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Angiotensin II (AngII) is the most important endocrine ligand in the renin angiotensin 

system (RAS), contributing to the development of several cardiovascular diseases including 

hypertension 1. AngII mediates its signal transduction and functions via the AngII receptors 
2. Historically, the presence of two subtypes of AngII receptors were pharmacologically 

recognized based on the sensitivity to the first orally-active non-peptide AngII receptor 

antagonist, losartan. The losartan-sensitive receptor was termed AT1 receptor. It was 

assumed to be a heterotrimeric G protein-coupled receptor (GPCR) as it generates inositol 

triphosphate and diacylglycerol leading to intracellular Ca2+ elevation and protein kinase C 

activation, respectively. Most known physiological and pathophysiological functions of 

AngII including stimulation of vasoconstriction and salt and water reabsorption are mediated 

through the AT1 receptor. The losartan-insensitive receptor was termed AT2 receptor, 

whereas its G protein-coupling remains unclear 1, 3, 4. In 1991, two research groups in the 

United States independently isolated cDNA (termed AGTR1) encoding the mammalian AT1 

receptor 5, 6. Subsequently, rat AT2 receptor cDNA (AGTR2) was cloned in 19937, 8. These 

pioneer works revealed complete amino acid sequences of the AngII receptor subtypes 

belonging to the seven-transmembrane GPCR superfamily. In the early nineties, several 

studies reported that AT1 receptor elicits tyrosine phosphorylation of multiple proteins as 

well as activation of mitogen-activated protein kinase (p42/p44 MAPK)/extracellular signal 

regulated kinase (ERK1/2) in various cell types including vascular smooth muscle cells 

(VSMC). The early nineties also saw the establishment of the concept that AngII via the AT1 

receptor has a direct action on cardiac myocytes, fibroblasts and VSMCs causing 

hypertrophic and fibrotic cardiovascular remodeling 9, 10. The cardiovascular remodeling 

caused by AngII appeared to be at least partially independent from the hypertensive action 

of AngII 11. These findings lead to identification of common signaling mechanisms shared 

by AT1 receptor and a growth factor receptor which has an intrinsic tyrosine kinase activity 
12–15. Interestingly, AT1 receptor can be activated by mechanical stretch contributing to 

cardiac hypertrophy 16, 17. The mechano-sensor concept of the AT1 receptor has been 
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expanded to mediate myogenic vasoconstriction 18–20. Another key discovery from the early 

nineties is NAD(P)H oxidase-dependent reactive oxygen species (ROS) generation through 

the AT1 receptor activation in VSMC 21. This finding lead to a major (yet controversial) 

concept that ROS mediate cardiovascular pathophysiology including those involving the 

RAS. The finding was also significant as it is an important foundation for the well 

acknowledged concept established in the late nineties that AngII acts as a pro-inflammatory 

cytokine via the AT1 receptor 22. The basic understanding remains solid and unchanged that 

the AT1 receptor signaling contributes to hypertension and various cardiovascular 

complications via activation of protein kinases, generation of ROS, and subsequent 

induction of remodeling and inflammation 2, 23. However, there has been astonishing 

progress elucidating various novel components and pathways in the AngII/AT1 receptor 

signal transduction for the past two decades. AT1 receptor interacts and signals with G 

proteins and β-arrestin. In addition, AT1 receptor communicates with growing numbers of 

AT1 receptor-interacting proteins including other GPCRs (heterodimer formation). AT1 

receptor appears to activate several new signaling cascades including the Wnt/β-catenin 

pathway, Notch pathway and Hippo pathways. Moreover, AT1 receptor mediates additional 

posttranslational protein modification including acetylation/deacetylation, S-nitrosylation, 

O-GlcNAcylation and SUMOylation (reviewed recently 2). Crystal structures of the AT1 and 

AT2 receptors have also been recently demonstrated 24, 25. However, further research is 

desired regarding the physiological and pathophysiological roles of these new components 

and signaling pathways. Here, based on the 2017 Lewis K. Dahl Memorial Lecture, we will 

describe noteworthy recent concepts of the AT1 receptor signal transduction in mediating 

vascular pathophysiology. We will also discuss controversies, limitations and future 

directions of the AT1 receptor research.

