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Biological and synthetic materials often exhibit
intrinsic variability in their elastic responses under
large strains, owing to microstructural inhomogeneity
or when elastic data are extracted from viscoelastic
mechanical tests. For these materials, although
hyperelastic models calibrated to mean data are
useful, stochastic representations accounting also
for data dispersion carry extra information about
the variability of material properties found in
practical applications. We combine finite elasticity
and information theories to construct homogeneous
isotropic hyperelastic models with random field
parameters calibrated to discrete mean values
and standard deviations of either the stress–strain
function or the nonlinear shear modulus, which
is a function of the deformation, estimated from
experimental tests. These quantities can take on
different values, corresponding to possible outcomes
of the experiments. As multiple models can be
derived that adequately represent the observed
phenomena, we apply Occam’s razor by providing
an explicit criterion for model selection based on
Bayesian statistics. We then employ this criterion to
select a model among competing models calibrated to
experimental data for rubber and brain tissue under
single or multiaxial loads.

1. Introduction
Mathematical models of solid materials often necessitate
approaches that capture the randomness due to the
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uncertainties in the mechanical responses. As predictions depend on constitutive models, it may
not be adequate for a mathematical model to depend on a single set of constant parameters,
regardless of how well they seem to agree with certain experimental measurements. A statistical
theory of heterogeneous linearly elastic solids is introduced by McCoy (1973) [1]. Stochastic
strategies for the investigation of mesoscopic mechanical effects in random materials were
proposed by Huet (1990) [2]. Further developments in the stochastic modelling of heterogeneous
solids were reviewed in [3]. Recently, there has been a growing interest in probability and
statistical techniques for engineering and biomedical applications, where the calibration of
models using available data and the quantification of uncertainties in model parameters are of
utmost importance [4–6]. There are, however, many challenges introduced by the consideration
and quantification of uncertainties in mathematical models, and their use in making predictions,
some of which are discussed in [7–12].

For natural and engineered materials, uncertainties in the experimental observations typically
arise from the inherent micro-structural inhomogeneity [13,14], sample-to-sample intrinsic
variability, or when elastic data are extracted from viscoelastic mechanical tests [15–19]. For these
materials, hyperelastic models based on mean data values constitute a starting point for the
development of more complex models. Stochastic models accounting also for data dispersion
give additional insight about uncertainty and can provide useful bounds on a model’s prediction.
A review of statistical approaches applied to the mechanical analysis of rubber-like networks
is presented in [20]. Constitutive equations for soft tissues, including those based on statistical
modelling for the evolution of the collagen network, are reviewed in [21].

A non-deterministic approach to model the stiffness variations of porcine liver tissue under
compression was first proposed in [22]. In this case, experimental strain values at a given
stress were assumed to vary according to a normal distribution, for which the mean value and
standard deviation are independent, and a five-parameter Mooney–Rivlin hyperelastic model
was calibrated numerically to the mean stress–strain curve.

Recently, stochastic strategies based on information theory, which aids with the calibration of
hyperelastic models for isotropic elastic solids, were proposed in [23–25]. Specifically, stochastic–
hyperelastic models were identified from experimental data consisting of the mean values and
standard deviations of elastic stresses under finite strain deformations. Prior to this, in [26,27], a
similar strategy was applied to the stochastic representation of tensor-valued random variables
and random fields in linear elasticity. These strategies rely on the maximum entropy principle
for a discrete probability distribution introduced by Jaynes (1957) [28–30]. The measure of
entropy (or uncertainty) of a discrete probability distribution was first defined by Shannon
(1948) [31,32] in the context of information theory. In [25], the stochastic approach was employed
for the calibration of Ogden-type models to brain, liver and spinal cord data representing mean
values and standard deviation of the first Piola–Kirchhoff stress under finite compression tests.
Ogden-type strain–energy functions and their extension to compressible materials in a stochastic
framework were formulated originally in [23,24]. Within this framework, strain–energy functions
with random field parameters were obtained under a combination of physically realistic and
theoretical restrictions, namely:

(i) Material objectivity and symmetry. The principle of material objectivity (frame indifference)
states that constitutive equations must be invariant under changes of frame of reference
[33, p. 44]. In the case of isotropic materials, which have the same mechanical properties
in all directions, material symmetry is taken into account by expressing the strain–energy
function, equivalently, as a symmetric function of the principal stretches [33–36].

(ii) Hadamard’s well-posedness property. Well-posedness is enforced by restricting strain–
energy functions to satisfy the polyconvexity and coercivity conditions [37–39]. In
particular, for Ogden-type stochastic–hyperelastic models, positive random field model
parameters were assumed.

(iii) Linear limit consistency. Mechanical consistency with the linear elasticity theory requires
that the classical shear modulus μ> 0 is recovered under small elastic strains.
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(iv) Finite mean and variance for the random linear shear modulus. For the random shear modulus,
μ, and its inverse, μ−1, the expectation is that they are second-order random variables,
i.e. they have finite moments of order two (finite mean and variance). Under these
constraints, the maximum entropy principle implies that μ follows a Gamma probability
distribution [40,41].

Here, we devise an explicit strategy for the calibration of homogeneous isotropic hyperelastic
models with the random field parameters, following probability laws, to discrete mean values
and standard deviation of either the stress–strain function or the nonlinear shear modulus, which
is a function of the deformation under large strain and coincides with the classical shear modulus
under small strain. For isotropic hyperelastic materials, the formal derivation of key nonlinear
elastic parameters and their application to model calibration is reviewed in [42]. In practice,
these quantities can meaningfully take on different values, corresponding to possible outcomes
of experiments, and in general, more than one parametrized model will be available to explain
their behaviour. Our modelling framework combines finite elasticity and information theory, as
follows. At the level of finite elasticity, we consider the following conditions:

(i) Material objectivity and symmetry. Material objectivity is guaranteed by considering strain–
energy functions defined in terms of invariants. As usual, for isotropic materials, we
assume the existence of a symmetric strain–energy function W(λ1, λ2, λ3) of the principal
stretches {λi}i=1,2,3.

