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Abstract Recent advances in deep learning have impact-
ed various scientific and industrial fields. Due to the rapid
application of deep learning in biomedical data, molecular
imaging has also started to adopt this technique. In this
regard, it is expected that deep learning will potentially
affect the roles of molecular imaging experts as well as
clinical decision making. This review firstly offers a basic
overview of deep learning particularly for image data
analysis to give knowledge to nuclear medicine physi-
cians and researchers. Because of the unique characteris-
tics and distinctive aims of various types of molecular
imaging, deep learning applications can be different from
other fields. In this context, the review deals with current
perspectives of deep learning in molecular imaging par-
ticularly in terms of development of biomarkers. Finally,
future challenges of deep learning application for molec-
ular imaging and future roles of experts in molecular im-
aging will be discussed.

Keywords Deep learning .Molecular imaging .Machine
learning . Convolutional neural network . Precisionmedicine

Introduction

The amount of biomedical data including images and medical
records as well as omics data is rapidly increasing [1].

However, the heterogeneous, complex, and multidimen-
sional nature of biomedical data make it difficult to deci-
pher clinical meaning [2]. Thus, machine learning (ML), a
method set of artificial intelligence in which a computer
captures patterns underlying data and utilizes them to help
decision making, have been extensively and increasingly
applied for handling biomedical data. Recently, deep
learning (DL), a special type of machine learning
methods, has emerged as a new area of machine learning
research [3]. DL is a class of machine learning that auto-
matically learns hierarchical features of data by multiple
layers composed of simple and nonlinear modules. It
transforms the data to representations which are important
for discriminating the data [4]. Since this method was
successfully applied and overwhelmingly beat other pre-
vious ML methods for visual recognition tasks at a com-
petitive challenge in 2012, ImageNet [5, 6], it has dramat-
ically improved tasks of various scientific and industrial
fields including not only computer vision but speech rec-
ognition, drug discovery, and bioinformatics [4, 7, 8].
Subsequently, DL techniques have become the method
of choice in computer vision and several image process-
ing tasks. This success came from development of new
modules enabling learning of deep structures and reducing
overfitting as well as efficient use of hardware including
general-purpose graphics processing units. Most of all,
structured large datasets such as ImageNet data contribute
to the success of this technique.

DL has been gradually applied to medical image data
as medical image analyses are considerably similar to
computer vision techniques. As well-structured and la-
beled medical data are relatively limited, applications of
DL were relatively delayed. However, the number of re-
ports regarding DL applications in medical data grew rap-
idly in 2016 (Fig. 1). The application areas are widening
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and range from anatomical segmentation to disease clas-
sification [9]. Although the many studies initially started
from relatively small datasets by using a pretrained DL
model as a feasibility study, a robust validation of the
medical application has been required [10, 11]. In this
regard, medical image big data have started to be collect-
ed to validate the feasibility of medical applications. For
example, recently, Google researchers collected large data
sets consisting of more than 120,000 retinal fundus im-
ages for diagnosing diabetic retinopathy and showed high
sensitivity and specificity for the detection [12]. An auto-
mated skin lesion classification system comparable to der-
matologists was recently developed using more than
120,000 clinical images [13]. These systems based on
large datasets will further improve DL-based diagnosis
and eventually make considerable changes in medical
fields by supporting clinical decisions in the clinic in the
near future.

Due to the rapid application of DL in biomedical data,
molecular imaging can also be influenced. The application
of DL for molecular imaging can be ranged from disease
diagnosis and classification to image processing. The po-
tential impact of DL throughout the entire process of mo-
lecular imaging acquisition and interpretation requires nu-
clear medicine physicians and molecular imaging re-
searchers to have knowledge about this technique. To this
end, this review will give an overview of deep learning
techniques particularly focusing on image recognition. In
addition, the next section will introduce recent progress
and current perspectives of medical application of DL
focusing on molecular imaging. As the adaptation of DL
in molecular imaging may inevitably happen, the direction

of DL application in molecular imaging and the possible
changes in the role of physicians will be discussed.

Brief Overview of Deep Learning for Images

Basics of Neural Networks: Single Layer Perceptron
to Deep Neural Networks

In this section, DL concepts particularly for image analysis are
briefly introduced. The detailed basic concepts of DL are
reviewed by LeCun et al. [4] and general applications of DL
in biomedical fields are reviewed by Mamoshina et al. [14].