Transactivation of Growth Factor Receptor via a Disintegrin 

Metalloprotease 17 (ADAM17)

It has been demonstrated that AngII activates ERK1/2 via AT1 receptor-mediated 

transactivation of epidermal growth factor receptor (EGFR) in VSMC in vitro 26. The EGFR 

transactivation also mediates activation of other downstream kinases including Akt, p70 S6 

kinase and p38 MAPK, and subsequent hypertrophic responses in VSMC 27–30 (Figure 1). 

Note that there are many other classical as well as novel pathways shown to potentially 

mediate vascular remodeling in vivo (reviewed in detail in the reference 31). Moreover, while 

the EGFR transactivation cascade is well acknowledged in VSMCs, whether it has any 

significance in vascular pathophysiology linked to AngII had not been studied. Recently our 

group was able to demonstrate the critical roles the cascade play in AngII-induced 

hypertensive cardiovascular remodeling.

Upon 2 week AngII infusion in mice, activation of EGFR is mainly observed in coronary 

arteries in the cardiac section. Erlotinib is a clinically utilized selective EGF receptor kinase 

inhibitor. Treatment with erlotinib markedly attenuated vascular EGFR activation, vascular 

medial hypertrophy and perivascular fibrosis induced by AngII infusion, whereas AngII-

induced hypertension was unaltered. Interestingly, AngII-induced cardiac hypertrophy was 

also prevented by the EGFR inhibitor 32. These data suggest that vascular EGFR 
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transactivation mediate cardiovascular remodeling induced by AngII independently from 

hypertension. In addition, erlotinib prevented development of abdominal aortic aneurysm 

(AAA) induced by co-treatment of AngII and a lysyl oxidase inhibitor, β-aminopropianitrile 
33. Others also demonstrated that in EGFR inactivated mutant mice, AngII-induced cerebral 

arteriolar hypertrophy but not hypertension was attenuated 34. In smooth muscle-targeted 

and inducible EGFR silencing mice, vascular hypertrophy and fibrosis induced by AngII 

infusion were also attenuated and development of hypertension was partially inhibited. 

However, AngII-induced cardiac hypertrophy was not prevented 35. Taken together, these 

data suggest that EGFR transactivation is critical for AngII-mediated cardiovascular 

complications and that distinct cell types including VSMC and cardiac myocytes may be 

involved in the EGFR-dependent pathophysiology.

In vitro studies have demonstrated that a metalloprotease, ADAM17, mediates AngII-

induced EGFR transactivation via generation of mature form of heparin-binding EGF-like 

growth factor 36, 37. AT1 receptor activates ADAM17 via Tyr702 phosphorylation through 

unidentified kinase 38. Src family kinase is the potential candidate as it phosphorylates and 

activates ADAM17 in response to mechanical stretch in rat myoblasts 39. In addition, several 

Ser/Thr kinases are implicated in ADAM17 activation in other cell systems 40. We have 

utilized Sm22α-mediated conditional ADAM17 knockout mice to ask what role VSMC 

ADAM17 plays in hypertension and associated cardiovascular remodeling induced by 

AngII. Compared with wild type littermate control mice, vascular hypertrophy, perivascular 

fibrosis and cardiac hypertrophy but not hypertension induced by AngII infusion were 

blunted in the ADAM17 silenced mice. The phenotype is associated with inhibition of 

vascular EGFR activation. Systemic ADAM17 inhibition by neutralizing antibody also 

attenuated AngII-induced cardiovascular remodeling but not hypertension in wild type mice 
41. In addition, development of AAA induced by AngII plus β-aminopropianitrile was also 

blunted in VSMC ADAM17 silenced mice or wild type mice treated with ADAM17 

antibody 42. While Sm22α-mediated ADAM17 knockdown could partially reduce cardiac 

myocyte ADAM17 expression 41, others have reported that AngII-induced cardiac 

hypertrophy was not altered in cardiomyocyte-targeted ADAM17 silenced mice 43. These 

data further support the concept that the VSMC ADAM17/EGFR transactivation mainly 

mediates cardiovascular pathology including cardiac hypertrophy induced by AngII.