(ii) Baker–Ericksen inequalities. In addition to the fundamental principle of objectivity and
material symmetry, in order for the behaviour of a hyperelastic material to be physically
realistic, there are some universally accepted constraints on the constitutive equations
[33]. Specifically, for a hyperelastic body, the Baker–Ericksen (BE) inequalities state that
the greater principal stress occurs in the direction of the greater principal stretch. In particular,
under uniaxial tension, the deformation is a simple extension in the direction of the tensile
force if and only if the BE inequalities hold [43,44]. Under these mechanical constraints,
the nonlinear shear modulus, which varies with the deformation and is equal to the linear
shear modulus in the small strain, is always positive [42].

(iii) Non-polyconvexity. For a general theoretical framework that is nevertheless consistent
with the observed mechanical behaviour of many materials operating in large strain
deformation [18,19,45–48], restriction to the class of polyconvex strain-energy functions
is not required [49–51]. The non-polyconvexity allows for more general a priori bounds
on the random hyperelastic parameters to be chosen during the calibration process.

Our approach to stochastic elasticity and model selection further relies on the following
assumptions:

(iv) Finite mean and variance for the random nonlinear shear modulus. At any given deformation,
the nonlinear shear modulus and its inverse are second-order random variables, i.e. they
have finite mean and finite variance.

(v) Model selection and Occam’s criterion. As alternative models that differ in form or number
of parameters can be derived that reasonably approximate the data and its variability,
we apply Bayesian statistics [52] and Occam’s principle [53–56] to select the best possible
model from a given family of models [57].

In the next sections, we summarize the finite elasticity setting (§2) and develop our stochastic–
deterministic strategy (§3), which we employ to construct explicit models from experimental data
for rubber and brain tissue under uniaxial or multiaxial loads. We then apply Occam’s criterion
(§4) to select a model among competing models calibrated to the available data (§5).
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2. Finite elasticity prerequisites
We consider a unit cube of homogeneous isotropic incompressible hyperelastic material, subject
to the following homogeneous deformation consisting of a simple shear superposed on a finite
axial stretch [18,19,42,58–61],

x1 = X1√
a

+ kaX2, x2 = aX2 and x3 = X3√
a

, (2.1)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the reference (Lagrangian)
and the current (Eulerian) configuration, respectively, and k> 0 and a> 0 are positive constants
representing the shear parameter and the axial stretch (0< a< 1 for axial compression and a> 1
for axial tension), respectively. We recall that homogeneous deformations are the same regardless
of the geometry of the body, and are universal, i.e. they can be maintained in every homogeneous
isotropic hyperelastic body by application of suitable traction [62–65]. For the homogeneous
deformation (2.1), the constant gradient tensor and the corresponding left Cauchy–Green tensor
are, respectively,

F =

⎡
⎢⎣1/

√
a ka 0

0 a 0
0 0 1/

√
a

⎤
⎥⎦ and B = FFT =

⎡
⎢⎣k2a2 + 1/a ka2 0

ka2 a2 0
0 0 1/a

⎤
⎥⎦ , (2.2)

where the superscript ‘T’ denotes the transpose. The principal stretches {λi}i=1,2,3, such that
{λ2

i }i=1,2,3 are the eigenvalues of the left Cauchy–Green tensor, B, satisfy

λ2
1 = 1 + a3(1 + k2) +

√
[1 + a3(1 + k2)]2 − 4a3

2a
,

λ2
2 = 1 + a3(1 + k2) −

√
[1 + a3(1 + k2)]2 − 4a3

2a
= aλ−2

1

and λ2
3 = 1

a
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

When the homogeneous isotropic incompressible hyperelastic material is described by a strain-
energy function W(λ1, λ2, λ3), where {λi}i=1,2,3 are the principal stretches [34, p. 94], the Cauchy
stress tensor, representing the force per unit area in the current configuration, is equal to

σ = −pI + β1B + β−1B−1, (2.4)

where I is the identity tensor, p is the Lagrange multiplier associated with the incompressibility
constraint (det F = 1), and

β1 = 1

λ2
1 − λ2

2

(
λ2

1 + λ2
3

λ1

∂W
∂λ1

− λ2
2 + λ2

3
λ2

∂W
∂λ2

)

and β−1 = 1

λ2
1 − λ2

2

(
1
λ1

∂W
∂λ1

− 1
λ2

∂W
∂λ2

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

are the constitutive coefficients. Then, the non-zero components of the Cauchy stress tensor in
Cartesian coordinates are

σ11 = σ33 + k2a2β1,

σ12 = ka2
(
β1 − β−1

a

)
,

σ22 = σ33 +
(

a2 − 1
a

)(
β1 − β−1

a

)
+ k2aβ−1

and σ33 = −p + β1

a
+ aβ−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)
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The principal components of the Cauchy stress tensor (i.e. its principal eigenvalues) are [33, p. 143]

σi = −p + β1λ
2
i + β−1λ

−2
i , i = 1, 2, 3. (2.7)

The associated first Piola–Kirchhoff stress tensor, representing the force per unit area in the
reference configuration, is defined as [33, pp. 124–125]

P = JσF−T. (2.8)

(a) Nonlinear shear modulus
We note the following: (i) stresses are constant given a homogeneous deformation of the form
(2.1); and (ii) the shear component of the first Piola–Kirchhoff stress tensor (2.8), P12 = σ12/a, is
proportional to the shear strain, ka. These observations justify the introduction of the nonlinear
shear modulus [42]

μ(a, k) = P12

ka
= σ12

ka2 = β1 − β−1

a
. (2.9)

This modulus is a function of the deformation, it is independent of the Lagrange multiplier, p,
and it can be estimated directly from experimental observations if the shear force is known.
Equivalently, by the representation (2.7) of the principal Cauchy stresses, the nonlinear shear
modulus (2.9) can be expressed as [42]

μ(a, k) = σ1 − σ2

λ2
1 − λ2

2
. (2.10)

Hence, this modulus is always positive assuming that the following Baker–Ericksen (BE)
inequalities hold [33, p. 158]:

(σi − σj)(λi − λj)> 0 if λi �= λj, i, j = 1, 2, 3. (2.11)

When a → 1, in the deformation (2.1), simple shear is superposed on infinitesimal axial stretch.
Then, the nonlinear shear modulus given by (2.9) converges to the nonlinear shear modulus for
simple shear [42],

μ̂(k) = lim
a→1

μ(a, k) = β̂1 − β̂−1, (2.12)

where β̂1 = lima→1 β1 and β̂−1 = lima→1 β−1, and the corresponding principal stretches are λ̂i =
lima→1 λi, i = 1, 2, 3.

