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Genetic diversity is essential for adaptive capacities, providing organisms

with the potential of successfully responding to intrinsic and extrinsic chal-

lenges. Although a clear reciprocal link between genetic diversity and

resistance to parasites and pathogens has been established across taxa, the

impact of loss of genetic diversity by inbreeding on the emergence and

progression of non-communicable diseases, such as cancer, has been over-

looked. Here we provide an overview of such associations and show that

low genetic diversity and inbreeding associate with an increased risk of

cancer in both humans and animals. Cancer being a multifaceted disease,

loss of genetic diversity can directly (via accumulation of oncogenic homo-

zygous mutations) and indirectly (via increased susceptibility to oncogenic

pathogens) impact abnormal cell emergence and escape of immune surveil-

lance. The observed link between reduced genetic diversity and cancer in

wildlife may further imperil the long-term survival of numerous endangered

species, highlighting the need to consider the impact of cancer in conserva-

tion biology. Finally, the somewhat incongruent data originating from

human studies suggest that the association between genetic diversity and

cancer development is multifactorial and may be tumour specific. Further

studies are therefore crucial in order to elucidate the underpinnings of the

interactions between genetic diversity, inbreeding and cancer.
1. Introduction
Genetic diversity provides populations with the ability to respond to

challenges, such as parasites/pathogens, predators and environmental pertur-

bations (electronic supplementary material, table S1). Attenuation of genetic

diversity has been linked to increased risk of inbreeding depression, resulting

in decreased growth rate, fertility, fecundity and offspring viability [1–9], as

well as in increased vulnerability to pathogens [10–12]. Loss of genetic diver-

sity therefore has a negative impact on organismal fitness, and limits a

population’s ability to respond to threats in both the long and short term (for

review see [13]). Akin to parasites, malignant transformations that emerge

due to environmental challenges, infections and/or host genotype either in iso-

lation or via the interaction between genotype and environment exploit the host

for energy and resources, and thereby impair host fitness and pose as a signifi-

cant selective force [14–16]. Indeed, recent studies have proposed that

malignant cells should be regarded as a developing species that behave in a

manner akin to parasites [17]. Consequently, multicellular hosts that have the

genetic toolkit to recognize and control cancer causing infections and malignant

cell proliferation will have a significant fitness advantage over those that lack

such mechanisms. Although a clear reciprocal link between genetic diversity

and vulnerability to parasites and pathogens has been widely acknowledged
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across taxa, so far the vast majority of studies have over-

looked how reduced genetic diversity and inbreeding may

influence the appearance and progression of non-communic-

able diseases, such as cancer. Here we discuss how genetic

diversity and inbreeding may contribute to increased risk of

cancer development and progression in humans and animals.
ypublishing.org
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2. Cancer aetiologies
Cancer, the uncontrolled division of neoplastic cells, is a ubi-

quitous disease of metazoans [18] and has been proposed to

have appeared with one of the major transitions of life (i.e.

the transition from unicellularity to multicellularity) [19].

Fossilized bones, mummified tissues and phylogenetic

analyses of oncogenic pathogens show that malignant

transformations have been afflicting human and animal

populations for eons (reviewed in [20]).

Although cancer is a multifactorial disease, only a small

proportion of human cancers (less than 10%) originates from

inherited mutations [21]. The majority of familial human can-

cers have been proposed to root from high-penetrance genetic

variants or polymorphisms [22]. For example, specific

inherited mutations in BRCA1 and BRCA2 genes account

for 5–10% of all breast cancers [23], and inherited mutations

of the APC gene is associated with 1–2% of all colon cancers

[24]. Similarly, cancer predisposition by rare, high-penetrance

alleles (e.g. mutations in c-KIT, P53, BRCA1/2) have also been

observed in animal malignancies [25–27].

The majority of human cancer cases can be attributed to

advanced age [28] and/or to acquired mutations due to

environmental factors (including pathogen infections, exposure

to pollution or sunlight, as well as lifestyle, economic and

behavioural factors) [20,21] (see also https://www.cancer.gov/

about-cancer/causes-prevention/risk). Human lifestyle parti-

cularly is one of the underlying factors of cancer development

as almost 25–30% of all cancer-related human deaths are due to

tobacco and 30–35% are linked to diet (reviewed in [21]).