It should be noted that ADAM17 has many other substrates beside EGFR ligands including 

tissue necrosis factor α (TNFα) 44. In TNFα knockout mice, AngII-induced hypertension 

and cardiac hypertrophy were blunted 45. Transplant experiment with TNFα knockout mice 

suggest a partial involvement of TNFα produced in kidney in AngII-induced hypertension 
46. Smooth muscle-derived TNFα has been shown to positively contribute to blood pressure 

responses 47. Another important substrate for ADAM17 is angiotensin converting enzyme 2 

(ACE2). ACE2 cleavage by ADAM17 inactivates ACE2 leading to reduced Ang(1–7) 

generation and enhanced AngII retention. This concept has been shown to be involved in 

DOCA-salt induced neurogenic hypertension 48. Subsequent study demonstrated neuronal 

AT1 receptor mediating the ADAM17-dependent ACE2 inactivation 49. Therefore, in 

addition to EGFR transactivation, it is important to further investigate the potential 

participation of TNFα generation and ACE2 inactivation as consequences of ADAM17 
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activation, leading to hypertension, cardiovascular remodeling as well as other types of 

pathophysiology associated with enhancement of the RAS (Figure 2).

Involvement of Caveolin 1 in AngII-induced Vascular Remodeling

Caveolae are a specific type of small lipid raft at the plasma membrane and serve as 

important signal transduction platforms 50. The roles of caveolin 1 (Cav1), a major 

component protein in caveolae in AT1 receptor signal transduction has been extensively 

studied 51. However, limited information has been available regarding the role of Cav1-

mediated AngII signaling in vascular pathophysiology. It has been shown that in Cav1+/− 

mice, AngII-induced hypertension and decline in nitric oxide were partially blunted 52. We 

have recently examined the involvement of Cav1 in AngII-induced vascular remodeling with 

Cav1 knockout (Cav1−/−) mice. In Cav1−/− mice, AngII infusion causes hypertension and 

cardiac hypertrophy similar to the control Cav1+/+ mice. However, AngII-induced vascular 

hypertrophy and perivascular fibrosis are attenuated in Cav1−/− mice. Protection of vascular 

remodeling seen in Cav1−/− mice may involve two mechanisms according to our in vitro 
analyses. Cav1 silencing in VSMC attenuated ADAM17 activation, EGFR transactivation, 

protein synthesis and collagen synthesis induced by AngII. In addition, Cav1 silencing in 

endothelial cells prevented induction of vascular endothelial cell adhesion molecule and 

leukocyte adhesion induced by TNFα 53. We also reported that Cav1 knockout mice were 

protected from AAA formation induced by AngII, which were associated with reduced 

inflammatory cytokines and oxidative stress 54. However, several problematic baseline 

phenotypes are also associated with Cav1−/− mice including cardiac hypertrophy and 

pulmonary hypertension 50. Further experiments such as those with cell type specific 

knockout mice are needed before considering any intervention toward Cav1 function.

