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Impact of sequencing depth on the 
characterization of the microbiome 
and resistome
Rahat Zaheer   1, Noelle Noyes2, Rodrigo Ortega Polo1,3, Shaun R. Cook1,4, Eric Marinier5, 
Gary Van Domselaar5, Keith E. Belk2, Paul S. Morley2 & Tim A. McAllister1

Developments in high-throughput next generation sequencing (NGS) technology have rapidly 
advanced the understanding of overall microbial ecology as well as occurrence and diversity of 
specific genes within diverse environments. In the present study, we compared the ability of varying 
sequencing depths to generate meaningful information about the taxonomic structure and prevalence 
of antimicrobial resistance genes (ARGs) in the bovine fecal microbial community. Metagenomic 
sequencing was conducted on eight composite fecal samples originating from four beef cattle feedlots. 
Metagenomic DNA was sequenced to various depths, D1, D0.5 and D0.25, with average sample read 
counts of 117, 59 and 26 million, respectively. A comparative analysis of the relative abundance of 
reads aligning to different phyla and antimicrobial classes indicated that the relative proportions of 
read assignments remained fairly constant regardless of depth. However, the number of reads being 
assigned to ARGs as well as to microbial taxa increased significantly with increasing depth. We found a 
depth of D0.5 was suitable to describe the microbiome and resistome of cattle fecal samples. This study 
helps define a balance between cost and required sequencing depth to acquire meaningful results.

Over the past decade the field of metagenomics has enabled substantial advancement in the knowledge of micro-
bial ecology, evolution, and diversity. This includes a more in-depth understanding of complex microbial com-
munities within the gastrointestinal tract of animals and humans. Culture-independent metagenomic approaches 
can aid in understanding the ecological role, phylogeny, and functionality of gut microbial communities in rela-
tion to host physiology1–4. Metagenomic shotgun sequencing investigations have been used to reveal specific 
features of the resistome5–9, mobilome10,11, virulome12 and virome13. The increasing prevalence of antimicrobial 
resistance (AMR) in bacteria is one of the most important challenges facing public health. It has been proposed 
that livestock production systems may contribute to an increased prevalence of antimicrobial resistant bacteria 
and genes in the environment and therefore pose a risk to human health. Globally, more than 57 million kilo-
grams of antibiotics are used annually in food animal production14, which may select for antibiotic-resistant bac-
teria that persist throughout the meat and milk production chain. Investigation of the microbiome and resistome 
of farm animals and their environment may provide valuable data and models to estimate the public health risk 
of antibiotic-resistant human infections associated with antibiotic use in food-animals.

Metagenomic shotgun sequence analyses are accomplished by unrestricted sequencing of the genomes of all 
microorganisms present in a sample, including uncultured organisms. Fully capturing all DNA sequences origi-
nating from every microorganism in a complex environment is impractical despite continuous improvements in 
sequencing depth. Estimating the required sequencing depth needed to characterize a particular microbiome is 
important to fulfill the objectives of a given study, such as understanding the ecology of antibiotic resistant genes 
and bacteria in food production systems. However, the relatively high cost of metagenomic sequencing can still 
limit the amount of sequence reads that can be generated, impacting the biological interpretation of resulting 
data15. Here, we investigate the effect of varying sequencing depth on the ability to gain information about the 
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taxonomic structure and prevalence of antimicrobial resistance genes (ARGs) of the fecal microbial community 
from beef cattle.

Results and Discussion
Sample processing and DNA isolation.  Sample processing and DNA isolation are the first and crucial 
steps in any metagenomic analysis. It is imperative to preserve the integrity of the microbial community in a sam-
ple from the time of collection until nucleic acids are extracted. Samples were placed on ice immediately after col-
lection and flash-frozen in liquid nitrogen upon arrival in the lab, within 24 hours of collection, with subsequent 
storage at −80 °C to ensure preservation of sample integrity. No reliable archetype exists for the extraction of 
metagenomics DNA from complex microbial communities. Minimally biased nucleic acid extraction procedures 
are desired to generate DNA for metagenomic shotgun sequencing that accurately reflects the genomic content 
of the community from which it was derived. In principle, the extracted DNA should be representative of all cells 
present in the sample. Furthermore, adequate quantities of high-quality DNA must be obtained for subsequent 
library preparation and sequencing. Fresh feces may contain up to 10 billion bacterial cells per gram in addition 
to protozoa, fungi and viruses. Choice of DNA extraction method from fecal samples clearly influences the infor-
mation gained on community structure16. All DNA isolation methods from feces can contribute to variation, 
including differences in cell wall lysis between Gram-positive and Gram-negative bacteria, sensitivity of regions 
of DNA to inhibitors such as humic acids and the amount of sample extracted17. The DNA extraction method 
described here was developed and optimized in our lab with the purpose of minimizing such biases and to ensure 
reproducibility. We used bead-beating to enhance the yield of DNA from Gram-positive bacteria and denaturants 
including guanidine isothyocynate and β-mercaptoethanol to shield DNA from nucleases after cell lysis. A recent 
study18 assessed DNA extraction using various methods and demonstrated that sample type and DNA isolation 
procedure had a significant impact on genomic inference of microbiome composition and that bead beating 
increased the extraction of DNA from Gram-positive bacteria. Using the extraction procedure described in pres-
ent study, both the yield and the quality of DNA were highly reproducible with no indication of PCR inhibitors 
observed as demonstrated by successful 16S rRNA gene amplification of both undiluted and diluted versions of 
DNA samples (Supplementary info file; Table S1, Figures S1 and S2).