DL is a type of ML defined by models with many hierar-
chical layers of information processing compared with con-
ventional ‘shallow’ learning. ML including both shallow and
deep learning is a field of artificial intelligence in which learn-
ing occurs without explicit programming. Both methods cap-
ture patterns underlying complicated data and utilize them as
discriminative features of data. DL has advantages in learning
intricate patterns from high dimensional raw data while con-
ventional shallow learning usually requires handcrafted fea-
tures extracted from raw data. Regardless of depth of layers,
ML is generally divided into two methods, supervised and
unsupervised learning. Supervised learning typically predicts
a target variable representing a specific class (classification) of
data or specific continuous values (regression). The inputs are
raw data or features paired with the target label or target var-
iable. Thus, a supervised ML model can be simply summa-
rized by a prediction model that predicts target values from the
data. Parameters of the model are adjusted to accurately pre-
dict the target by training process. On the other hand,

Fig. 1 Number of papers
regarding deep learning
applications in biomedical fields.
Number of papers dealing with
deep learning in biomedical fields
are recently rapidly increasing.
Bar graphs represent results of the
number of PubMed paper
searched by words: [Deep
learning AND medical image]
and [Deep learning AND
(medical OR biomedical)],
respectively
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unsupervised learning is a type ofML that finds patterns of the
data without target labels or variables. Data clustering is an
example of unsupervised learning. In terms of applications of
unsupervised learning, representations extracted by unsuper-
vised learning can be used for the other supervised tasks as
well as data clustering.

DL typically means deep neural networks. Thus, neural
networks, a type of machine learning, are the basis of recent
deep learning techniques. The perceptron is the earliest neural
network model which consists of a single layer (Fig. 2a). A
simple single layer model which aims at discriminating

malignancy from benign lesion is exhibited in Fig. 2a.
Inputs of the model are features of the lesion such as tumor
size and FDG uptake. The model parameters, W = (w1,
w2,…,wn), are multiplied to the inputs and then the activation
function is applied. An example of simple activation function
is that the output is 1 if the value is more than 0 and otherwise,
the output is 0. The parameters of this simple model are opti-
mized for the accurate discrimination. This process is defined
as training. The training can be formulated as the minimiza-
tion of the error between predicted outputs and real values.
Practically, the gradient descent method which iteratively

Fig. 2 Brief overview of neural networks. aAn example of a single-layer
perceptron is built for discriminating malignancy from benign lesion.
Image features such as tumor size and FDG uptake are inputs of the
model. Model parameters, weights, are multiplied to input variables and
the output is predicted by a simple activation function. b A simple
perceptron model has limitations in nonlinear problems. Data exhibited
in the left plot are simply divided by a discriminative line while those in
the right plot require a nonlinear and complex curve for the
discrimination. c Multilayer perceptron models can be built by
hierarchical composition of perceptron. Hidden layers hierarchically

capture representations of data. d While conventional multilayer
perceptron models use manual features as inputs, current convolutional
neural network models directly use pixels/voxels. e An explanation of
convolutional filter is exhibited. Convolutional layers of the network
architectures have a certain number of convolutional filters as network
model parameters. It produces feature maps as outputs by multiplying
input pixels and filter values. f An example of a convolutional neural
network represents multiple convolutional layers followed by pooling
layers. Hierarchical feature maps are eventually connected to feature
vectors and then connected to outputs
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updates the model parameters according to gradient of the
error function is used for the training [15]. This single layer
perceptron has limitations in complicated nonlinear data pat-
terns (Fig. 2b). As shown in the left plot of Fig. 2b, a linear
discriminative line can differentiate malignancy from benign
lesions while it cannot differentiate it for some nonlinear data
distribution patterns such as the right plot. To overcome these
certain issues, hidden layers between inputs and outputs are
added. This type of neural network is a well-known traditional
neural network, multi-layer perceptron (Fig. 2c). Although the
application of hidden layer has improved performance of neu-
ral networks, it is difficult to train deep architectures. Deep
neural networks have received attention after utilization of a
new training method, pretraining [16, 17]. Efficient training
was achieved by unsupervised feature extraction from input
data followed by supervised learning.