ER Stress and Cardiovascular Remodeling

ER stress is caused by adaptive responses to an excess of misfolded proteins leading to 

unfolded protein response (UPR). UPR mediates specific signaling pathways which lead to 

induction of protein chaperones and attenuation of protein synthesis to reduce misfolded 

proteins. Sustained ER stress also activates c-Jun N-terminal kinase and nuclear factor-kB 

causing inflammatory responses. Several disease conditions including those occurring in the 

cardiovascular system are associated with enhancement of ER stress 55. It has been 

demonstrated that AngII stimulation causes ER stress/UPR in the target organs including 

vasculature, heart and brain 56–58. CCAAT-enhancer-binding protein homologous protein 

(CHOP) is a critical transcriptional factor induced by UPR. CHOP−/− mice are protected 

from AngII-induced hypertension and cardiovascular pathology 59. Our investigation has 

demonstrated that AngII mediated ER stress responses are attenuated if the Cav1/ADAM17/

EGFR pathway is inhibited pharmacologically and or genetically 32, 33, 41, 42. One potential 

interpretation is that ER stress causes ADAM17 gene induction and enhances EGFR 

transactivation as a positive feed-back mechanism, where inhibition of either ER stress or 

the transactivation cascade results in suppression of vascular remodeling induced by AngII 
32. Alternatively, suppression of protein synthesis and hypertrophic/fibrotic remodeling 

reduce the rate of protein misfolding 41. In addition, whether the UPR in response to AngII 

stimulation is sufficient to attenuate misfolding to maintain protein homeostasis 
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(proteostasis) remains unknown due to a lack of study to directly evaluate protein 

misfolding. It has been well documented that imbalance among protein folding, UPR and 

clearance of misfolded proteins by proteasome pathway or autophagy lead to aggregation of 

specific sets of proteins causing neurodegenerative diseases. Enhancement of protein 

aggregates were shown in mice hearts infused with AngII as well as aged mouse hearts. 

Nearly a hundred proteins are identified as commonly enriched aggregated proteins 60. It is 

interesting to speculate that these proteins cause specific proteotoxicity and “protein 

aggregate responses” thus enhancing cardiovascular pathophysiology induced by AngII.

Mitochondrial Signaling of AngII

Due to its significant contribution to mitochondrial ROS production, AngII-induced 

mitochondrial dysfunction has been strongly implicated in cardiovascular diseases, 

metabolic diseases and aging 61, 62. Indeed, inhibition of mitochondrial ROS can attenuate 

vascular dysfunction and hypertension induced by AngII 63, 64. Moreover, AngII-infused 

mice showed cardiac hypertrophy and diastolic dysfunction associated with reduced cardiac 

ATP production and glucose oxidation, suggesting a role for AngII signal transduction in 

mitochondrial dysfunction 65. However, mitochondrial targeted treatment such as antioxidant 

peptide or mitochondrial catalase transgene have no effect on AngII-induced hypertension, 

whereas these interventions can inhibit cardiac hypertrophy 66, 67. Regarding the molecular 

mechanism by which AngII increases mitochondrial ROS, the contribution of Nox2-derived 

cytosolic ROS has been demonstrated 64. In addition, AngII has been shown to inhibit 

mitochondrial Sirt3 and SOD2 via S-glutathionylation and acetylation, respectively, thus 

enhancing mitochondrial ROS generation 68. There are a few reports available regarding the 

relationship between AngII pathophysiology and mitophagy. An E3 ubiquitin ligase 

autophagy protein 5 (Atg5) mediates formation of autophagosomes and autophagy. AngII 

increases cardiac Atg5 expression, autophagy and mitophagy in infiltrated macrophages. In 

Atg5+/− mice, reduction in macrophage mitophagy is associated with enhancement of 

cardiac hypertrophy and oxidative stress 69. However, in swine model of renovascular 

hypertension, AT1 receptor blocker attenuated myocardial mitophagy and increased 

mitochondrial biogenesis 70.

Recent studies also demonstrated that AngII regulates mitochondrial morphology. 