Metagenomic DNA sequencing.  Processing of Illumina HiSeq. 2000 metagenomic sequencing data at 
various sequencing depths (Fig. 1) produced 940 million reads for D1, 470 million reads for each of the two D0.5 
replicate sets and 204 million reads for D0.25 across all 8 samples with average values of sample read counts of 
117, 59 and 26 million, respectively (Supplementary Dataset 1). The average read quality score for samples ranged 
from 33 to 37. Of the total reads generated, 94–97% survived quality filtering and trimming across all datasets. 
Considering that the fecal samples originated from cattle, we evaluated the level of bovine DNA in our samples 
using the BWA reference mapping tool with default parameters19 which matched reads to the Bos taurus refer-
ence genome (UMD_3.1.1). Of the total quality-filtered reads, on average 0.27% reads were associated with the 
host genome (range 0.06–0.96%) across all datasets. Other studies have also demonstrated similar levels of host 
genetic material in metagenomic sequence obtained from bovine fecal samples6,7. The host genome filtering was 
performed as a stand-alone process and not as a part of the metagenome-resistome analysis workflow. For sam-
ples with high potential of host genome as a major contaminant (e.g., carcass sponge and trimming samples7), 
host read removal prior to taxonomy and ARG assignment could be useful in reducing the size of the dataset.

Microbiome comparison at various sequencing depths.  Of a total of 2.1 billion reads across all data-
sets, 46.5 million reads (2.23%) were identified at the bacterial and archaeal phyla level using Kraken20 with 
the custom Kraken database comprised of complete genomes in RefSeq for bacteria, viruses, fungi, protozoa 
and archaea (bvfpa). The taxonomic assignments in a metagenomics study are heavily dependent on compu-
tational tools to extract reliable information about the community in question. Of the number of tools availa-
ble to investigate the taxonomic composition of metagenomes, Kraken has been ranked among the fastest with 
high-accuracy classification21 and with an ability to map over 70% of the provided reads21,22. The large proportion 
of uncharacterized (>97%) reads in this study may be a reflection of the presence of eukaryotic (feed-associated 
plants) DNA in the metagenomics samples considering that plant genomes were not part of the bvfpa database. 
For metagenomic sequence data analyzed in present study, between 1% to 4.5% of the Kraken-assigned reads 
were identified as belonging to bacteriophage PhiX174 genome and these were filtered out from Kraken out-
put data prior to downstream analysis. PhiX174 sensu lato virus genomic DNA is used as a quality and calibra-
tion control for Illumina sequencing runs; it is generally spiked in the same lane along with the sample. During 
post-sequencing process of de-multiplexing (binning sequence reads into separate files for each index tag), some 
unintended binning of PhiX174 reads can occur primarily from index misassignment due to image registration 
errors. Consequently, PhiX DNA has been identified as a major contaminant of NGS data, a reflection of a lapse 
in either the application or effectiveness of proper quality control measures23. Use of PhiX174 DNA as a sequenc-
ing control may therefore require subsequent quality control steps such as mapping demultiplexed reads against 
the PhiX174 genome to filter the sequences corresponding to this bacteriophage so that they are absent in the 
final read data. This would be especially relevant if the sequence data is to be used for a genomic/metagenomic 
assembly. Recent studies have revealed that of the >1000 genomes in public databases (i.e. Genbank), ~10% are 
contaminated with PhiX174 sequences23.