Several of the factors resulting in increased cancer preva-

lence in humans such as smoking, alcohol and diet are highly

unlikely to cause cancer in animals (but see [29,30]), whereas

stress [31–33], infections (reviewed in [34]) and exposure to

environmental carcinogens have been found to increase

cancer prevalence in other vertebrates, such as the brown

bullhead (Ameiurus nebulosus) [35], California sea lion (Zalophus
californianus) [36] and beluga whales (Delphinapterus leucas) [37].

Infections are the direct or indirect underlying factors of a

substantial proportion of both human and animal cancers [38].

Pathogens (particularly intracellular parasites) that alter cellu-

lar regulatory mechanisms (e.g. apoptosis, cell-cycle arrest),

increase cell proliferation rates and break down cellular con-

trols that would prevent oncogenesis can directly contribute

to neoplasm formation. Inflammatory responses initiated by

pathogen infections may also increase mutation rates and

alter proliferation signals, and hence indirectly initiate

malignant transformations (reviewed in [38,39]).

Viruses are the major agents of infection-initiated

vertebrate cancers, and seven viruses have been now

acknowledged as infectious causes of human cancers (e.g.

gamma herpes virus indicated in nasopharyngeal, gastric

cancers; Hodgkin’s lymphoma, Burkitt’s lymphoma) [38].

Similarly, many oncogenic viruses have been associated

with malignancies in domestic and wild animals, such as
the oncogenic papillomavirus in rabbits [40] and a gamma

herpesvirus associated with urogenital carcinoma in

California sea lions (Zalophus californianus) [41].

Apart from viruses, the most frequent sources of infection-

induced cancers are protozoans (e.g. Plasmodium falciparum)

[42], bacteria (e.g. Helicobacter pylori) [43,44] and trematodes

(e.g. Schistosoma haematobium) [43,45] have all been shown to

directly or indirectly cause malignancies. Although rare,

contagious cancers without underlying infectious aetiologies

do occur in the wild, and eight naturally occurring transmis-

sible cancers—one lineage in dogs [46], two lineages in

Tasmanian devils (Sarcophilus harrisii) [47,48] and five lineages

in bivalves [49]—have so far been recorded.
3. Genetic diversity, inbreeding and cancer in
humans

Several reports provide evidence that low genetic diversity

and inbreeding may increase cancer risk and that cancer

may have a recessive basis in humans [50–52]. For example,

thyroid cancer has been found to be associated with signifi-

cantly higher levels of inbreeding as well as a higher

number and longer runs of homozygosity (ROH) [53], and

acute leukaemia have been found to be linked to low levels

of genetic diversity and inbreeding [54]. Moreover, extended

germline homozygosity has been shown to result in an

increased risk of lung cancer [55] and homozygosity of the

MTHFR gene has been found to be associated with an

increased risk of breast cancer [56].

Genome-wide association studies have also found a sig-

nificant association between recessive alleles/inbreeding and

cancer such as Hodgkin’s lymphoma [57]. Based on the

same methodology, two studies observed that inbreeding

and ROH resulted in an increased risk of colorectal cancer

[58,59], whereas a third study could not find such an associ-

ation [60]. Similar disconsonant results have been reported

from studies focusing on countries with high close-kin

unions such as the United Arab Emirates and Qatar, with up

to 54% consanguinity prevalence [52,53]. The two

studies showed that reduced genetic diversity and

inbreeding was associated with a reduced risk of breast,

skin, thyroid and female genital cancers, but an increased

risk of developing leukaemia, lymphoma, colorectal and pros-

tate cancer [61,62]. The incongruous results observed in some

human studies suggest that the effect of genetic diversity and

inbreeding on cancer development may be tumour specific.
4. Genetic diversity, inbreeding and cancer in
domestic animals