Mitochondrial fission and fusion are key regulatory mechanisms required for mitochondrial 

homeostasis as well as quality control under stress. Accumulating evidence suggest the 

causal relationship between mitochondrial fragmentation/fission and cardiovascular/

metabolic diseases. Mitochondrial fission and fusion are regulated by multiple distinct 

proteins distributed in cytosol, ER and mitochondrial outer and inner membranes, of which 

GTPases, dynamin-related protein 1 (Drp1) and mitofusion 1/2 are central mediators of 

fission and fusion, respectively 71. In cultured VSMC and neuronal cell line SH-SY5Y, 

AngII stimulation caused mitochondrial fission which was associated with Drp1 Ser616 

phosphorylation 72, 73. Moreover, pharmacological inhibition of Drp1 by mdivi1 attenuated 

AngII-induced mitochondrial ROS production and VSMC proliferation 73. However, it 

should be noted that mdivi1 is known to inhibit mitochondrial respiration at complex I and 

modulate ROS production 74.
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During the lecture, our unpublished data utilizing both pharmacological and genetic 

manipulations including those obtained with conditional knockout mice were presented. 

These data support two novel signal transduction concepts regarding the mitochondrial 

dynamics dictating vascular pathophysiology induced by AngII or TNFα. 1) In VSMCs in 
vitro and in vivo, AngII activation of AT1 receptor causes mitochondrial fragmentation via 

the EGFR transactivation. Mitochondrial fission appears to be an essential step for 

cardiovascular remodeling (but not hypertension) induced by AngII. 2) In endothelial cells 

in vitro and in vivo, TNFα induces mitochondrial fragmentation via a mechanism distinct 

from EGFR transactivation. Endothelial mitochondrial fragmentation significantly 

influences TNFα signal transduction. Moreover, inhibition of mitochondrial fragmentation 

prevents inflammatory responses induced by TNFα infusion in mice including leukocyte 

adhesion. Further research is warranted to answer several fundamental questions. Why do 

vascular pathogens cause mitochondrial fission and what is the consequence to 

mitochondrial homeostasis and cellular phenotype in cardiovascular diseases? What is the 

essential “forward grade” signaling mechanism utilized by the receptors that cause vascular 

mitochondrial fragmentation? Finally, we need to explore the other essential “retro grade” 

signaling mechanism by which mitochondrial fragmentation mediate vascular remodeling 

and inflammation.

Cell Type Specific AT1 Receptor Signal Transduction

Although the literature presented here strongly suggests that VSMC (and perhaps partially 

via endothelial) AT1 receptor signaling mechanisms mediate AngII pathophysiology in the 

vasculature including hypertension and vascular remodeling, there are noteworthy findings 

challenging these concepts. We are aware of the accumulating findings suggesting the 

importance of several distinct immune cell populations in mediating hypertension and 

endothelial dysfunction in response to AngII 75. However, caution is required when 

interpreting the findings in this field 76. Many of the strategies utilized manipulate a specific 

subset of immune cells by removing their presence in mice. As such it is difficult to specify 

if the outcomes are due to initiation of AngII signal transduction in the immune cell, if the 

immune cell’s function lay downstream of AT1 receptor signal transduction originally 

elicited in other cell types, or removing the specific immune cell type is affecting the 

phenotype independently from the RAS. Deletion of AT1 receptor on bone marrow-derived 

cells augmented hypertension, renal inflammation and injury in mice 77. Bone marrow AT1 

receptor appears dispensable for AngII-induced enhancement of atherosclerosis in apoE−/− 

mice 78. A few studies are available utilizing immune cell targeted conditional AT1 receptor 

knockout mice. In T cell AT1 knockout mouse, no alteration was detected in hypertension 

induced by AngII. Moreover, AngII-induced renal injury was enhanced in the knockout mice 
79. Macrophage AT1 receptor deletion also indicate the role of macrophage AT1 receptor in 

renal protection 80. These data thus challenge the concept that inactivation of the AT1 

receptor on inflammatory T cell or macrophage is protective against hypertension and end 

organ damage. The findings also indicate that while T cells and macrophages enhance AngII 

causing hypertension and end-organ damage, these actions are independent from immune 

cell RAS and likely regulated through the peripheral AT1 receptor. However, additional 
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investigation is needed to explore the protective AT1 receptor signal transduction in the 

immune cells.