Across all datasets associated with samples sequenced at D1, D0.5 and D0.25 sequencing depth (Fig. 1), signif-
icant correlations (Spearman’s rho = 0.93) were observed between the number of reads and the number of Kraken 
hits at the Phylum level (Figure S3A). The Kraken assignment values for duplicate datasets in D0.5 depth group 
were comparable assuring consistency of replicates. The average number of reads aligning to phyla increased 
by ~2.4 fold for D0.5 as compared to D0.25, and by 2 fold for D1 as compared to D0.5 (Supplementary info file; 
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Figure S4). For D1 and D0.5 datasets reads were assigned to the same 35 bacterial and archaeal phyla; whereas 
34 of 35 phyla were identified at D0.25 (Fig. 2A; Supplementary Dataset 2). Similarly, 64 classes, 149 orders, 292 
families, 838 genera and 2,210 species were shared between all three depths (Fig. 2A) and new taxa were increas-
ingly identified with greater sequencing depth. At lower taxonomic levels including family, genus and species, 
more taxa were discovered at D1 and D0.5 than D0.25 (Fig. 2A). Those differentially present taxa had a very low 
abundance (1–6 reads) in corresponding samples and although some were comprised of bacteria and archaea, 
the majority were related to bacteriophages. This indicates sporadic sequence capture of low abundance taxa 
as well as a low prevalence of temperate and/or lytic bacteriophages associated with the bacterial and archaeal 
genomes present in the bovine fecal microflora. Although the number of studies investigating the microbiome 
has proliferated with the advent of NGS, the majority of studies of the microbial community have been based on 

Figure 1.  Study design and workflow for sequencing trial to estimate sequencing coverage requirements. Two 
individual bovine fecal samples were collected from each of the four feedlots (n = 8 total). Two sample pools 
were created with each pool containing 4 samples (n = 4 × 2 pools). Each pool was run in duplicate in its own 
sequencing lane to assess technical variation and to provide a doubling dilution (D0.5) of the original material 
(D1; combined 0.5 duplicates). An additional pool was created containing genomic libraries from all eight 
samples to create an additional doubling dilution (D0.25) relative to the D0.5 sample pools.
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amplicon sequencing of regions of 16S rRNA gene rather than shotgun metagenomics24. As a result they do not 
provide information on the prevalence or diversity of the virome. Our study indicates that to capture the profile 
of low-abundance organisms (e.g., viruses) in similar environmental samples, deeper sequencing is required.

Rarefaction curves were used as a qualitative method to estimate the species richness as a function of sequenc-
ing depth at the various taxonomic levels (Fig. 3A–D; Supplementary Dataset 3). For both D1 and D0.5, rar-
efaction curves reached their asymptotes or started to plateau for all taxa levels, suggesting that saturation in 
sequencing was achieved. However, for D0.25, only rarefaction curves associated with higher taxa plateaued, 
indicating that D0.25 was insufficient to describe the true species richness in metagenomic samples.

Richness of the fecal microbiome did not differ at the phyla (p = 0.15) or class (p = 0.20) levels across all three 
sequencing depths (Fig. 4A). However, richness increased with increasing sequencing depth for lower taxa at the 
order (p = 0.013), family (p = 0.001), genus (p = 0.001), and species (p < 0.001) levels. With post hoc analyses, 
richness was higher for D1 than D0.25 at the order (p = 0.017), family (p = 0.001), genus (p < 0.001), and species 
levels (p < 0.001). Furthermore, richness was higher for D0.5 than D0.25 at the genus (p = 0.024), and species 
(p = 0.016) levels. However, richness of the orders (p = 0.075), and families (p = 0.10) did not differ between these 
two sequencing depths.

The α-diversities of the taxonomic levels analyzed (p = 0.98–1.0) did not differ among sequencing depths 
as indicated by the distributions of the Inverse Simpson’s and Shannon’s index (Figures S5A and C). Regardless 
of sequencing depth, the relative proportions of reads assigned to the major bacterial phyla Firmicutes, 
Bacteroidetes, Proteobacteria and Spirochaetes remained similar (approximately 40%, 31%, 11.5, 7.5% and 4.5% 
respectively; Fig. 5A). For the archaeal phylum Euryarchaeota, the proportion of reads across all sequencing 
depths remained ~4.5% with methanobacteria as the most prevalent class in this phylum. Others have found that 
increasing the sequencing depth more consistently estimated the relative abundance of microbial taxa25. However, 
those findings may reflect the limited sequencing depth of that study which ranged from 500–100,000 sequences 
across samples as compared to the 19–175 million sequences obtained in our study across three levels of depth 
(Supplementary Dataset 1). Compared to our study, a rumen microbial metagenome study26 using 43.4–72.7 
million 100 bp PE reads (similar to D0.5 range in our study) identified similar compositions for the top three 
abundant phyla; Firmicutes, Bacteroidetes and Proteobacteria. Interestingly, unlike using complete genomes from 
the RefSeq database for taxonomic assignments as in our study, their taxonomic assignments were based on bac-
terial phyla reads mapping to 16S rRNA gene sequences in the Greengenes database. Although species richness 
increased with sequencing depth, based on rarefaction and richness analyses combined, sequence reads resulting 
from the minimum sequencing depth in this study (D0.25) were adequate to infer the structure and relative abun-
dance of members of the microbial community at the order level.