While the pretraining initiated the popularity of deep learn-
ing, current models particularly for image analysis fields can
be summarized by simplified direct supervised training of
specialized architecture such as convolutional neural networks
(CNN). While previous network architecture used data with
vector form, current models using CNN utilize structural in-
formation of neighboring pixels/voxels of the image. Besides,
another currently popular architecture, recurrent neural net-
work (RNN), considers information of the time-varying pat-
tern of the data. In addition to these specialized network ar-
chitectures, various techniques have improved performance
by reducing overfitting and efficient training. They include
special layers, such as dropout [18], batch normalization
[19], and modified activation function such as rectified-
linear unit (ReLU) [20]. Furthermore, network models trained
by large datasets including ImageNet are used to extract gen-
eral image features, so that they can transfer to another domain
such as medical image classification as aforementioned
pretraining [21]. Thus, current concepts of deep learningmean
not only neural networks with multiple layers but also special
architectures, such as CNN and RNN, combined with the
various techniques improving the performance and training
process. As CNNs are the most widely used for medical image
analysis, the next section will additionally describe brief con-
cepts of CNNs.

Convolutional Neural Networks

Traditional neural networks and general machine learning
models use inputs as features with vector form. As aforemen-
tioned example, to build a machine learning model to differen-
tiate malignancy from benign lesion, we select features such as
tumor size and FDG uptake from images. Instead of these
features, CNN generally directly uses pixels/voxels as inputs
(Fig. 2d). To use structural information of neighboring pixels,
convolutional layers are used instead of densely connected
perceptron layers. A convolutional layer consists of a specific

number of convolutional filters. The example of a 3 × 3
convolutional filter application to an image matrix is exhibited
in Fig. 2e. For convolutional layers, values of convolutional
filters correspond to weight parameters of the fully-connected
neural network layers. Thus, convolutional filter values are
adjusted during the training process. As a convolutional filter
generated an output feature image, the number of convolutional
filters are the number of feature images. In general, after the
convolutional layer, consisting of a certain set of convolutional
filters, an activation layer follows. Pooling layers are usually
added to convolutional layers to subsample feature maps to
reduce the amount of learning parameters of the model.
These types of layers are hierarchically connected to the output.
An example of a simple CNN model is represented in Fig. 2f
[22]. The recent model is similar with this figure, however, it
has deeper layers and a larger number of convolutional kernels.
The dramatic improvement of image recognition in 2012 was
achieved by AlexNet, which consists of five convolutional
layers and combines modified activation function, ReLU [6].
After 2012, novel architectures improve the performance by
using deeper architectures. In 2014, a 22-layer network named
Inception [23] was the winner of ImageNet and in 2015, 152-
layer network named ResNet further improved performance of
image recognition [24]. These architectures and trained models
were applied to other domains including medical images. For
example, the diabetic retinopathy detection model [12] was
based on fine-tuning of Inception model. The application of
DL has widened becuase of its flexibility. For example, com-
bining CNN with RNN produced interesting results such as
automatic image captioning [25] and various CNN models
were also used for object detection [26, 27] and object segmen-
tation [28, 29] from images. These techniques have also been
applied to medical images for diagnosis, lesion detection, and
segmentation.

Perspectives of Deep Learning in Nuclear Medicine
Molecular Imaging

The Distinct Characteristics of Molecular Imaging in DL
Application

Even though DL applications in medical images rapidly grow,
molecular imaging has distinct characteristics particularly in
terms of its purposes and application. Firstly, the aim of the
application of deep learning to molecular imaging is substan-
tially different from computer vision fields. While DL models
in image recognition aimed at identifying the ground-truth
class, the ground-truth of DL is ambiguous in medical fields.
Although recent diagnostic applications of DL to medical im-
ages generally used clinical or pathologic diagnosis as a
ground-truth label, diagnosis can be varied according to pa-
thologists as well as clinicians [30]. Furthermore, in many
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cases, various disorders are defined as a deviation from the
normal population spectrum rather than clear-cut discrimina-
tive states. Thus, the application of DL to molecular imaging
needs to aim at developing a good biomarker which can define
the spectrum of disorders, monitor the status and reflect pa-
tients’ outcome instead of simple classification. Besides, mo-
lecular imaging aims at representing and visualizing the bio-
logical process with regard to physiologic and pathologic
changes. The biological process which molecular imaging
aims at already reflects the subjects’ outcome as well as sur-
rogate marker of disease pathophysiology. To this end, the
application of DL should focus on the discovery of crucial
and latent information from imaging data. It should make
the best use of molecular imaging information and discover
a key pathophysiologic process by summarizing high-
dimensional data to a few characteristic and discriminative
parameters. The importance of this purpose of DL application
in molecular imaging can be inferred from the reason maxi-
mum standardized uptake value (SUV) is widely used as the
representative parameter for cancer PET imaging in spite of its
limitations [31]. Maximum SUV is a single representative
value for characterizing a lesion which consists of more than
thousands of voxel data. This is a one-dimensional value that
quantitatively summarizes an image as a set of high dimen-
sional data to explain tumor glucose metabolism associated
with patients’ outcome. Going beyond such a conventional
imaging parameter, DL can be a method to capture the most
important and discriminative information from the multidi-
mensional and multimodal data of molecular imaging.