Strong artificial selection and small founder population size

during domestication of animals have had the unintentional

effect of diminishing genetic diversity, and resulted in the

accumulation of deleterious genetic variants. For example,

despite their exceptional phenotypic diversity, both domestic

dogs and cats have significantly lower genetic diversity com-

pared with their wild conspecifics, and/or their wild

ancestors [63–69]. Apart from additional factors, such as

anthropogenically induced longer lifespan and altered

environment (e.g. diet and exposure to tobacco smoke), the

loss of genetic diversity has been linked to the observed
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relatively high cancer prevalence in both cats and dogs

[70–73]. Data originating from the histopathology analyses

of more than 30 000 malignant neoplastic cases of cats and

dogs revelead skin being the most frequently affected tissue

in both species, and purebred dogs being more prone to

develop neoplasms in general [72]. The latter finding has

been further supported by a survey from Italy that showed

an almost twofold higher incidence rate of malignant

tumours in both purebred cats and dogs compared with

mixed breeds [73]. These results are not surpising since selec-

tive breeding of dogs led to some breeds descending from a

few founders with documented increased risk for certain dis-

eases, such as osteosarcoma, histiocytic sarcoma and

squamous cell carcinoma [74]. Recent genomic comparison

of healthy golden retrievers with golden retrievers suffering

from mast cell tumours (MCT) identified potential causative

genetic variations in multiple hyaluronidase genes [75],

while an other study demonstarted significant association

between germline mutations of BRAC1/2 genes and

mammary cancer in English springer spaniels [27].

Lymphoma, the most common haematopoietic cancer of

cats, can be initiated by retroviral infections—such as feline

leukaemia virus (FeLV) and feline immunodeficiency virus

(FIV)—or by additional factors, such as chronic cigarette

smoke exposure and chronic inflammation (revewied in

[76]). In addition, similar to dogs, breed-specific predisposi-

tion for lymphoma with a recessive pattern of inheritance

has been observed in Siamese cats and Oriental shorthair

cats (revewied in [76]). Selecting phenotypic traits and

specific functions may have inadvertently contributed to the

increased suceptibility of our feline and canine companions

to both infectious and heritable oncogenesis.
5. Genetic diversity, inbreeding and cancer in
wildlife

Despite neoplasia being recorded in most metazoans [77], and

being common in domesticated animals, it has generally been

assumed to be rare in the wild. In our view this is most likely

to be due to the fact that cancer prevalence in wildlife is extre-

mely difficult to identify and reports are highly scattered in

the scientific literature, and hence challenging to access [18].

In some fish populations cancer prevalence can actually reach

100%, being caused by contagious agents, pollution, inbreeding

or the combination of all these factors [18,78]. Moreover, the

high cancer prevalence (26%) recorded in some populations of

California sea lions (Zalophus californianus) has been suggested

to be caused by a herpesvirus and/or persistent organic pollu-

tants, but a high prevalence of urogenital carcinoma has been

linked to loss of genetic diversity at a single locus, the hepara-

nase 2 gene (HPSE2) [79]. Additionally, two recent studies

have observed a link between low genetic diversity and high

cancer prevalence (greater than 50%) in Santa Catalina Island

foxes (Urocyon littoralis catalinae) [80,81] and the South African

Cape mountain zebra (Equus zebra zebra) [82–84].
6. Genetic diversity, inbreeding and cancer
development

Cancer being a multifaceted disease, loss of genetic diversity

and inbreeding can impact cancer emergence both directly
and indirectly (electronic supplementary material, table S2).

Reduction of population size, cultural traditions promoting

consanguineous marriages and natural selection purging

favouring certain haplotypes contribute to an increased like-

lihood of a reduction in genetic diversity, which may result in

a higher frequency of long stretches of ROH regions [85,86].

ROH harbour disproportionately more deleterious homozy-

gotes than other parts of the genome [85], and the presence

of identical pathogenic variants of both alleles have been

shown to result in recessive disorders [51,87]. Reduced

genetic diversity magnifies the impact of deleterious homo-

zygous mutations [85], and genomic studies suggest that

homozygosity of some germline low-penetrance cancer

genes act as significant contributing factors to the develop-

ment of human oesophageal [88], oral [89], lung [90,91],

bladder [92], acute lymphocytic leukaemia [93] and breast

cancers [61,94,95].