Resistome comparison at various sequencing depths.  Approximately 5.2 million reads (0.25% of 
total reads) were found to be associated with the MEGARes AMR database across all datasets. We selected a 
≥75% gene fraction threshold (100% nucleotide homology with reference across 75% of target gene) for reads 
to be considered as ARG-associated hits unlike previous studies which used an 80% gene fraction threshold6,7,27. 

Figure 2.  Venn diagrams representing, (A) the intersection of various microbiome taxonomic levels between 
datasets obtained at D1, D0.5 and D0.25 sequencing depths, and (B) the intersection of various classification 
levels of the resistome between datasets obtained at D1, D0.5 and D0.25 sequencing depths.
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This approach resolved inconsistent filtering of ARGs across datasets with a gene fraction threshold difference of 
as low as 0.02. For example, read assignment to aminoglycoside AMR group Ant9 determinants was inconsistent 
between duplicate D0.5 datasets and between various depths for the same sample with coverage ranging between 
78–90% with elimination of corresponding reads below the 80% threshold.

As expected, increasing the sequencing depth increased the number of AMR determinants identified 
(Spearman’s rho = 0.99; Figure S3B). Similar to Kraken assignment data, the ARG assignment values for duplicate 
datasets in D0.5 depth group were comparable. The number of reads aligning to the MEGARes ARGs database 
increased 2.4 fold for D0.5 versus D0.25, and by 2 fold for D1 versus D0.5 (Supplementary info file; Figure S3). 
A total of ~2.4 million reads from D1 (n = 8) and ~2.4 million reads from D0.5 (~1.2 million reads per repli-
cate set where n = 2 × 8), constituting about 0.25% of total sequence reads for each depth group, were assigned 
to the same 10 AMR classes. These included tetracyclines, macrolides, aminoglycosides, β-lactams, multi-drug 
resistance efflux pumps, cationic antimicrobial peptides, phenicols, sulfonamides, bacitracin and trimethoprim. 
For D0.25, ~0.5 million ARGs associated reads (~0.24% of total reads) corresponded to 7 of the 10 AMR classes 
identified at D1 and D0.5 (Fig. 2B; Supplementary Dataset 4). The undetected AMR classes in D0.25 included 
phenicol, bacitracin and trimethoprim. The low ARG prevalence for these AMR classes may be a reflection of 
the fact that these antimicrobials were not being used to any appreciable extent in the cattle from which the fecal 

Figure 3.  Comparison of microbiome (A–D) and resistome (E,F) richness and coverage at different taxon 
levels in three metagenomic data sets at sequencing depths of D1, D0.5 and D0.25 for all 8 samples using 
rarefaction curves.
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samples were collected. An association between a specific antimicrobial use and related AMR has been previously 
observed. A significant decrease in ceftiofur-resistance was observed in Salmonella Heidelberg isolates from retail 
chicken and humans following a voluntary withdrawal of ceftiofur for disease prophylaxis in hatcheries28. A more 
recent study29 also reported a lower prevalence of ARGs in beef cattle raised without antibiotics. Interestingly, 
all of the missing classes in D0.25 belonged to category III, a medium importance antimicrobial drug category 
based on importance in human medicine, as they are not the preferred option for treatment of serious human 
infections.

