These discrepancies are consistent with findings that the relationship between MEG 

and BOLD correlation structures varies between individuals, and that different MEG 

frequencies best predict connectivity between different ROI pairs (Hipp and Siegel, 2015). 

Overall, the exact relationship between BOLD correlations and electrophysiological power 

remains unclear, and appears to depend on ROIs selected, cognitive state, and frequency 

band studied.

Can Transient Connectivity States Unite EEG/MEG and fMRI?

Dynamic Connectivity Approaches

As pointed out earlier, electrophysiological and BOLD signals are conventionally analyzed 

in different ways. Direct comparisons of fMRI connectivity measures (e.g., BOLD 

correlations) with EEG connectivity measures (e.g., power, coherence) are therefore 

challenging at best, and possibly inappropriate. The study of transient brain states may 

provide a novel approach to this problem. This data-driven strategy assumes that neural 

networks dynamically fluctuate between a given number of transient, replicable connectivity 

patterns, or states. Each connectivity state is thought to correspond to a cognitive state. 

Crucially, it is expected that electrophysiological and hemodynamic measures of neural 

activity can be integrated more readily when assessed at the level of single states and their 

dynamic changes across time, compared to static connectivity approaches that have 

dominated the fcMRI literature on ASDs.

The dynamic approach commonly involves temporally clustering resting-state EEG data into 

a series of “microstates” (for review, see Khanna et al., 2015). Microstates can then be 

convolved with a hemodynamic response function (HRF) and used as regressors in a general 

linear model to predict BOLD activation. It has been shown that voxelwise BOLD activity 

maps generated purely from electrophysiological regressors spatially correspond to resting-

state networks derived from BOLD ICA on the same sample (Britz et al., 2010; Musso et al., 

2010). EEG microstates have also been shown to predict thalamic BOLD fluctuations 

(Schwab et al., 2015). Similarly, EEG data classified into “vigilance” states have also been 

shown to predict BOLD correlation patterns (Olbrich et al., 2009). These studies support the 

assumption that complex, transient EEG patterns directly relate to whole-brain BOLD 

correlations, and to cognitive states-of-mind (Milz et al., 2016). However, this does not 

necessarily suggest that each EEG microstate has a single corresponding BOLD resting-state 

network. Using temporal ICA on EEG data and spatial ICA on fMRI data, one study found 

that some BOLD networks were related to several EEG microstates (Yuan et al., 2012). 

These findings highlight the complex temporal dynamics of neural networks and their 

relationships with cognition and behavior, and underscore the benefits of integrating 

complementary methodologies.

Although EEG microstates have typically been used as predictors for BOLD data in 

simultaneous EEG-fMRI research, one recently published study took the opposite approach. 

Here, overlapping windows of BOLD time series were clustered into seven states, each of 

which corresponded to a unique EEG spectral signature (Allen et al., 2017). Additionally, 

they found that eye status (open or closed) affected the relative prevalence of different states. 
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This study is the first to associate whole-brain BOLD connectivity states with EEG patterns, 

providing a unique perspective and novel insight into the relationships between EEG and 

fMRI networks.

Dynamic connectivity in ASD: First steps

Although none of these multimodal approaches have yet been applied to ASDs, interest in 

“dynamic” functional connectivity fMRI has recently grown. Dynamic functional 

connectivity studies aim to characterize the complex spatiotemporal patterns underlying 

neural networks, often focusing on properties of transient brain states (Chen et al., 2017; de 

Lacy et al., 2017; Watanabe and Rees, 2017). Dynamic methods have been recently used in a 

few ASD studies to explore dynamic connectivity variability (Falahpour et al., 2016) and to 

predict diagnosis (Zhu et al., 2016).

Sliding window analysis is the most popular dynamic connectivity approach (Allen et al., 

2014; Hutchison et al., 2013). However, there is as yet little consensus on best practices 

concerning window length and overlap, which have been shown to affect findings (Hindriks 

et al., 2016; Shakil et al., 2016). While some have criticized the relevance and meaning of 

BOLD dynamics altogether (Laumann et al., 2016), others have found the approach to be 

generally reliable (Abrol et al., 2017). Furthermore, the temporal resolution of single-

modality fMRI dynamic connectivity remains limited given the slowness of the BOLD 

response. However, the movement toward dynamic connectivity fMRI is a critical step in the 

right direction for ASD research. As described in the previous section, the study of transient 

connectivity states (rather than static connectivity across prolonged periods of scanning) 

may be the most promising avenue towards true integration between electrophysiological 

measures from EEG or MEG and hemodynamic measures from fMRI.

Analyzing Multimodal Signals

The preceding sections highlight the need for integrative and dynamic multimodal 

approaches to connectivity. We will now turn to strategies for approaching this goal. 