Apart from the direct role of cancer increasing homozy-

gous genomic regions, a general reduction in genetic

diversity can also contribute to the development of tumours

via infectious agents such as viruses (e.g. [34,38,96]). Loss of

genetic diversity at important immune gene loci such as the

major histocompatibility complex (MHC), Toll-like recep-

tors (TLRs) and type I and II interferons [12,97], can

increase the risk of pathogen infections that either directly

or indirectly initiate malignant transformations. For

example, genetic variants of interferon genes have not

only been associated with pathogen resistance (including

carcinogenic helminth infections) [98–102], but have also

been shown to influence melanoma progression and survi-

val in humans [103]. Furthermore, hepatitis C virus

(HCV), one of the most common chronic blood-borne infec-

tions, results in chronic hepatitis in approximately 80% of

infected patients, and leads to death in up to 5% of these

patients from hepatocellular carcinoma (HCC) or liver

cancer [104]. A complex interplay between host genetics,

immunology and viral factors has been proposed to deter-

mine the outcome of HCV infection [104–107]. Ethnic

background, immune gene polymorphism as well as the

presence of specific alleles (e.g. interleukin 28B, inhibitory

natural killer cell receptors and MHC classes I and II, and

variants of interferon (IFN)L3-IFNL4, etc.) have been ident-

ified as key elements of HCV clearance, and consequent

disease progression [104–107].

Helicobacter pylori infections, an underlying factor of

gastric cancer, provide an excellent example of how the

host genotype may indirectly contribute to initiation of

malignant transformations. Helicobacter pylori affects at least

50% of humans worldwide, and hence owns the uncoveted

title of being ‘the most common single chronic bacterial infec-

tion in the world’ [108]. The bacteria and their human host

have a long evolutionary history; anatomically modern

humans were already infected by H. pylori prior to leaving

Africa and the close association remains ever since [109].

The majority of infected individuals develop no significant

disease, but clinical outcomes range from asymptomatic gas-

tritis to peptic ulcer disease and gastric cancer [108]. Risk of

infection, prevalence and disease outcomes have been

linked to ethnicity, socioeconomic status, and behavioural

and genetic variables [110]. One of the most challenging

scientific conundrums is to explain individual predisposition

to the disease—why some individuals develop serious seque-

lae of H. pylori infections, while others don’t [108].
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Considerable focus has been placed on understanding bac-

terial and host genetic factors, and a twin study showed

that both host genetic and environmental factors (‘rearing

environment’) influence the acquisition of H. pylori infection

[111]. Importantly, host proinflammatory genetic makeup

appears to have a major contribution to the pathogenesis of

gastric cancer. Individuals with proinflammatory genotypes

(IL-1B-511*T carriers/IL-1RN*2 homozygotes) have an

increased risk for gastric carcinoma. The carriers of the

specific genotypes generate heightened inflammatory

response to H. pylori infection, which ultimately creates a

chronically inflamed environment with elevated oxidative/

genotoxic stress (due to hypochlorhydria) and eventually

initiates a proneoplastic drive [108,112]. Apart from the gen-

etic factors, socioeconomic variables and industrialized

environments have also been associated with chronic gastri-

tis, peptic ulcer disease and gastric cancers [110]. While

gastric carcinoma is more common in the developing

world, the less severe chronic gastritis and peptic ulcers are

more frequently reported from the developed world [110].

These might be due to reporting, or due to disease presen-

tation being related to the age of infection (i.e. early

childhood infections are postulated to develop over time

into pre-malignant changes and eventually gastric carcinoma,

in contrast to infection during adulthood, which is more

likely to result in ulcer disease [110]). Regional and ethnic

variations of H. pylori aetiology have been observed and dis-

cussed since the links between infection, peptic ulcer disease

and gastric adenocarcinomas [113] have been established

(reviewed in [114]). More recent studies identify environ-

mental factors such as food preservation and diet as

primary determinants of disease outcomes [114]. Helicobacter
pylori infection is clearly a complex disease with a long

coevolutionary history between the host and its parasite,

which requires further studies to determine prevention and

treatment strategies [115].