At the lower (than class) ARG annotation levels, 17 AMR mechanisms, 69 ARG groups and 129 ARG determi-
nants were shared between all three sequencing depths (Fig. 2B). Additional ARGs were identified with increas-
ing sequencing depth with these discoveries being more prominent when depth moved from D0.25 to D0.5 
than from D0.5 to D1 (Fig. 2B). Along with 17 AMR mechanisms common to all depths, 7 additional AMR 
mechanisms belonging to various AMR classes were identified in both D1 and D0.5. These additional mecha-
nisms included dihydrofolate reductases (trimethoprim), aminoglycoside efflux regulators (aminoglycosides), 
polymyxin B resistance regulators (cationic antimicrobial peptides), class C β-lactamases (β-lactams; category 
II), undecaprenyl pyrophosphate phosphatases (bacitracin), chloramphenicol acetyltransferases (phenicol) and 
phenicol efflux pumps (phenicol). One mechanism belonging to Class D β-lactamases was only identified in the 
D1 dataset. As expected, rare ARGs were more frequently discovered at higher sequencing depths and were often 
absent in datasets generated with a lower sequencing depth (Figure S6, Supplementary info file; Supplementary 
dataset 4). Depending on the degree of interest in these rare ARGs, as well as their implications for human and 
animal health, it may be necessary to use greater sequence depths to consistently monitor their presence.

Rarefaction curves were generated to assess the saturation of samples at each depth for various AMR catego-
ries (Fig. 3E,F; Supplementary dataset 3). For both D1 and D0.5, saturation in sequencing was achieved up to the 
mechanism levels, whereas D0.25 did not reach an asymptote. At the individual gene level asymptotes were never 
achieved for all datasets. This could be a reflection of the presence of multiple closely related variants of various 
ARGs in the bacterial populations also represented in the MEGARes database used to analyze the resistome. 
Hence, it may perhaps be more practical to focus the resistome comparisons at the mechanistic level.

The richness of AMR determinants increased with increasing sequencing depth (Fig. 4B). Compared to micro-
biome phyla richness, more heterogeneity was detected in the high level AMR category among samples which is 
a reflection of apparently significantly smaller membership size for AMR categories compared to the microbial 
taxa. Also, the host microbiome is expected to be more consistent than a resistome which may be impacted 
by antimicrobial use variation among animals. Richness differed (p = ≤0.001) at the class, mechanism, group 
and gene levels. Post hoc comparisons revealed that richness was higher (p = ≤0.001) for D1 than for D0.25 
at all AMR taxa levels. When comparisons were made between D1 and D0.5, richness was higher for D1 at the 
mechanism level (p = 0.028), but not at the class (p = 0.12), group (p = 0.07), or gene (p = 0.12) level. In addition, 
richness of D0.5 samples did not differ significantly from D0.25 at the class (p = 0.051), mechanism (p = 0.13), 
group (p = 0.16), or gene level (p = 0.08). The resistome α-diversities increased with increasing sequencing depth 
(Figure S5B and D). However, statistical analyses revealed that the distributions of the Inverse Simpson’s and 
Shannon indices did not differ (p = >0.05) at all depths.

Similar to microbiome results, the relative proportion of sequences associated with different AMR deter-
minants remained similar at all sequencing depths for abundant determinants (Fig. 5B–D). At the class level, 
tetracycline resistance was the most prevalent (82%) followed by macrolide, aminoglycoside and β-lactams, 
respectively (Fig. 5B; Supplementary Dataset 5). The tetracycline resistance ribosomal protection protein mech-
anism was most abundant (81%) at all sequencing depths followed by macrolide resistance efflux pumps (~11%; 
Fig. 5C). TetQ, TetW and Tet40 were among the most prevalent tetracycline resistance genes identified; followed 

Figure 4.  Richness of microbiome and resistome at various sequencing depths. Box-and-whisker plots showing 
(A) microbial taxon richness, and (B) AMR category richness. Boxes represent the interquartile ranges (upper 
line is the 75% quantile, and the lower line is the 25% quantile), the lines inside the boxes are the medians, the 
whiskers span the range of the 25% quantile or the 75% quantile plus 1.5 times the interquartile range, and dots 
are outliers.
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by macrolide resistance efflux pump genes belonging to the MefA group (Fig. 5D). Previous studies6,7 also indi-
cated a high prevalence of genes within the tetracycline resistance class, with 98% of reads aligning to ribosomal 
protection proteins represented in TetQ and TetW groups. These tetracycline resistance groups were also the 
most prevalent in fecal samples collected from humans30,31, suggesting their high abundance in both cattle and 
human populations. In addition, studies across diverse agricultural ecosystems also demonstrated the ubiquity 
of tetracycline resistance genes32,33. Among the second most prevalent resistance class macrolide in our study, the 
MefA group was dominant within fecal samples. Its higher relative abundance in cattle feces could be due to its 
common presence in enteric bacteria34 or due to co-selection along with other ARGs as many tetracycline ARGs 
are linked to macrolide ARGs through common mobile genetic elements35.