Similarly, when k → 0, the deformation (2.1) becomes an infinitesimal shear superposed on a
finite axial stretch. In this case, the nonlinear shear modulus (2.9) converges to [42]

μ̃(a) = lim
k→0

μ(a, k) = β̃1 − β̃−1

a
, (2.13)

where β̃1 = limk→0 β1 and β̃−1 = limk→0 β−1, and the principal stretches are λ̃i = limk→0 λi,
i = 1, 2, 3.

In the linear elastic limit, i.e. when k → 0 and a → 1, the nonlinear shear moduli defined by
(2.9), (2.12) and (2.13) converge to the classical shear modulus from the infinitesimal theory [33,
p. 179, 42],

μ̄= lim
a→1

lim
k→0

μ(a, k) = lim
k→0

μ̂(k) = lim
a→1

μ̃(a) = β̄1 − β̄−1, (2.14)

where β̄1 = lima→1 limk→0 β1 and β̄−1 = lima→1 limk→0 β−1, and the principal stretches are
λ̄i = limk→0 λi, i = 1, 2, 3.

Examples of the shear moduli μ̂(k) of (2.12), μ̃(a) of (2.13) and μ̄ of (2.14) for particular strain–
energy functions are given in table 1. For these models, we can write the nonlinear shear modulus
at small shear superposed on finite axial stretch as

μ̃(a) =
n∑

p=1

Cpgp(a), (2.15)
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Table 1. Selected hyperelastic models for isotropic incompressible materials, with explicit forms for the shear moduli μ̂(k) of
(2.12), μ̃(a) of (2.13) and μ̄ of (2.14).

material model strain–energy functionW (λ1, λ2, λ3) shear moduli

Ogden [66]
n∑

p=1

Cp
2α2p

(
λ
2αp
1 + λ

2αp
2 + λ

2αp
3 − 3

)
μ̂(k)=

n∑
p=1

Cp
αp

λ̂
2αp
1 − λ̂

2αp
2

λ̂21 − λ̂22

Cp,αp independent of deformation μ̃(a)=
n∑

p=1

Cp
αp

a1−αp (1 − a3αp )
1 − a3

μ̄=
n∑

p=1

Cp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lopez–Pamies [67]
n∑

p=1

3Cp
2αp

[(
λ21 + λ22 + λ23

3

)αp
− 1
]

μ̂(k)=
n∑

p=1

Cp

(
k
3

+ 1
)αp−1

Cp,αp independent of deformation μ̃(a)=
n∑

p=1

Cp

(
a2 + 2/a

3

)αp−1

μ̄=
n∑

p=1

Cp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce [68]
n∑

p=1

Cpα
2p

[(
λ21 + λ22 + λ23

α

)p

−
(
3
α

)p
]

μ̂(k)=
n∑

p=1

Cp

(
k2 + 3
α

)p−1

Cp,α independent of deformation μ̃(a)=
n∑

p=1

Cp

(
a2 + 2/a
α

)p−1

μ̄=
n∑

p=1

Cp

(
3
α

)p−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yeoh [69,70]
n∑

p=1

Cp
2p

(
λ21 + λ22 + λ23 − 3

)p
μ̂(k)=

n∑
p=1

Cpk2(p−1)

Cp independent of deformation μ̃(a)=
n∑

p=1

Cp
(
a2 + 2/a − 3

)p−1

μ̄= C1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where gp(a), p = 1, . . . , n, are functions of the stretch parameter a> 0. For instance, the Yeoh model
given in table 1 has g1(a) = 1 and gp(a) = (a2 + 2/a − 3)p−1 for p> 1. Similarly, under simple shear,
the nonlinear shear modulus takes on the form

μ̂(k) =
n∑

p=1

Cphp(k), (2.16)

where hp(k), p = 1, . . . , n, are functions of the shear parameter k> 0.

3. Stochastic–hyperelastic modelling
Our aim is to construct a stochastic–hyperelastic model W(λ1, λ2, λ3) from a given dataset
comprising the mean values and standard deviations for either the random shear stress P12 or
the nonlinear shear moduli μ̂(a) or μ̃(a), defined by (2.12) or (2.13), respectively. In general, more
than one parametrized model will be available that reasonably approximates the data and its
variability. These models may differ in form or number of parameters. Here, we consider the
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constitutive models listed in table 1, where explicit forms for the shear moduli μ̂(k) of (2.12) and
μ̃(a) of (2.13), and their linear elastic limit μ̄ of (2.14) are provided. For these models, we focus
on the implications of the variable data for the coefficients Cp, p = 1, . . . , n, which are random
constant parameters, independent of the other parameters, which are treated as deterministic
constants. Other material models could then be treated in a similar manner. Here, we explain in
detail the calibration of models from table 1 to experimental mean values and standard deviations
of the nonlinear shear modulus μ̃(a) of (2.13), for small shear superposed on finite axial stretch.
The calibration to data values of the elastic (shear) stress [25] or of the nonlinear shear modulus
μ̂(a) of (2.12), for simple shear, can then be performed analogously. Henceforth, the following
notation is used: a quantity with an overbar denotes a value appearing in the theory of linear
elasticity (e.g. μ̄); an underlined quantity denotes the mean value of that quantity (e.g. μ̂, μ̃, μ̄).