Secondly, in terms of data structure and size, molecular
imaging is different from natural images. Even more, com-
pared with other medical images such as simple X-ray, it is
more difficult to collect large datasets for molecular imaging.
As the spectrum of biological targets is very broad, there are
numerous types of molecular imaging. In addition, several
modalities, e.g., PET, SPECT, optical imaging, and MRI, in-
crease their variety. As it substantially requires case-by-case
applications of DL, training with small-sized samples is inev-
itable. Thus, a challenging issue is to apply deep learning to
small medical image datasets. To overcome this issue, transfer
learning has been widely used for the application of DL. The
models trained by ImageNet, such as AlexNet and ResNet,
were used for medical image feature extraction which can be
further used for classification, segmentation, and lesion detec-
tion. For example, Wang H et al. used AlexNet as a feature
extractor for differentiating mediastinal lymph node metasta-
sis of lung cancer from FDG PET/CT [32]. Another method to
overcome the limited number of images was to use image
patches instead of full-size images. It was commonly used
for anatomical segmentation in medical images [33–36]. For
segmentation tasks, because classes are designated for each
voxel, it is effective to use patch-based learning. Though data
augmentation is generally used for natural images, medical

images are cautious because manually transformed images
could have different clinical information. Nonetheless, to
overcome the data size issue, some studies have tried image
rotation and flipping for data augmentation [32, 37, 38].
Furthermore, molecular imaging is sometimes used for detect-
ing rare conditions, which require appropriate training
methods to solve class imbalance. While the commonly used
DL models were developed by data with uniform classes, the
training for molecular imaging is usually performed by un-
even diagnostic classes. Segmentation and detection also re-
quires identifying small sized lesions in large image matrices.
These issues of unique characteristics of molecular imaging
require an appropriately adjusted neural networks model.

Briefly, application of DL for molecular imaging needs to
focus on the development of good biomarkers rather than
simple image classification. As molecular imaging itself pro-
vides biologically important information, DL has roles in dis-
covering a crucial biomarker from high-dimensional data and
maximum utilization of image information instead of simply
replacing human’s visual cognition. To achieve this goal, DL
should be properly applied to molecular imaging considering
its unique characteristics compared to natural images. Thus,
the next sections will discuss recent DL application results and
directions in the light of biomarker development. It will be
discussed by dividing the applications of DL into two catego-
ries: biomarker acquisition supported by DL and discovery of
DL-based biomarker (Table 1).

Acquisition of Imaging Biomarker Supported by Deep
Learning

DL application of medical images could indirectly improve
well-known biomarkers provided by molecular imaging.
Because recent clinically applicable molecular imaging stud-
ies, e.g., PET/CT and SPECT/CT, are combined with anatom-
ical imaging, the application of DL to anatomical imaging for
lesion delineation and organ segmentation can support quan-
tification of coregistered molecular imaging. Furthermore, DL
can be used for improvement of image processing and acqui-
sition which support robust imaging biomarkers by producing
better images.