In North America, the use of in-feed tetracycline and macrolides to prevent liver abscesses and other bacterial 
diseases and to improve feed efficiency is a common management strategy in beef cattle production. Macrolides 
are also used to treat and manage Bovine Respiratory Disease (BRD) in cattle. A high prevalence of both tetracy-
cline and macrolide resistance classes in bovine feces could be a reflection of ubiquitous use of these antibiotics 
in the beef production system, considering the reported linkage between administration of tetracycline and mac-
rolides to cattle and increases in the abundance of relevant tetracycline and macrolide ARGs in cattle feces36,37.

Overall, the resistome analysis results emphasise that increasing sequencing depth is helpful in detecting rare 
resistance genes, particularly if those rare genes belong to important drug categories. Our data demonstrate that 
D0.5 with ≥50 million reads would be a suitable compromise for sequencing bovine fecal samples and adequately 
inferring their resistome, considering that no further classes were discovered by the D1 sequencing depth and 
only a single unique mechanism was discovered as compared to the D0.5 level. It has been recommended that cov-
erage is not simply a function of data set size but also depends on the complexity of the communities sampled38. 
The majority of published metagenomic studies describe 16S rRNA gene-based community structure evaluations; 
whereas published shotgun-based studies do not usually determine sequencing depth requirements for described 
studies. To our knowledge this is the first in-depth report describing the sequencing coverage requirements for 

Figure 5.  Relative abundance of microbial taxa and AMR annotation levels. Microbial phyla (A), AMR classes 
(B), AMR mechanisms (C) and AMR gene groups (D) across various sequencing depths of D1, D0.5 and D0.25.
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simultaneously evaluating both the microbiome and resistome. In addition to providing a snapshot of the bovine 
gut microbiome and resistome, the results presented here lay the groundwork for understanding the relationship 
between the richness and diversity of microbiome and resistome and limitations posed by sequencing coverage. 
Similar pilot studies are recommended for other sample types and matrices prior to undertaking a metagenomics 
sequencing venture involving a large number of samples.

Methods
Sample collection, DNA isolation, quantitation and quality assessment.  Composite fecal samples 
(n = 8) analyzed in this study were collected from four different feedlots (2 samples each) in southern Alberta. 
Sampling procedures were reviewed and approved by the Lethbridge Research Centre Animal Care and Use 
Committee, and were carried out in accordance with the committee’s approved guidelines.

Composite fecal samples, each comprised of approximately equal portions of 20 individual fresh fecal pats 
from within a pen were collected, thoroughly mixed, and approximately 20 g aliquots were placed in 18 oz 
Whirl-Pak bags for shipment to the laboratory on ice. Upon arrival, within 24 hours of collection, sample bags 
were flattened to create thin sheets, flash frozen in liquid nitrogen and stored at −80 °C.

Metagenomic DNA was extracted from bovine feces as follows: frozen fecal sample (325 mg) was added to 
a sterile 2.0 mL safe-lock snap-cap tubes containing 0.4 g of sterile zirconia beads (0.3 g of 0.1 mm and 0.1 g of 
0.5 mm). One milliliter of resuspension buffer (600 mM NaCl, 120 mM Tris-HCl, 60 mM EDTA, 200 mM guan-
idine isothyocynate) and 5 µL of β-mercaptoethanol (β-ME) were added to the sample tube and mixed followed 
by the addition of pre-heated (70 °C) 10% SDS (200 μL) and homogenization for 3 min at maximum speed on a 
Qiagen TissueLyser™ (setting = 30). The homogenate was then incubated at 70 °C for 15 min with shaking at 350 
RPM followed by centrifugation at 4 °C for 5 min at 16,000 × g to obtain supernatant. To recover DNA from any 
remaining unlysed microbes, fresh resuspension buffer (800 μL), β-ME (5 μL) and 70 °C heated 10% SDS (200 μL) 
were sequentially added to the remaining pellet, mixed, homogenized and the supernatant was collected. The 
supernatants (lysates) from both homogenization steps of a sample were kept separate until nucleic acid pellets 
were dissolved and combined as described below.

The lysate was mixed with 200 μL of 10 M ammonium acetate, placed on ice for 5 min, and centrifuged at 
4 °C for 10 min at 16,000 × g. The supernatant was mixed with an equal volume of isopropanol, placed on ice for 
30 min, and centrifuged at 4 °C for 15 min at 16,000 × g. The nucleic acid pellet was washed with 70% ethanol and 
briefly dried. Pellets from all tubes corresponding to a sample were combined by dissolving in a total of 400 μL of 
TE [10 mM Tris.HCl pH 7.4; 1 mM EDTA].