(a) Calibration of random field parameters
Whereas, in the deterministic models, we only require one mean value of the modulus provided
for each of the m stretches, in the stochastic models, we also consider the measured standard
deviation. Therefore, we assume that the given data consist of the mean values {μ̃s}s=1,...,m and the
associated standard deviations {ds}s=1,...,m of the nonlinear shear modulus (2.13) at the prescribed
stretches {as}s=1,...,m. We employ the following two-step procedure:

Step 1. First, we carry on the traditional method used in the deterministic approach [17–19,71].
That is, we determine the mean value of the nonlinear shear modulus (2.13) by minimizing the
residual

Rmean =
√√√√ m∑

s=1

(μ̃(as) − μ̃s)
2, (3.1)

between the mean nonlinear shear modulus μ̃ and the mean data values {μ̃s}s=1,...,m at the
prescribed stretches {as}s=1,...,m. Doing so, we obtain the mean values {cp}p=1,...,n of the random
constant coefficients {Cp}p=1,...,n. If the exponents are not fixed a priori, we also identify the
exponents {αp}p=1,...,n in the same process.

For the models listed in table 1, by (2.15), the mean value of the nonlinear shear modulus and
its linear elastic limit (2.14) take on the respective forms

μ̃(a) =
n∑

p=1

cpgp(a) (3.2)

and

μ̄= lim
a→1

μ̃(a) =
n∑

p=1

cpgp(1). (3.3)

Step 2. Based on the mean values derived at the first step, the goal of the second step is to
identify the probability distributions that the random model parameters follow. For the nonlinear
shear modulus (2.15), we define the variance

Var[μ̃(a)] =
n∑

p=1

Var[Cp]gp(a)2 + 2
n∑

p1=1

⎛
⎝ n∑

p2=p1+1

Cov[Cp1 , Cp2 ]gp1 (a)gp2 (a)

⎞
⎠ , (3.4)

where Var[Cp] is the variance of Cp, and Cov[Cp1 , Cp2 ] is the covariance of Cp1 and Cp2 . The standard
deviation of the nonlinear shear modulus is the square root of the variance,

‖μ̃(a)‖ =
√

Var[μ̃(a)], (3.5)
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and, similarly, for every random constant coefficient, Cp, p = 1, . . . , n, the standard deviation is
‖Cp‖ =√Var[Cp]. To find ‖Cp‖, we then need to minimize the residual

Rstd =
√√√√ m∑

s=1

(‖μ̃(as)‖ − ds)2, (3.6)

between the standard deviation (3.5) and the associated data {ds}s=1,...,m at the prescribed stretches
{as}s=1,...,m. Before we do so, we fix the value of the stretch parameter to a particular value a0 > 0
that is used for calibration. The corresponding random shear modulus (2.15) is

μ̃(a0) =
n∑

p=1

Cpgp(a0). (3.7)

Note that, when a0 = 1, μ̃(a0) is simply μ̄. Assuming Cp > b, for all p = 1, . . . , n, where b>−∞ is
chosen a priori, such that the mean values of the random coefficients, which are known from step
1, are bounded away from b, cp > b, p = 1, . . . , n, we define the auxiliary random parameters

Rp(a0) = gp(a0)(Cp − b)

⎛
⎝μ̃(a0) − b

n∑
p=1

gp(a0)

⎞
⎠

−1

, p = 1, . . . , n. (3.8)

These parameters are such that Rp > 0 and, by (3.7), satisfy

n∑
p=1

Rp(a0) =
⎛
⎝μ̃(a0) − b

n∑
p=1

gp(a0)

⎞
⎠

−1⎛
⎝ n∑

p=1

Cpgp(a0) − b
n∑

p=1

gp(a0)

⎞
⎠= 1, (3.9)

i.e. they form a complete probability distribution. Then, by (3.8), the random coefficients take on
the form

Cp = Rp(a0)
gp(a0)

⎛
⎝μ̃(a0) − b

n∑
p=1

gp(a0)

⎞
⎠+ b, p = 1, . . . , n. (3.10)

Next, following [23–27], for the random nonlinear shear modulus μ̃(a0), defined by (3.7), we set
the mathematical expectations:

E[μ̃(a0)] = μ̃(a0), μ̃(a0)> 0 (3.11)

and
E
[
log μ̃(a0)

]= ν, |ν|<+∞, (3.12)

where, by the constraint (3.11), the mean value μ̃(a0) is fixed and greater than zero, and the
logarithmic constraint (3.12) implies that both μ̃(a0) and μ̃(a0)−1 are second-order random
variables (i.e. they have finite mean and finite variance). Critically, equations (3.11) and (3.12)
imply that μ̃(a0) follows a Gamma distribution (the maximum entropy distribution) [72,73],
Γ (ρ1(a0), ρ2(a0)), with ρ1(a0)> 0 and ρ2(a0)> 0 satisfying

μ̃(a0) = ρ1(a0)ρ2(a0), Var[μ̃(a0)] = ρ1(a0)ρ2(a0)2, (3.13)

where the mean value μ̃(a0) is obtained at step 1. For the random vector (R1(a0), . . . , Rn(a0)),
applying the constraints [23,25]

E[log Rp(a0)] = νp, |νp|<+∞, p = 1, . . . , n − 1 (3.14)

and

E

⎡
⎣log

⎛
⎝1 −

n−1∑
p=1

Rp(a0)

⎞
⎠
⎤
⎦= νn, |νn|<+∞, (3.15)

this vector follows a Dirichlet distribution [41,74], D(ξ1(a0), . . . , ξn(a0)). Then, every random
variable Rp(a0), p = 1, . . . , n, follows a standard Beta distribution [40,41], B(ξp(a0),ψp(a0)), with
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ξp(a0)> 0 and ψp(a0) =∑n
q=1,q �=p ξq(a0)> 0 satisfying

rp(a0) = ξp(a0)∑n
q=1 ξq(a0)

, Var[Rp(a0)] = rp(a0)2ψp(a0)
ξp(a0)(ξp(a0) + ψp(a0) + 1)

, (3.16)

where rp(a0) is the mean value and Var[Rp(a0)] is the variance of Rp(a0), with the standard
deviation ‖Rp(a0)‖ =√Var[Rp(a0)]. By (3.8), the mean value is equal to

rp(a0) = gp(a0)(cp − b)

⎛
⎝μ̃(a0) − b

n∑
p=1

gp(a0)

⎞
⎠

−1

, (3.17)

and is calculated from the mean values obtained at step 1. Finally, the optimal hyperparameter
vectors (ρ1(a0), ρ2(a0)) and (ξ1(a0), . . . , ξn(a0)) are identified by minimizing the residual for the
standard deviation (3.6), and taking into account relations (3.10), (3.13) and (3.16).