The most common subject of DL application in medical
image is segmentation using anatomical CT and MR images.
It is ranged from normal anatomical structure segmentation
such as whole brain extraction [34, 39], brain substructure,
heart and airway segmentation [36, 40–43] to pathological
lesion segmentation [44–46]. Before the DL applications, sev-
eral methods have been reported for the segmentation.
However, DL-based medical image segmentation shows
faster results as well as better performance. For example,
CNN-based striatum segmentation took only a few seconds
and showed better accuracy than conventional methods, while
FreeSurfer, a widely used brain image processing tool,
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required several hours [36]. Because most of DL-based seg-
mentation methods are fully automated, quantitative analysis
of combined functional images can be accurately and easily
performed by utilizing them. For example, using tumor seg-
mentation techniques based on DL, we can simply obtain
well-known parameters which require tumor volumes such
as mean SUV or total lesion glycolysis. Utilization of this
technique may offer a good solution for the issue of variability
in tumor volume parameters associatedwith tumor delineation
[47, 48]. Using automated DL-based brain structure segmen-
tation, brain molecular imaging such as amyloid PET and
dopamine transporter SPECT/PET can be accurately and eas-
ily quantified without complicated processing such as spatial
normalization (Fig. 3).

Another application area for improving imaging biomarker
is related to image acquisition and processing. DL has mark-
edly improved image processing fields as well as image rec-
ognition. An example is super-resolution, which predicts a
high resolution image from low resolution information [49,
50]. This kind of concept could be extended to the PET images
estimating standard images from low-dose PET images [51].
Recent studies suggest DL-based reconstruction of sinograms
which can outperform computational time and show compa-
rability with conventional iterative algorithms [52, 53]. Even
though this kind of technique requires evidence of clinical
equivalence, it can be expected that they support reducing
radiation exposure as well as scan and reconstruction time.

As one of various application fields of DL, specific neural
networkmodels can be used for generating images of different
modality [54]. Some neural network models were developed
for predicting pseudo-CT images from MR images [55, 56].
These models could produce realistic CT images correspond-
ing toMR images though synthesized CT images could hardly
apply to clinical decision making such as lesion detection and

characterization. Nonetheless, this method can be used for
solving CT-less attenuation correction particularly for PET/
MR [57]. Moreover, as this method is bidirectional, various
ways of translation are feasible. As a future work, pseudo-
image generation can be combined with conventional image
processing and quantification methods such as partial volume
correction for SPECT and PET images.

Discovering of Deep Learning-Based Biomarker

DL can be directly applied to molecular imaging to obtain
reliable biomarkers. Deep CNN models for classifying each
subject’s image is a representative direct application of DL as
a supervised learning. A study of deep CNN application to
mediastinal metastatic lymphadenopathy detection using
FDG PET was built by supervised training [32]. Multimodal
images including PET and MRI were used as inputs of DL
models for the disease classification problems. A report used
manual image features of PET and MRI to discriminate
Alzheimer’s disease from normal controls [58]. Another re-
cent study suggested a deep 3-dimensional CNN model that
used a pair of FDG and florbetapir PET images as input and
discriminated Alzheimer’s disease from normal controls [59].
In terms of biomarker development, a quantitative marker
representing patients’ outcome based on image data has been
required instead of simple diagnostic classification of images.
The CNN model using FDG and florbetapir PET images was
directly transferred to mild cognitive impairment patients to
identify who would rapidly convert into full-blown dementia
[59]. In result, the final output of the model could be used for
future cognitive score decline. Thus, the final output of deep
neural network could be used for a biomarker to predict future
cognitive decline (Fig. 4a). Another directly extracted bio-
marker using DL was reported in dopamine transporter

Table 1 Directions of deep
learning applications for
molecular imaging

Indirect Direct

Explanation Imaging biomarker acquisition supported by DL DL-based imaging biomarker

Examples ✓ Segmentation helps measurement of tracer uptake
in target regions

✓DL output scores for diagnostic
classification

✓ Low dose acquisition and image reconstruction ✓DL-based image features

✓Predicting CT images for attenuation correction ✓Combining multimodality data

Fig. 3 An example of imaging biomarker acquisition supported by deep learning. Using automated deep learning-based brain structure segmentation, a
well-known brain imaging biomarker such as dopamine transporter SPECT/PET can be easily and accurately quantitated
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imaging [60]. The model trained for discriminating FP-CIT
SPECT images of Parkinson’s disease from normal was ap-
plied to scans without evidence of dopaminergic deficit
(SWEDD) patients determined by human reading. The DL-
based model revealed that a number of SWEDD patients al-
ready had abnormal imaging patterns at baseline, which sug-
gested the output of DL could be used for refinement of diag-
nosis for Parkinson’s disease and SWEDD. Briefly, the role of
DL in such functional imaging is not limited to image classi-
fication but extended to provide a quantitative output value
summarizing multidimensional and multimodal image data,
which can be used for the predictive marker.