Reduced genetic diversity may also increase suscepti-

bility of endangered wildlife species to pathogens and their

associated cancers both in captive populations as well as in

the wild. For example, the low genetic diversity of the Aus-

tralian western barred bandicoots (Perameles bougainville)

(WBB) [116] has been proposed to be one of the potential

underlying factors of high prevalence of papillomatosis and

carcinomatosis syndrome (up to 61.4% prevalence in captive

breeding facilities) [117]. By using microsatellite markers,

Smith & Hughes [116] estimated the WBB’s genetic diversity

to be one of the lowest ever recorded in marsupials, and

Woolford et al. [117] proposed that the reduced genetic

diversity may contribute to the species’s susceptibility to

(oncogenic) viruses.

Low genetic diversity at microsatellite loci and lack of

variations in mitochondrial DNA (mtDNA) indicate that

another endangered species, the snow leopard (Uncia
uncia), has undergone a genetic bottleneck approximately

8000 years ago [118]. Although no information on cancer

prevalence is available from wild snow leopards, a survey

by Joslin et al. [119] revealed that 9% of mortalities in 66 insti-

tutions involved with the Snow Leopard Species Survival

Plan (SSP) was due to squamous cell carcinomas (SCC).

Papillomas with viral aetiology have been identified as pre-

cursors to SCC in felines, including cats and snow leopards

[119]. Low genetic diversity of snow leopards may therefore

potentially be a contributing factor to viral infections and
ultimately the development of SCCs observed in captivity

[119]. Comparative genetics of sarcoid tumour-affected and

non-affected mountain zebra (Equus zebra) populations

revealed that tumour-affected populations had higher homo-

zygosity and relatedness, and lower gene diversity and

polymorphism, at 16 microsatellite loci compared with

healthy populations (although the levels were not significant

(p ¼ 0.05) [83]). A study of 371 stranded California sea lions

(Zalophus californianus) also found a clear association between

carcinoma incidence and close genetic relatedness when ana-

lysing 11 microsatellite markers [120]. Furthermore, as

discussed above, inbreeding depression (estimated based on

microsatellite multilocus heterozygosity) and homozygosity

of the heparanase 2 gene (HPSE2) locus have been identified

as predictors of urogenital carcinoma in sea lions [121].

Finally, the high cancer prevalence observed in the highly

inbred Santa Catalina Island foxes [80,81] also strongly

suggest an association between loss of genetic diversity and

cancer development in wildlife (electronic supplementary

material, table S2).
7. Conclusion
As mentioned above, maintenance of genetic diversity is fun-

damental for adaptive capacities and provides organisms

with an ability to successfully respond to challenges caused

by parasites/pathogens [122], habitat fragmentation [3,123]

and global climate change [124,125]. In contrast to parasites

and pathogens cancer, has so far been largely overlooked as

a significant determinant of wildlife fitness. The present

review, however, suggests that low genetic diversity and

inbreeding may elevate cancer development in wildlife,

further imperilling the long-term survival of the numerous

species presently suffering from low genetic diversity. Our

review hence demonstrates the need to consider the effects

of cancer in conservation biology.

The results originating from human studies indicate that

the effects of genetic diversity and inbreeding on the develop-

ment of a complex disease such as cancer may be tumour

specific. Importantly, by reducing immune function, and

thereby increasing the vulnerability to cancer causing para-

site/pathogen infections, overall loss of genetic diversity

and inbreeding may therefore constitute a significant under-

pinning of cancer development in humans as well as in

other organisms [126,127]. Finally, the link between low gen-

etic diversity/inbreeding and cancer may be just as arduous

as the disease itself, and further studies, including genome-

wide association studies on both domestic and wild

animals, population genetic and genomic analyses of species

affected by high prevalence of cancer, and epidemiological

studies likening infectious diseases to cancer prevalence, are

therefore urgently needed to decipher the underpinnings of

such associations.
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