(b) The particular case of one-termmodels
We now specialize the above approach to one-term models, which are of particular interest
because, for these models, there is only one random coefficient that needs to be determined, C1,
and only one random auxiliary parameter, R1 = 1. For the one-term model, at any stretch a = a0,
the random shear modulus (2.13) is equal to

μ̃(a0) = C1g1(a0) = μ̄g1(a0), (3.18)

where μ̄ is its linear elastic limit (2.14). In this case, we apply the two-step procedure, as follows:
Step 1. We determine the mean coefficient c1, and any other unknown constant parameter

appearing in the expression of the strain–energy function, by minimizing the residual function
for the mean values (3.1). The mean value of the random shear modulus (3.18) is equal to
μ̃(a) = c1g1(a), and its linear elastic limit is μ̄= c1.

Step 2. The variance defined by (3.4) simplifies to Var[μ̃(a)] = Var[C1]g1(a)2, and the
corresponding standard deviation, given by (3.5), is equal to ‖μ̃(a)‖ = ‖C1‖g1(a), where ‖C1‖ =√

Var[C1] is the standard deviation of C1. By (3.18), assuming (3.11) and (3.12) for μ̃(a0) is
equivalent to assuming

E[μ̄] = μ̄, μ̄ > 0 (3.19)

and

E[log μ̄] = ν, |ν|<+∞. (3.20)

Then, μ̄ follows a Gamma distribution, Γ (ρ1, ρ2), with ρ1 > 0 and ρ2 > 0 satisfying

c1 = μ̄= ρ1ρ2, ‖μ̄‖ = ‖C1‖ = c1/
√
ρ1, (3.21)

where c1 is obtained at step 1. After the optimal value of ‖C1‖ is computed by minimizing the
residual (3.6) for the standard deviation, the hyperparameters (ρ1, ρ2) are obtained from (3.21).

4. Bayesian model selection and Occam’s principle
Here, we show how Bayesian inference can be employed to select a model among competing
models calibrated to the same given data. We denote by P(M) the prior probability of the model
M before the data values D are taken into account, and by P(D|M) the likelihood of the data D
given the model M, describing the probability of obtaining the data values D from the model M.
Then, Bayes’ theorem [11,30,52] is used to update the probability of the model M in the light of the
data D. This theorem states that the posterior probability of the model M, denoted by P(M|D), is
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proportional to the product of the prior and the likelihood, i.e.

P(M|D) = P(M)P(D|M)
P(D)

, (4.1)

where P(D) is the normalization value, also known as the marginal likelihood.
The Bayesian formula (4.1) then provides a methodology for estimating the odds for the model

M(i) to the model M(j) in light of the data D,

Oij = P(M(i)|D)
P(M(j)|D)

= P(M(i))P(D|M(i))
P(M(j))P(D|M(j))

= P(M(i))
P(M(j))

Bij, (4.2)

where

Bij = P(D|M(i))
P(D|M(j))

(4.3)

is the Bayes factor. In other words, the posterior odds Oij for the model M(i) against the model
M(j), given the data D, are equal to the prior odds multiplied by the Bayes factor. We note that,
when the two models have equal prior probabilities, i.e. P(M(i)) = P(M(j)), meaning that there is no
prior favourite model, the prior odds are 1 and, by (4.2), the posterior odds are equal to the Bayes
factor. If the Bayes factor is 1, then Occam’s razor [53–56] implies that one should assign a larger
prior probability to the simpler model than to the more complex one for reasons of parsimony. The
Bayesian approach that we develop here does not depend on the choice of the prior probabilities.

To maintain a general framework, we assume P(D|M) to be an arbitrary probability that is
symmetric about the mean value D = 0 and decreasing in the absolute value of D. In this case, the
Bayes factor Bij satisfies the inequality [57]

Bij ≥
‖D(j)‖ +

√
2 ln(‖D(j)‖ + 1.2)

e‖D(i)‖2/2

√
2
π

, (4.4)

where ‖D(i)‖ and ‖D(j)‖ designate the standard deviation that the predicted quantity of interest
computed with the model M(i) and M(j), respectively, deviates from the observed data value D.
The lower bound on the Bayes factor Bij given by (4.4) represents an estimate of the amount of
evidence against the model M(i), i.e. the maximum support for the model M(j) provided by the
data. The expression on the right of the inequality (4.4) gives an explicit lower bound on the
Bayes factor Bij. Then, by (4.3), Bij = 1/Bji, and the inverse of the lower bound on the Bayes factor
Bji, provided by exchanging i and j in (4.4), constitutes an upper bound on the Bayes factor Bij, i.e.

Bij = 1
Bji

≤ e‖D(j)‖2/2

‖D(i)‖ +
√

2 ln(‖D(i)‖ + 1.2)

√
π

2
. (4.5)

Thus, assuming equal prior probabilities, i.e. prior odds are equal for all models, the explicit lower
and upper bounds on the Bayes factor provided by (4.4) and (4.5), respectively, represent bounds
on the posterior odds. In the following examples, these bounds will be estimated and applied to
select a model among competing models calibrated to experimental data.