Common integration strategies for multimodal functional data (specifically EEG and fMRI) 

will be introduced. Key decision points will be emphasized, including advantages and 

disadvantages of each broad approach. This is intended to serve as a conceptual introduction 

rather than a comprehensive review. Readers interested in more exhaustive reviews are 

referred to (Daunizeau et al., 2009; Ritter and Villringer, 2006; Rosa et al., 2010; Uludag 

and Roebroeck, 2014). Detailed technical discussions of various fusion methods can be 

found in (Sui et al., 2012; Valdes-Sosa et al., 2009).

Data Integration Choices

Simultaneous vs. Separate Acquisition—Recent technological advances have 

improved the feasibility of simultaneous EEG and fMRI recording. For studies comparing 

spontaneous activity between two modalities, simultaneous recording is indispensable, as 

unpredictable fluctuations across each timecourse must be temporally matched. Moreover, 

simultaneous recordings collected in a single session may reduce participant attrition. 

However, there are also advantages to separate acquisition (Wibral et al., 2010), which is 
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less expensive (given the high cost of MRI-safe EEG equipment) and avoids additional setup 

time and participant discomfort associated with simultaneous acquisition. This is especially 

relevant for studies including clinical populations such as ASDs, who may have difficulty 

tolerating long, uncomfortable protocols. Finally, each modality impacts data quality of the 

other, reducing the signal to noise ratio for simultaneously acquired data. Despite corrective 

methods (Eichele et al., 2010; Mullinger and Bowtell, 2010), specific artifacts (e.g., EEG 

ballistocardiographic effect) remain a challenge (Foged et al., 2017; Neuner et al., 2014a).

While separate data acquisition is often more practical, some research questions can only be 

addressed with simultaneous recording. Separately acquired data may be appropriate for 

highly controlled event-related paradigms, in which responses can be averaged across trials, 

whereas simultaneous acquisition is preferable when studying spontaneous EEG-fMRI 

activity or responses that vary across sessions (e.g., practice effects).

Model-driven vs. Data-driven Approaches—Model-based analysis requires a forward 

(i.e., generative) model that predicts the relationship between neural activity and measured 

signals from both modalities as a function of anatomy, volume conduction, and 

hemodynamic/metabolic interactions (Valdes-Sosa et al., 2009). However, generating such a 

model is challenging, and relies on assumptions about neurovascular coupling, which is not 

perfectly understood (Deneux and Faugeras, 2010; Rosa et al., 2010).

Data-driven approaches require no a priori models specifying the relationship between 

imaging data and underlying neural activity. This removes the constraints imposed by 

selected model parameters, and can reveal informative, complex relationships between 

measured EEG and fMRI data (Sui et al., 2012). However, interpreting results can be 

challenging without modeling underlying neural processes, as data-driven approaches can 

only describe relationships between observable measures (Valdes-Sosa et al., 2009). In such 

cases, it may be beneficial to relate findings from data-driven approaches to phenotypical 

variables such as symptom severity, cognitive function, and other neuropsychological 

measures in order to aid interpretation of results.

Symmetric vs. Asymmetric Analyses—A third consideration is whether each 

modality will be given equal priority (i.e., symmetric analysis), or if one modality will be 

treated as a predictor for the other (i.e., asymmetric analysis). For example, asymmetric 

analyses may be used to improve the temporal resolution of fMRI or the spatial resolution of 

EEG, by using data from one modality as a “constraint” for the other (Uludag and 

Roebroeck, 2014). While these asymmetric analyses take advantage of the complementary 

strengths of each modality, they assume superiority of one modality (considered the 

“predictor”). When one type of data is given greater importance, assumptions about the 

ground truth of that modality may introduce bias (Daunizeau et al., 2009; Rosa et al., 2010). 

Symmetric analyses, on the other hand, integrate EEG and fMRI data without prioritizing 

either modality (Valdes-Sosa et al., 2009). This approach is often driven by a generative 

model (described above), which specifies the relationship between neural activity and 

observed data from both modalities (Sotero and Trujillo-Barreto, 2008). However, 

symmetric analysis can also be data-driven or use hybrid methods (Lei et al., 2012b).
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Common Data Integration Approaches

There are three major approaches to EEG-fMRI data integration: 1) EEG-informed fMRI, 2) 

fMRI-informed EEG, and 3) EEG-fMRI fusion (for discussion, see Rosa et al., 2010).