Conditional AT1 receptor knockout mice have also been utilized to study the requirement of 

AT1 receptor in VSMC, endothelial cell and fibroblast to mediate hypertension and vascular 

remodeling (Table 1). Sm22α-Cre deletion of VSMC AT1, Tie2-Cre deletion of endothelial 

(and hematopoietic) AT1, or Eno2-Cre deletion of neuronal AT1 did not alter hypertension or 

vascular medial hypertrophy induced by AngII infusion. In contrast, S100A4 Cre deletion of 

fibroblast AT1 attenuated vascular hypertrophy but not hypertension induced by AngII 81. 

However, there is a concern in the interpretation of these data. While these findings confirm 

no alteration of hypertension by “transgenic” Sm22α-Cre deletion of VSMC AT1 in AngII-

induced hypertension 82, more effective silencing of AT1 receptor using Cre that is regulated 

by endogenous Sm22α (“knock-in”) shows significant reduction in hypertension induced by 

AngII infusion 83. However, whether AngII-induced vascular remodeling is attenuated in the 

mice remains to be studied. Expression of S100A4 in VSMC has been demonstrated 84. Our 

mass spectrometry analysis of cultured rat VSMC lysates detected protein fragments derived 

from S100A4 (unpublished observation), thus Cre under control of S100A4 promoter may 

delete smooth muscle AT1 receptors in addition to those on fibroblasts. In relation to these 

issues (insufficiency and non-specific targeting), a critical limitation common in these 

studies are lack of confirmation of AT1 receptor “protein” silencing in the target cells/

tissues. This is because reliable AT1 receptor antibody has not yet been available 85, 86. 

Therefore, further effort is desired to specify AT1 receptor-expressing cell types involved in 

AngII-induced cardiovascular pathophysiology.

Perspectives

Here, we summarized the noteworthy novel concepts and progresses in AT1 receptor signal 

transduction in mediating cardiovascular pathophysiology. The AT1 receptor signal 

transduction appears to remain a central component in cardiovascular pathophysiology. To 

conquer cardiovascular complications and improve the prognoses of hypertensive patients, 

we have to further clarify the complexity of the AT1 signal transduction. Better molecular 

tools should be developed, and additional effort is required in order to answer cell/tissue 

type specific roles that AT1 receptor plays in cardiovascular and metabolic diseases. This 

seems particularly important in cardiac myocytes, fibroblasts, adipocytes and immune cell 

subsets. Organelle signal communication such as those involving ER, mitochondria and 

exosomes 87 as well as balance among protein synthesis, misfolding, aggregation and the 

“proteo”-toxicity are important questions to ask for their relevance in AngII 

pathophysiology. We also expect that unbiased system biology and bioinformatics 

approaches will further shed light on previously unrecognized AT1 receptor signal 

transduction for the next decade. Finally, we strongly hope that this article helps the 

researcher to further explore novel molecular mechanisms that RAS plays in cardiovascular 

diseases and that these studies will lead to a remarkable translation into effective therapies.
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Figure 1. 
Signal transduction mechanism of EGFR transactivation by AngII in vascular smooth 

muscle cells leading to vascular remodeling. PTK; protein tyrosine kinase, PI3K; 

Phosphoinositide 3-kinase, p70S6K; p70 S6 kinase. Please note that in addition to this 

cascade both classical and novel pathways have been shown to contribute to AngII-mediated 

vascular remodeling (reviewed in detail recently in the reference 31).
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Figure 2. 
Potential roles of ADAM17 activation in cardiovascular pathophysiology. In addition to 

EGFR transactivation, ADAM17 may contribute to endothelial dysfunction and insulin 

resistance by producing TNFα and inhibiting ACE2.
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Table 1

Phenotype of conditional AT1 receptor knockout mice infused with AngII

*
KI (Knock-in)
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