5. Examples and applications
In this section, we construct explicit stochastic–deterministic models with the random
hyperelastic parameters calibrated to discrete mean values and standard deviations of either
the stress–strain function or the nonlinear shear modulus estimated from experimental data
for rubber and brain tissue, respectively. In all cases, multiple models that differ in form or
number of parameters are obtained that reasonably approximate the data and its variability. We
further employ the Bayesian model selection, whereby we calculate explicitly the lower and upper
bounds on the Bayes factor given by (4.4) and (4.5), then rely on these bounds to select a model
among competing models calibrated to the available data. If the bounds are similar, then the
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Table 2. Calibrated parameters and prior distribution hyperparameters of stochastic constitutive models for rubber-like
material, and the corresponding random nonlinear shear modulus μ̂(k0) of (2.12) at k0 = 0.1. The parameters are estimated by
following the two-step strategy presented in §3.

stochastic model for calibrated parameters calibrated hyperparameters of random shear modulus
rubber-like material (mean± s.d.) prior probability distribution (MPa) (mean± s.d.)

one-term (two-parameter)
Ogden (5.1)

c1 = 0.5150 ± 0.0263 ρ1 = 386.3588 μ̂(0.1)= 0.5145 ± 0.0262

α1 = 0.6748 ρ2 = 0.0013
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

one-term Lopez–Pamies (5.2) c1 = 0.5207 ± 0.0265 ρ1 = 385.9715 μ̂(0.1)= 0.5201 ± 0.0265

α1 = 0.6932 ρ2 = 0.0013
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

three-term Yeoh (5.3) c1 = 0.5115 ± 0.0256 ρ1 = 400.0952 μ̂(0.1)= 0.5112 ± 0.0256

c2 = −0.0358 ± 0.0001 ρ2 = 0.0013

b= −0.1 c3 = 0.0020 ± 0.0001 ξ1 = 582566

ξ2 = 583

ξ3 = 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

simplest model is chosen, as simpler models are more likely to be used even if their approximation
of the experimental data is not the best, as advocated in [21].

(a) Rubber-like material
Example 5.1. First, we calibrate the random Piola–Kirchhoff shear stress P12 of three different

models from table 1 to the experimental data for rubber material under simple shear reported
in [75]. The stochastic–hyperelastic models are as follows:

Wog
1 = C1

2α2
1

(λ2α1
1 + λ

2α1
2 + λ

2α1
3 − 3) one-term (two-parameter) Ogden model, (5.1)

W lp
1 = 3C1

2α1

[(
λ2

1 + λ2
2 + λ2

3
3

)α1

− 1

]
one-term Lopez–Pamies model (5.2)

and Wyo
3 =

3∑
p=1

Cp

2p
(λ2

1 + λ2
2 + λ2

3 − 3) p three-term Yeoh model. (5.3)

For these models, the hyperparameters of the Gamma distribution for the random nonlinear
shear modulus μ̂(k0) of (2.12) at k0 = 0.1 were identified. In addition, for the Yeoh model
(5.3), the hyperparameters of the Dirichlet probability distribution for the random coefficients
{Cp}p=1,2,3 were also obtained. The corresponding calibrated parameters and prior distribution
hyperparameters are listed in table 2. We note that, for the multiple-term model, the choice of
b in (3.8) is not unique. The random Piola–Kirchhoff shear stress is plotted in figure 1a. Our
results show that the three stochastic models perform very similarly when calibrated to the
given data, and the mean value parameters of the Lopez–Pamies model are similar to the values
μ≈ 0.52 ± 0.03 and α≈ 0.69 ± 0.05 identified in [75]. However, as the mean relative errors (not
shown here) are less than 5% when k> 0.7 and nearly 43% when k = 0.1, it is instructive to also
compare the nonlinear shear modulus μ̂(k) = P12/k of (2.12) for the models and for the data. In
this case, we find a sharp increase in the mean values and standard deviation of the nonlinear
shear modulus computed from the shear stress data when k< 0.7 (figure 1b). Further numerical
tests (not shown) reveal that attempting to improve the model approximation when k< 0.7 by
increasing the number of terms, in any of the three models, causes a steep increase in the mean
relative error when k> 0.7. This suggests that significant noise may be present in the data when
k< 0.7.
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Figure 1. Calibrated stochastic models for rubber material subject to simple shear, with the parameters recorded in table 2,
showing: (a) the random Piola–Kirchhoff shear stress P12 (with the 95% confidence region for the Lopez–Pamies model,
including themodelmean values and standard deviations), and (b) the randomnonlinear shearmodulus μ̂(k) of (2.12). (Online
version in colour.)

Next, for each model recorded in table 2, we calculate the standard deviation that the mean
shear modulus μ̂(0.1) deviates from the known mean data value D = 0.9, and obtain:

‖D(1)‖ = |0.9 − 0.5|
2

= 0.2 for one-term (two-parameter) Ogden model,

‖D(2)‖ = |0.9 − 0.5|
2

= 0.2 for one-term Lopez–Pamies model,

‖D(3)‖ = |0.9 − 0.5|
2

= 0.2 for three-term Yeoh model.

By (4.4) and (4.5), the corresponding Bayes factors satisfy

0.7980 ≤ Bij ≤ 1.2532, i< j, i, j = 1, 2, 3.

Assuming equal prior probabilities, i.e. prior odds 1, the posterior odds for each model against the
other is equal to their respective Bayes’ factors. Then, the bounds on the Bayes factors estimated
above suggest that the posterior odds for any of the models against another are also close to 1.
Thus, based on which model provides a more accurate approximation for the mean data at
k0 = 0.1, any of the three models is equally acceptable.
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Figure 2. Calibrated stochastic Ogden models for mouse brain tissue under small shear superposed on finite axial stretch with
the parameters listed in table 3, showing the random nonlinear shear modulus μ̃(a) of (2.13). (Online version in colour.)

(b) Brain mechanics
Example 5.2 (mouse brain). In this example, we calibrate the random nonlinear shear modulus

μ̃(a) of the stochastic one-term Ogden model (5.1) and of the stochastic multiple-term Ogden
models of the form

Wog
n =

n∑
p=1

[
Cp

2p2 (λ2p
1 + λ

2p
2 + λ

2p
3 − 3) + Cp

2p2 (λ−2p
1 + λ

−2p
2 + λ

−2p
3 − 3)

]
, (5.4)

with n = 3, 4, 5, respectively, to mean values and standard deviation data for mouse brain tissue
tested under 2% shear superposed on up to 40% tension or compression, in 10% increments. The
nonlinear shear modulus of deterministic Ogden models with multiple terms was previously
calibrated to similar mean values in [18]. Experimental tests on mouse brain tissue under small
shear combined with axial deformations were reported on in [16]. The calibrated parameters and
prior distribution hyperparameters of the stochastic models are recorded in table 3. For these
models, the hyperparameters of the Gamma distribution for the random linear shear modulus μ̄
of (2.14) were obtained. Again, for multiple-term models, the choice of b is not unique. For a clear
illustration, the random nonlinear shear modulus μ̃(a) of the one-term and four-term models are
plotted in figure 2.