Since DL is a representation learning, DL-based features
automatically extracted from images can be used for imaging
biomarkers. Some recent studies define these features as ‘DL-
based radiomics features’ [61, 62]. ‘Radiomics’ is originally
an emerging concept that represents a series of quantitative
analysis for identifying high-dimensional image features
which can provide predictive and prognostic information
[63, 64]. So far, the features have been manually extracted,
which included texture features as well as simple parameters
such as mean and maximum SUV. On the other hand, as DL is
a feature learning method, the hierarchical features of hidden
layers can be used as radiomics features (Fig. 4b). A study
suggested DL-based image features could be related to pa-
tients’ prognosis from chest CT images [61]. Another study

using MR images showed that DL model trained for tumor
segmentation can be used as a feature extractor, which could
identify predictive features for IDH1 mutation in low-grade
glioma [62]. DL-based features can be obtained by supervised
learning as well as unsupervised learning. A study identified
autism-related functional connectivity patterns using an
autoencoder, a type of unsupervised learning, for brain net-
work analysis [65]. Though DL-based features are optimized
for image discrimination and effectively summarize high-
dimensional image data, their usage as a clinically reliable
biomarker should be validated in large, independent cohorts.

The direct extraction of DL-based image biomarkers may
facilitate utilization of molecular imaging in precision medi-
cine. The key to successful precision medicine relies on the
development of good biomarkers that define individual vari-
ability as the basic concept of precision medicine to plan pre-
vention and treatment strategies taking individual variability
into account [66]. DL can play a role in translating high-
dimensional and complex images into quantitative and objec-
tive values. Though visual analysis and manual feature extrac-
tion such as SUV also provide information on molecular im-
aging, application of DL enriches the quantitative information
by capturing the most discriminative features of images.

Future Directions and Challenges

DL has received great attention in the medical imaging do-
main because of its success in various scientific and industrial
fields. Due to the unique features of molecular imaging, DL
should be appropriately modified for molecular imaging anal-
ysis. Most of all, the aim of DL application in molecular im-
aging is different from previous common usage of DL. These
images represent physiologic and pathologic processes which
require discovering crucial and latent biological information
instead of simple diagnostic classification. Thus, DL in mo-
lecular imaging should focus on extracting good biomarkers
from multimodal and high-dimensional image data.

Although DL has only recently begun to be applied to
molecular imaging fields, there are some challenges to be
solved in terms of biomarker discovery based on DL. Firstly,
as the aim of DL application is to capture good prognostic and
predictive information, the target of DL training needs to be
diversified. So far, most of the medical application of DL has
been aimed at diagnostic classification. However, the DL-
based biomarker is aimed at predicting individual subjects’
outcome and treatment response. A good example of another
clinically feasible training target is the usage of specialized
regression for survival data. Recent studies suggested a prog-
nostic stratification model based on genomic data and DL,
which was trained by survival time and events [67, 68]. This
DL-based survival analysis can provide a robust prognostic
score from the patients’ data. This type of method can be
applied to the patients’ molecular imaging data for risk

Fig. 4 Two types of deep learning-based imaging biomarkers. a Outputs
of deep learning model can be used as a biomarker. A deep convolutional
neural network model for discriminating Alzheimer’s disease could be
directly transferred into identification of mild cognitive impairment
patients who would rapidly convert to dementia. Additionally, the
output score of the model was well correlated with future decline of
cognitive score. b As deep learning is an automated discriminative
feature learning, hierarchical features of neural networks can be used as
multidimensional biomarkers. Image features related to prognosis or
treatment response can be selected after the training of deep learning
models
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stratification. Secondly, clinical application of DL-based mo-
lecular imaging diagnostics requires diagnostic uncertainty
and diagnosis of multiple domains. Current DL models are
optimized for classification and regression without suggestion
of decision reliability. However, the uncertainty measure of
the DL-based decision is critical in the clinical setting. Cases
where it is difficult to determine diagnosis or produce quanti-
tative value should be identified as they need additional diag-
nostic tests. Recent studies have attempted to combine
Bayesian approximation with DL for uncertainty measure-
ment [69], which will be used in clinical application of DL.
Third, application of unsupervised learning will be increased
to exploit unlabeled image data and clinical implication. The
large dataset of pairs of image data and confirmed diagnosis is
limited in spite of the large amount of raw image data.
Unsupervised learning is used for image feature extraction,
which can be applied to supervised learning with relatively
small-sized datasets. Additionally, clustering of data, a result
of unsupervised learning, may give additional insights of sub-
groups of disorders. A clinically permeated example of unsu-
pervised clustering is breast cancer subtyping based on gene
expression data [70]. In this context, we expect patients
subtyping based on DL-based molecular imaging biomarkers.
DL-based molecular imaging biomarker may support individ-
ualized risk stratification and personalized treatment by
playing an important role in precision medicine.