To further purify metagenomic DNA, dissolved, pooled nucleic acids (400 μL) were mixed with 4 μL of 
DNase-free RNase (10 mg/mL) and incubated at 37 °C for 15 min. Subsequently, 30 μL of proteinase K (20 mg/
mL) and 400 μL of Buffer AL (QIAamp DNA Stool Mini Kit; QIAGEN Inc. Toronto, ON, Canada) were added 
and the mixture was incubated at 70 °C for 10 min. Following incubation, absolute ethanol (400 μL) was added 
and a portion of the mixture (500 µL aliquot) was applied to the QIAamp column from the kit and centrifuged at 
16,000 × g for 1 min. This step was repeated until all of the mixture corresponding to a sample was run through 
the column. The column was washed with AW1 and AW2 buffers as per manufacturer’s instructions and dried 
by centrifugation. To elute DNA, pre-warmed (70 °C) nuclease-free water (150 μL) was added to the column and 
held at room temperature for 2 min followed by centrifugation. The elution step was repeated with 100 μL of 
pre-warmed (70 °C) nuclease-free water yielding a total volume of ~250 μL of DNA.

To remove PCR-inhibitors, OneStep™ PCR Inhibitor Removal Kit (Zymo-Research Corp., Irvine, CA, USA) 
was used according to manufacturer’s instructions. Subsequent to DNA isolation, quality and quantity of the iso-
lated DNA was evaluated. DNA concentrations were measured by fluorescence using the Quant-iT™ PicoGreen 
(Thermo Fisher Scientific, Mississauga,ON, Canada). Purity of the DNA was determined by measuring the ratios 
of absorbance at 260/280 and 260/230 using a NanoDrop spectrophotometer (Thermo Fisher Scientific). DNA 
preparations with a 260/280 ratio between 1.7–2.0 and a 260/230 ratio between 2.0–2.2 were regarded as pure. 
The presence of PCR-inhibitors was also evaluated by amplifying undiluted and various dilutions of a sample with 
universal 16S rRNA gene primers 27F and 1492R39.

Metagenomic DNA sequencing and data processing.  All library preparations, NGS and quality con-
trol steps were performed by the McGill University and Genome Quebec Innovation Centre, Montréal, QC, 
Canada. Illumina shotgun TruSeq libraries with insert size range 375–400 bp were prepared as per manufactur-
er’s instructions using Covaris-sheared metagenomics DNA and samples were run on an Illumina HiSeq. 2000 
platform to generate 2 × 100 bp paired-end (PE) sequences. For the eight sample libraries, groups of four libraries 
each were multiplexed and run over two sequencing lanes per group in addition to all eight libraries being multi-
plexed in a single lane to obtain read data at various depths, as indicated in Fig. 1. As a quality control for cluster 
generation and sequencing, each HiSeq. 2000 sequencing lane was spiked with the PhiX174 sensu lato virus 
genomic DNA library at 1% concentration of the total DNA loaded per lane.

For each sample, to generate a FASTQ paired-end (PE) file dataset at a maximum available sequencing depth 
(D1), two corresponding FASTQ PE data file sets resulting from each of the duplicate D0.5 sequencing were com-
bined (Fig. 1). As a result, 8 and 16 sets of FASTQ PE files for D1 and D0.5 depths respectively, were generated 
for eight samples. In addition, 8 sets of FASTQ PE data files originating from 8 samples multiplexed in a single 
sequencing lane constituted D0.25 data corresponding to 1/4th depth compared to the largest grouping D1 (Fig. 1).

Trimmomatic40 was used to remove adapter contamination and low quality reads using the following param-
eters: trimming leading and the trailing low quality (quality score < 3) or ambiguous base calls from sequence 
reads; performing quality score filtering using a sliding window at every four bases with a minimum Phred score 
of 15; discarding sequences with <36 nucleotides; removing adapters supplied in the TruSeq. 3 adapter sequence 
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file using a maximum of two mismatches in the initial seed, and clipping the adapter if a match score of 30 was 
reached. Singleton reads whereby the other pair was discarded were also included in downstream analysis.