Then, for each model listed in table 3, we estimate the standard deviation that the mean shear
modulus μ̄ deviates from the mean data value D = 0.1915 at 2% simple shear. Taking the models in
the order of their complexity, from the simplest, one-term model, to the most complex, five-term
model, we obtain:

‖D(1)‖ = |0.2454 − 0.1915|
2

= 0.0270 for one-term (two-parameter) Ogden model,

‖D(2)‖ = |0.2265 − 0.1915|
2

= 0.0175 for three-term (three-parameter) Ogden model,

‖D(3)‖ = |0.2150 − 0.1915|
2

= 0.0117 for four-term (four-parameter) Ogden model,

‖D(4)‖ = |0.2090 − 0.1915|
2

= 0.0087 for five-term (five-parameter) Ogden model.

When we compare each model to the next more complex one, by (4.4) and (4.5), the Bayes factors
satisfy:

0.5143 ≤ B12 ≤ 1.8806, 0.5038 ≤ B23 ≤ 1.9436, 0.4983 ≤ B34 ≤ 1.9846.
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Table 3. Calibrated parameters andprior distribution hyperparameters of stochastic Ogden-typemodels formouse brain tissue,
and the corresponding random linear shear modulus μ̄ of (2.14). The parameters are estimated by following the two-step
strategy presented in §3.

stochastic model for calibrated parameters calibrated hyperparameters of random shear modulus
mouse brain tissue (mean± s.d.) prior probability distribution (kPa) (mean± s.d.)

one-term (two-parameter)
Ogden (5.1)

c1 = 0.2454 ± 0.0185 ρ1 = 175.6736 μ̄= 0.2454 ± 0.0185

α1 = −2.2111 ρ2 = 0.0014
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

three-term (three-parameter)
Ogden (5.4)

c1 = −1.1192 ± 0.0255 ρ1 = 49.0153 μ̄= 0.2265 ± 0.0324

c2 = 0.8167 ± 0.0059 ρ2 = 0.0046

b= −3 c3 = 0.5291 ± 0.0009 ξ1 = 7919

ξ2 = 153 488

ξ3 = 99 997
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

four-term (four-parameter)
Ogden (5.4)

c1 = −2.3043 ± 0.3939 ρ1 = 57.7743 μ̄= 0.2150 ± 0.0283

c2 = 1.7865 ± 0.3491 ρ2 = 0.0037

b= −5 c3 = 1.1016 ± 0.2035 ξ1 = 40

c4 = −0.3687 ± 0.1305 ξ2 = 266

ξ3 = 685

ξ4 = 294
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

five-term (five-parameter)
Ogden (5.4)

c1 = −4.4681 ± 0.0960 ρ1 = 51.4814 μ̄= 0.2090 ± 0.0291

c2 = 2.5410 ± 0.2452 ρ2 = 0.0041

b= −10 c3 = 3.4361 ± 0.1178 ξ1 = 2771

c4 = −0.5959 ± 0.0992 ξ2 = 2086

c5 = −0.7041 ± 0.0969 ξ3 = 8388

ξ4 = 6569

ξ5 = 4502
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assuming the prior odds of one model against another are all equal, the estimated bounds on
the Bayes factors represent bounds on the posterior odds. From the above estimates, we first
notice that the lower bounds appear to decrease, while the upper bounds tend to increase as the
complexity of the models increases. However, as these changes are slow, we can only infer that
the posterior odds for each model against another are approximately better than 1/2 (one to two)
and worse than 2/1 (two to one), i.e. the posterior odds satisfy

1
2

≤ Oij = P(D|M(i))
P(D|M(j))

≤ 2, i< j, i, j = 1, 2, 3, 4.

In this case, it is instructive to calculate also the approximate bounds on the corresponding
posterior probabilities arising from these bounds. Taking P(D|M(j)) = 1 − P(D|M(i)), from the
above double inequalities, we obtain 1/3 ≤ P(D|M(i)) ≤ 2/3, i = 1, 2, 3, 4. As these probabilities are
close to 1/2, we conclude that the given data are equally probable according to the computations
performed by the simplest or the more complicated models. Thus, given the accuracy of the
approximations attained by different models, the explicit Bayesian approach cannot favour any
particular model listed in table 3. Occam’s razor then implies that the simplest model should be
chosen. In general, within a large set of possible models with no Bayesian favourite, it may not
always be clear what ’the simplest model’ means. How do we quantify the notion of simplicity
for different functions? However, in our case, we have a well-defined family of models with
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Figure 3. Calibrated stochastic Ogden-typemodels for human brain tissue under small shear superposed on finite axial stretch,
with the parameters given in table 4, showing the random nonlinear shear modulus μ̃(a) of (2.13). (Online version in colour.)

increasing number of terms. Therefore, we understand ’the simplest model’ as the one with the
fewer number of terms, i.e. the one-term (two-parameter) stochastic Ogden model.

Example 5.3 (human brain). Next, we calibrate the random nonlinear shear modulus μ̃(a) of
the stochastic Ogden models (5.1) and (5.4), where n = 3, 4, 5, to experimental data for human
brain tissue under infinitesimal shear superposed on up to 25% tension or compression, in 5%
increments. The nonlinear shear modulus of deterministic Ogden models with one or multiple
terms was previously calibrated to the same mean values in [19]. Extensive experimental results
for human brain tissue under combined shear and axial deformations were reported in [17],
where the mean elastic responses were calculated as the average between the viscoelastic
loading and unloading paths. The standard deviation considered here represents the range of
viscoelastic responses. For the stochastic models, the calibrated parameters and prior distribution
hyperparameters are given in table 4. For these models, the hyperparameters of the Gamma
distribution for the random linear shear modulus μ̄ of (2.14) were identified. The random
nonlinear shear modulus μ̃(a) of the one-term and four-term models are illustrated in figure 3.