EEG-Informed fMRI—The goal of EEG-informed fMRI analyses is temporal prediction, 

with EEG time courses used as predictors of BOLD activity. Therefore, this is a data-driven, 

asymmetrical approach. Because this approach relies on temporal correlations, it can only be 

used with simultaneously collected data. Typically, some feature of EEG data is convolved 

with an HRF and entered as a regressor into a general linear model predicting voxelwise 

BOLD activation. Many of the studies discussed previously (see Relationships Between 

Multimodal Signals) have taken this approach in establishing the relationship between EEG 

and BOLD signals. EEG predictors can be discrete, event-related activations (Eichele et al., 

2005), spontaneous power fluctuations in particular frequency bands (Goldman et al., 2002; 

Laufs et al., 2003), or “microstate” patterns identified by clustering (Britz et al., 2010; 

Musso et al., 2010; Schwab et al., 2015). With respect to connectivity, this approach can 

reveal voxelwise BOLD activity associated with EEG fluctuations, which can then be tested 

for links with known BOLD networks. Additionally, it can provide important information 

about moment-to-moment temporal dynamics in relation to BOLD networks, which would 

not be possible with fMRI alone. One limitation of this method is the risk of correlations 

between multimodal timecourses arising from shared noise.

fMRI-Informed EEG—Another common asymmetrical approach uses fMRI to spatially 

constrain EEG data. In other words, fMRI is used to improve source localization for EEG. 

As discussed earlier, identifying generators of EEG activity is complicated by volume 

conduction (Srinivasan et al., 2007). This creates an ill-posed inverse problem, with 

numerous loci of neural activity potentially accounting for any given spectral pattern. EEG 

source localization is typically done in the context of either an equivalent dipole model, 

which assumes that EEG activity arises from currents at specific points (i.e., dipoles), or a 

distributed source model, which estimates contributing activity across all voxels (Daunizeau 

et al., 2009). Using fMRI data as predictor can substantially improve the accuracy of EEG 

source localization (Lei et al., 2015). Recently, Bayesian techniques have been applied to 

fMRI-informed source reconstruction, as it operates on a more flexible set of assumptions 

about the EEG-fMRI relationship (Lei et al., 2012a; Phillips et al., 2005). One group 

developed a Bayesian procedure for using ICA-derived BOLD networks as priors for EEG 

localization (Lei et al., 2012a; Lei et al., 2011b). This method, known as Network-Based 

Source Imaging (NESOI), localizes EEG activity not to a single area of BOLD activity, but 

to a statistically probable functional BOLD network.

Applications of this method can also be used to characterize multimodal network 

connectivity. For example, NESOI has been applied as a means of matching ICA 

components derived separately from fMRI and EEG data. This method identified distinct 

and shared networks between modalities, and described interactions among these networks. 

Multimodal functional connectivity networks can thus be accurately modeled from both 

simulated and real data (Lei et al., 2011a). However, a major limitation to fMRI-informed 

source localization is the assumption that BOLD activity occurs at the location of EEG 
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generators. This principle may be violated, as co-occurring activity does not always indicate 

a direct causal relationship.

EEG-fMRI Fusion—Fusion methods aim to integrate EEG and fMRI data in a 

symmetrical manner, with neither modality serving as a predictor for the other. This method 

makes no assumptions about the “correctness” of either data type relative to the other. 

Typically, fusion is accomplished by specifying a forward model accounting for findings in 

both modalities, as discussed earlier. Improved understanding of signal propagation and 

development of sophisticated modeling procedures has led to more frequent use of 

anatomically and physiologically realistic models (Deneux and Faugeras, 2010; Sotero and 

Trujillo-Barreto, 2008). Dynamic causal modeling is a popular approach for specifying these 

relationships (Bonstrup et al., 2016; Friston et al., 2003). However, creating truly realistic 

predictive models is challenging (Sotero and Trujillo-Barreto, 2008), and particularly 

relevant to this paper, generative models based on typical populations may not apply to 

ASDs, because atypical signal propagation may be part of the pathology of interest. For a 

review of model-based fusion, see Valdes-Sosa et al. (2009).

Data-driven approaches to symmetrical fusion have also been developed. For example, joint 

ICA (Moosmann et al., 2008) and parallel ICA (Liu and Calhoun, 2007) can simultaneously 

decompose multimodal data into meaningful components. Other methods, such as canonical 

partial least squares have been used to identify shared variance in multimodal datasets 

(Michalopoulos and Bourbakis, 2015). Interestingly, some fusion methods combine both 

model- and data-driven elements, incorporating data-driven findings into theoretical forward 

models (Daunizeau et al., 2007; Lei et al., 2010). ICA is particularly flexible, and has been 

integrated across numerous EEG-fMRI integration approaches (for review, see Lei et al., 

2012b). However, an inherent limitation of ICA is that components may not be directly 

comparable between clinical and non-clinical populations.