Microbiome and Resistome analyses.  Data were analyzed within the Galaxy platform41, with a 
Galaxy Web server instance supported by the National Microbiology Laboratory, Public Health Agency of 
Canada (PHAC NML Galaxy). A custom workflow integrating Kraken taxonomic classification tools20 and the 
AmrPlusPlus resistome analysis pipeline tools27 was setup in Galaxy to obtain simultaneous outputs for both resi-
stome and microbiome analyses of metagenomic sample reads from a single metagenome-resistome workflow. 
Following Trimmomatic as the first step in the workflow, Kraken and the AmrPlusPlus tools were programmed 
to run in parallel. For microbiome analysis, reads passing quality filters from Trimmomatic were classified using 
the updated custom Kraken database comprised of complete genomes in RefSeq for bacteria, viruses, fungi, pro-
tozoa and archaea (bvfpa). Kraken-filter script with a threshold of 0.05 was used in the classification pipeline to 
enhance the accuracy of taxonomic assignments. Reports of the taxonomic classification of reads were generated 
with Kraken’s report function. For the resistome analysis, the quality-filtered reads were provided as input to 
BWA-MEM alignment42 using default parameters including a mismatch penalty value of 4 to the MEGARes AMR 
genes database27, without the inclusion of host genome filtering step. Reads were assigned to ARGs using a 75% 
gene coverage/fraction threshold. Read counts originating from alignments to housekeeping genes associated 
with AMR (e.g., rpoB, gyrA, parC, etc.), present in the MEGARes database requiring single nucleotide polymor-
phism (SNP) confirmation, were filtered out from the AMR report before further analyses. Counts of short reads 
aligned to the ARGs were recorded and used for downstream comparative analyses.

Microbiome and resistome comparison.  For microbiome comparisons among datasets at various 
sequencing depths, reads for all eukaryotes and Enterobacteria phage PhiX174 sensu lato were filtered out from 
the Kraken reports with Pavian43. Complete taxonomic lineages were also added by Pavian. Sets of unique taxa 
at each sequencing depth were determined for each taxonomic level (i.e. phylum, class, family, order, genus, 
and species) and for each AMR classification level (i.e. class, mechanism, group, and gene) for non-rarefied data 
using a custom Python script using the pandas library (version 0.19.2; http://pandas.pydata.org/pandas-docs/
version/0.19.2/), applying built-in set functions in Python version 3.4.2 (http://www.python.org), and plotting 
the output as Venn diagrams with the matplotlib_venn package44.

Microbiome and resistome α-diversity and richness analyses.  Species richness was calculated on 
non-rarified sample data using the ‘specnumber’ function of vegan. The distributions of species richness were 
visualized with box-and-whisker plots using the ggplot2 package of R45.

For α-diversity analysis, AMR and Kraken results were normalized at each sequencing depth using a 
data-driven approach based in shifts in the distributions of counts called Cumulative Sum Scaling (CSS) normali-
zation46 of the metagenomeSeq package47 of R. Normalized counts were then aggregated at each of the taxonomic 
levels (phylum, class, order, family, genus, and species) and the antimicrobial resistance classification levels (class, 
mechanism, group, and gene). The Shannon and the Inverse Simpson indices of diversity48 were calculated on 
normalized counts for every sample with the diversity function of the vegan package of R. The distributions of 
indices at each sequencing depth were visualized as boxplots in the same manner as species richness.

Microbiome and resistome rarefaction.  A recently developed tool, Krakefaction (https://github.com/
phac-nml/krakefaction), was used with Kraken assignment data to generate values for microbiome rarefaction 
curve. This software organizes sample reads into subsamples of regularly increasing sizes (5% increment for cur-
rent study) and reports the number of taxa present within each subsample for all principal classification ranks. 
The rarefaction curves were plotted using the ggplot2 package of R as numbers of unique phyla, orders, genera 
and species as a function of sampling depth. For resistome, RarefactionAnalyzer tool of the AmrPlusPlus pipe-
line27 was used with 5% subsampling increments of the read data with 10 iterations at each level. The numbers 
of unique genes, mechanisms, and classes were then plotted as a function of sampling depth using the ggplot2 
package of R.

Statistical analysis.  The Kruskal–Wallis test49 was performed to evaluate differences in richness and diver-
sity for either ARGs or microbial taxa at various taxonomic ranks. Nemenyi post-hoc comparisons50 were con-
ducted to determine statistical significance between two groups for incidences where differences were declared 
significant at P < 0.05 as per the Kruskal-Wallis analysis.

Data Availability Statement.  All Illumina sequence data from the current study have been deposited in 
NCBI’s Short Read Archive under BioProject ID PRJNA420682.
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