As in the previous example, for each model recorded in table 4, we estimate the standard
deviation that the mean linear shear modulus μ̄ deviates from the known mean data value D =
0.3379. We find:

‖D(1)‖ = |0.3778 − 0.3379|
2

= 0.0200 for one-term (two-parameter) Ogden model,

‖D(2)‖ = |0.3484 − 0.3379|
2

= 0.0053 for three-term (three-parameter) Ogden model,

‖D(3)‖ = |0.3366 − 0.3379|
2

= 0.0006 for four-term (four-parameter) Ogden model,

‖D(4)‖ = |0.3263 − 0.3379|
2

= 0.0058 for five-term (five-parameter) Ogden model.

By (4.4) and (4.5), the corresponding Bayes factors satisfy

0.4916 ≤ B12 ≤ 1.9267, 0.4830 ≤ B23 ≤ 2.0336, 0.4928 ≤ B34 ≤ 2.0702.

Taking prior odds 1, the bounds on the Bayes factors represent bounds on posterior odds. Again,
the above bounds are approximately at most 1/2 against the simpler model and at least 2/1 for
the more complex one. Then, comparing one model with another, the posterior probability for
each model satisfies 1/3< P(D|M(i))< 2/3, i = 1, 2, 3, 4, and is close to 1/2. Hence, by taking into
account how well each model approximates the mean data, the explicit Bayesian approach does
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Table 4. Calibrated parameters and prior distribution hyperparameters of stochastic Ogden-type models for human brain
tissue, and the corresponding random linear shearmodulus μ̄of (2.14). Theparameters are estimatedby following the two-step
strategy presented in §3.

stochastic model for calibrated parameters calibrated hyperparameters of random shear modulus
human brain tissue (mean± s.d.) prior probability distribution (kPa) (mean± s.d.)

one-term (two-parameter)
Ogden (5.1)

c1 = 0.3778 ± 0.0343 ρ1 = 121.3216 μ̄= 0.3778 ± 0.0343

α1 = −4.0250 ρ2 = 0.0031
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

three-term (three-parameter)
Ogden (5.4)

c1 = −5.5089 ± 0.2859 ρ1 = 88.0208 μ̄= 0.3484 ± 0.0371

c2 = 2.9269 ± 0.2085 ρ2 = 0.0040

b= −10 c3 = 2.9305 ± 0.1146 ξ1 = 203

ξ2 = 2951

ξ3 = 2074
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

four-term (four-parameter)
Ogden (5.4)

c1 = −13.5515 ± 0.3164 ρ1 = 82.3576 μ̄= 0.3366 ± 0.0371

c2 = 10.3735 ± 0.2367 ρ2 = 0.0041

b= −15 c3 = 6.8913 ± 0.1296 ξ1 = 20

c4 = −3.3767 ± 0.0128 ξ2 = 7643

ξ3 = 22 661

ξ4 = 7236
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

five-term (five-parameter)
Ogden (5.4)

c1 = −35.9407 ± 0.9719 ρ1 = 74.9717 μ̄= 0.3263 ± 0.0377

c2 = 20.2082 ± 0.3292 ρ2 = 0.0044

b= −50 c3 = 29.9337 ± 1.1963 ξ1 = 198

c4 = −6.9335 ± 0.1919 ξ2 = 30 726

c5 = −6.9413 ± 0.3994 ξ3 = 2979

ξ4 = 44 696

ξ5 = 16 329
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

not favour any particular model listed in table 4. Applying Occam’s razor, the simplest model, i.e.
the one-term (two-parameter) stochastic Ogden model, should be selected.

Remark 5.4. It is important to remark here that the estimated bounds on the Bayes factors in
the two examples involving brain tissue data [18,19] are very similar. Further numerical tests that
are not included here also show that similar bounds, i.e. approximately 1/2 and 2, respectively,
are found when simple shear superposed on the maximum compression or tension is considered,
or when models with more terms are calibrated to the given datasets. By the likelihood principle,
we infer that the two datasets have the same likelihood [76]. This is very striking, given that the
respective data arise from different brain tissue types tested by different experimental procedures.
In this case, the likelihood principle seems to play a unifying role for the experimental testing.
A natural question is then: could this principle be further applied to guide experiments?

6. Conclusion
Homogeneous isotropic hyperelastic models can capture characteristic mechanical behaviours
of many deformable solids and underpin their analyses and computer simulation. However,
natural and bioinspired materials exhibit inherent variations in their elastic properties, which
play important roles in their functional performance, and are not represented by a nonlinear
elastic constitutive law. For these materials, stochastic representations accounting also for
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data dispersion contain additional information about the variability of material properties.
We combine finite elasticity and information theories to construct homogeneous isotropic
hyperelastic models with random field parameters calibrated to discrete mean values and
standard deviations of either the stress–strain function or the nonlinear shear modulus, which
is a function of the deformation, estimated from experimental tests. These quantities can take on
different values, corresponding to possible outcomes of the experiments. In summary, we cast the
model parameters as random variables and use the maximum entropy probability distribution to
express the uncertainty of the data variability. In our approach, the mean values and standard
deviations of the model parameters and the hyperparameters of the underlying probability
distribution are calculated formally, although these quantities are not unique in general. As
multiple models, which differ in form or number of parameters, can be derived that adequately
represent the observed phenomena, we apply Occam’s razor by providing an explicit criterion
for model selection, based on Bayesian statistics. We then employ this criterion to select a model
among competing models calibrated to the available data for rubber and brain tissues under
single or multiaxial loads. Our modelling strategy can further be used to study the variation in the
elastic behaviour of solid materials in different applications. In medicine, this research enhances
the current solid mechanics research as it will enable better predictions from ensemble data.
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