Conclusions and Future Directions

Integrative multimodal studies constitute a critical next step in ASD functional connectivity 

research. As described above, no one proposal currently accommodates the numerous 

discrepant findings of over- and under-connectivity in ASDs for various imaging modalities, 

brain regions, and stages of life. Current studies are limited by a failure to appropriately 

merge electrophysiological and fMRI findings. Theoretical advances in ASD functional 

connectivity research will require more integrative approaches.

The different sources and characteristics of EEG, MEG, and fMRI signals present great 

challenges for cross-modal data interpretation. Comparison of these signals requires 

adequate understanding of the shared and distinct neural mechanisms underlying them. 

While there is strong support for a shared neural basis of electrophysiological signals and 

BOLD activity, the details of this association are complex (see Figure 1), and give rise to 

network features that may be visible to one modality, but invisible to another.

Advanced techniques for joint EEG-fMRI data analysis have been developed to bridge the 

gap between different imaging “languages”, allowing for more direct comparison and fusion 
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between modalities. The application of these methods to ASD research remains limited, but 

is a particularly promising avenue of study for this field. The importance of connectivity has 

been well-established in ASDs, particularly at the network level. Joint analysis methods are 

ideally suited to these research questions, and could provide more exhaustive (and hopefully 

more accurate) models of how connectivity is disrupted in ASDs.

One particularly promising avenue of research includes defining EEG microstates to predict 

BOLD correlations across the brain and characterize widespread spatiotemporal patterns of 

inter- and intra-network connectivity. EEG microstates have provided useful insight into 

other psychiatric conditions, including panic disorder (Kikuchi et al., 2011), Alzheimer’s 

disease (Dierks et al., 1997; Nishida et al., 2013), and schizophrenia (Andreou et al., 2014; 

Nishida et al., 2013). Transient connectivity states provide a promising approach to 

translating different types of multimodal data into a common space for joint interpretation. 

Many of the seemingly inconsistent findings from the fcMRI, EEG, and MEG literature may 

be reconciled at the level of such transient states. First steps in this direction have been taken 

by recent dynamic connectivity fMRI studies of ASDs (Chen et al., 2017; de Lacy et al., 

2017; Falahpour et al., 2016; Watanabe and Rees, 2017; Zhu et al., 2016). The strategy 

offers a novel approach to studying dynamic network properties, reaching beyond the 

familiar, often uninformative, and perhaps irresolvable questions of over- and under-

connectivity.

Advances in multimodal data fusion have the potential to vastly improve our understanding 

of functional neural networks in ASDs and how they relate to everyday functioning and 

well-being. The dynamic properties of these systems, which likely play a role in a complex 

neurodevelopmental disorder such as ASD, cannot be accurately characterized by any single 

neuroimaging modality. Here, we have specifically focused on the physiological origins, 

advantages, and limitations of EEG, MEG, and fMRI, and the numerous possibilities offered 

by multimodal research. These methods have demonstrated their value in the neuroscience 

literature, but their implementation in ASDs has not yet fully come to fruition. There is a 

critical need for collaboration among scientists with broad, cross-disciplinary training, and 

with both clinical and technical expertise. If used appropriately, integrative multimodal 

analyses hold great promise for improved understanding of the brain bases of ASDs and the 

development of neurobiologically informed treatments.
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Figure 1. 
Illustration of key features of different imaging modalities, and relationships between 

multimodal signals. The top panel compares advantages and limitations of intracranial 

recordings, EEG/MEG, and fMRI. The bottom panel summarizes major findings linking the 

BOLD signal to the physiological signals measured by intracranial recordings and EEG/

MEG, respectively. See also references to multiple reviews in the main text for more 

exhaustive discussion of specific topics beyond the scope of the current paper. (+) and (-) 

indicate positive and negative correlations.
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Table 1

EEG/MEG Rhythm Summary

Rhythms Range (Hz) Proposed Functional Relevance Reviews

Delta 1 – 4 Deep sleep; signal matching; decision-making Harmony (2013)

Theta 4 – 8 Drowsiness and sleep; selective attention; orienting; episodic memory Basar et al. (1999)
Nyhus and Curran (2010)

Alpha 8 – 13 Relaxed wakefulness; semantic memory; visual processing Basar et al. (1997)
Klimesch et al. (2011)

Beta 13 – 30 Focused attention; state maintenance; motor inhibition Engel and Fries (2010)

Gamma > 30 Memory; language; visual awareness; perceptual binding; sensory stimulation Uhlhaas et al. (2011)
Basar et al. (1999)

†
Summary of each standard EEG/MEG rhythms, including frequency range and functional relevance. Frequency ranges provided here may serve as 

a reasonable estimate for each rhythm, but the specific limits of each frequency band vary across studies. Functional relevance of each rhythm has 
been considerably simplified for the purpose of this paper; we present only the most commonly reported findings as a reference for readers 
unfamiliar with the EEG/MEG literature.
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