Roles as an Expert in Nuclear Medicine and Molecular
Imaging

Due to the recent development of DL, a myth that the
practice of visual tasks in medicine including nuclear
medicine image reading will be replaced by machines
has emerged. Even though it is difficult to predict the
future medical environment, it will be inevitable that
some specific tasks are replaced by automated systems.
For example, conventional image interpretation tasks such
as detecting lesions and simple diagnostic classification
may be considerably replaced. Although the clinical value
of DL-based conventional nuclear image interpretation
has not yet been fully proved, it is evident that DL-
based interpretation has the great advantage of the ab-
sence of interobserver variability as reported in the DL-
based model for FP-CIT SPECT interpretation [60].
Furthermore, the model showed higher accuracy than vi-
sual reading for discriminating Parkinson’s disease [60].
For common radiologic images such as mammography,
DL-based interpretation showed comparable diagnostic
classification to experts’ reading for specific tasks [71].
Nonetheless, the key to molecular imaging is to provide
good biomarkers reflecting biological processes. The role
of DL in molecular imaging will be capturing maximum
information from images by generating predictive

biomarkers, which is not related to replacement of human
tasks. In this regard, the role of nuclear medicine physi-
cians will be changed to translate and integrate bio-
markers automatically extracted from image data for clin-
ical decision making. Various DL applications such as
anatomical segmentation and image processing will indi-
rectly help to obtain and augment well-known bio-
markers. Image features and biomarkers directly obtained
by DL will be used to predict clinical outcomes as well as
select individualized treatment options. Thus, for nuclear
medicine physicians, knowledge of multimodal data and
analytic methods will be needed for the translation of
molecular imaging data to clinical implications.

DL applications in molecular imaging will eventually fa-
cilitate precision medicine. It will help to make the most of
information in molecular imaging. To accelerate proper DL
application in molecular imaging, more emphasis should be
placed on the intent of each molecular imaging as DL aims at
developing good biomarkers. Furthermore, large and open
databases are needed to advance the techniques. The innova-
tion of DL in computer vision was initiated by a publicly
available large dataset, ImageNet. Large genomic databases
such as The Cancer Genome Atlas have accelerated the un-
derstanding of cancer and development of novel biomarkers
based on big omics data analysis. Recently, data sharing has
started to be seriously discussed for raising integrity and ac-
celerating medical research [72]. In medical imaging fields,
large datasets in common modalities such as chest X-ray data
have started to open [73]. Accordingly, it is urgently required
to establish large databases of molecular imaging data as well.
It will be the starting point for molecular imaging as an im-
portant part of future data-driven precision medicine.

Conclusion

Medical decisions are made by a comprehensive interpretation
of all relevant patient data including symptoms, signs, labora-
tory tests, and imaging. As reviewed in this article, DL has
advantages in automatically extracting discriminative features
in high-dimensional data. Thus, DL will largely impact med-
ical field tasks particularly related to quantitative analysis. As
molecular imaging is a set of image data which provides quan-
titative information, various DL techniques will be rapidly
applied to molecular imaging. Even though some current tasks
may be partly replaced by automatic systems, DL may en-
hance usage of molecular imaging as it can maximally extract
information obtained by imaging data to develop biomarkers.
As experts in translating molecular imaging information to
clinical decision making, we need to focus on exploiting DL
for developing biomarkers from molecular imaging to be an
important part of the precision medicine era.
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