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Abstract
We now have access to the sequences of tens of millions of proteins. These
protein sequences are essential for modern molecular biology and
computational biology. The vast majority of protein sequences are derived from
gene prediction tools and have no experimental supporting evidence for their
translation.  Despite the increasing accuracy of gene prediction tools there
likely exists a large number of spurious protein predictions in the sequence
databases.  We have developed the Spurio tool to help identify spurious protein
predictions in prokaryotes.  Spurio searches the query protein sequence
against a prokaryotic nucleotide database using tblastn and identifies
homologous sequences. The tblastn matches are used to score the query
sequence’s likelihood of being a spurious protein prediction using a Gaussian
process model. The most informative feature is the appearance of stop codons
within the presumed translation of homologous DNA sequences.
Benchmarking shows that the Spurio tool is able to distinguish spurious from
true proteins. However, transposon proteins are prone to be predicted as
spurious because of the frequency of degraded homologs found in the DNA
sequence databases. Our initial experiments suggest that less than 1% of the
proteins in the UniProtKB sequence database are likely to be spurious and that
Spurio is able to identify over 60 times more spurious proteins than the AntiFam
resource.
The Spurio software and source code is available under an MIT license at the
following URL: https://bitbucket.org/bateman-group/spurio
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Introduction
Sequencing of genomes has now become routine with the DNA 
archives containing the sequences of over 100,000 complete 
genomes, while the direct sequencing of proteins is still low  
throughput and not a routine technique. Fortunately, computa-
tional methods exist to predict the protein sequence of genes  
from genomic DNA sequence. At least for bacterial DNA, these 
methods are fast and accurate. Existing tools for bacterial gene  
prediction claim accuracy figures of over 99% suggesting that 
almost all known genes in well annotated genomes are identi-
fied by these methods1. However, many extra genes are predicted,  
some of which may be real and some of which may be false. Even 
if the false positive rate of the methods is only 0.1%, then within 
a database of 100 million proteins like UniProt we would still  
expect to find 100,000 spurious protein predictions. Given the 
widely varying quality of gene prediction pipelines still in use2, 
we expect that the actual number of spurious proteins is likely  
to be much higher. An important question to address is what  
fraction of sequence databases are spurious gene predictions. In  
this paper we begin to address this problem by creating a generic 
tool to identify spurious proteins.

We term the task of identifying and deleting spurious gene  
predictions as gene unprediction. Gene unprediction would 
allow for the quality control and refinement of existing genomic  
annotation as well as helping to identify shortcomings in  
existing gene prediction pipelines. One existing tool that can 
aid in gene unprediction is the AntiFam database3. AntiFam is a  
collection of profile-HMM models that can be used to identify 
members of potentially spurious protein families. AntiFam 
release 4.0 contains 65 entries that identify a range of spurious  
proteins. Some of these models were families initially built 
and included into the Pfam database (RRID:SCR_004726)4, 
but later removed when it was pointed out they contained only  
spurious proteins. Many more AntiFam entries were constructed 
to model shadow ORFs which appear on the opposite strand 
of well-known genes, such as the 23S rRNA5. However, the  
AntiFam approach does not scale well. Each family requires the 
effort of a curator to build it and verify its status as spurious.  
Many spurious proteins may be singletons, appearing only 
once in the sequence database and so could not form a family of  
spurious proteins to be included in AntiFam.

Methods and results
Our approach to identifying spurious genes is to identify stop 
codons in homologous genomic DNA sequences. If we see 
many stop codons falling within what would be the homologous  
protein sequence from related organisms then we will infer that 
this DNA region is unlikely to be under selection at the protein 
level and is likely to be a spurious gene prediction. Still we must  
expect to find stop codons in homologous DNA sequences  
that are not indicative of incorrect gene prediction. Firstly the 
homologous DNA sequence may have sequencing errors leading 
to erroneous stop codons. A second reason is that stop codons 
are sometimes recoded for amino acids. The most prevalent  
examples include recoding of UGA codons as tryptophan in  
members of Entomoplasmatales and Mycoplasmatales6, and  

more widely, UGA can also be interpreted as selenocysteine7, as 
well as UAG which can be recoded as pyrrolysine in archaebacteria8.  
Pseudogenization is a real process and so we must expect  
some level of stop codons to be found in homologous regions of 
known genes. Certain organisms have a high level of pseudog-
enization, in particular obligate intracellular pathogens such as  
buchnera species may contain up to 50% of pseudogenes9.

Here we describe two examples that illustrate the concept of  
identifying spurious proteins by inspecting homologous DNA 
sequence. The first example is from a known spurious protein  
identified by the AntiFam resource. This protein is an unchar-
acterized protein from the microbe Acinetobacter bereziniae  
(UniProt accession: N8YUQ2) which was revealed to be a  
translated CRISPR YPRES repeat sequence. In Figure 1A below 
we show a summary visualization of the tblastn output, with 
each line representing a similar DNA sequence. Stop codons are  
identified with white pixels and give the appearance of snow  
falling, hence we call these blizzard plots. This is a clear case  
where almost every homologous DNA sequence contains stop 
codons throughout the alignment.

The second example (Figure 1B) shows an example protein from 
UniProtKB/Swiss-Prot (Apolipoprotein N-acyltransferase from 
Mycobacterium smegmatis (UniProt: A0QZ13)). The plot is  
almost totally devoid of stop codons within the aligned regions. 
The single example stop codon is very close to the C-terminus  
of the protein meaning it is likely a benign change. It is interesting 
to see that there are black dots also within the similar sequences 
which represent deletions in the homologous sequence that  
occur in the multiple of three bases. This represents an additional 
line of evidence for the coding potential of the query sequence.

Description of Spurio tool
The Spurio tool is based on running the tblastn software  
(RRID:SCR_011822) (we have used BLAST version 2.7.1+) 
using the query protein to search against a collection of microbial  
genome sequences. The tblastn output is parsed to include 
only matches more significant than the threshold E-value. We  
explored a range of E-values in the benchmarking and identified 
10 to be a good balance between precision and recall. For the  
genome collection, we chose a non-redundant set of 1,507 full 
genomes of bacteria and archaea provided by the ENA genome 
database10. As we mentioned earlier, Entomoplasmatales and  
Mycoplasmatales use an alternative genetic code, in which the 
UGA codon is interpreted as tryptophan6. To account for this,  
these bacteria are processed in a separate homology search where 
the correct genetic code is used.

Feature extraction and preprocessing
Our tool proceeds to transform the results of the homology  
search, which can be visualized as a blizzard plot, into a prob-
ability estimate for the underlying sequence to be spurious. To 
perform this classification, Spurio extracts three features from 
the set of homologous sequences. The central one, describing the 
relative amount of stop codons, is given in the equation F1 below. 
The '+1' pseudocount is a compromise for the logarithm to be 
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Figure 1. Example blizzard plots of two proteins. (A) A blizzard plot of Acinetobacter bereziniae protein F963_00691 (UniProt accession: 
N8YUQ2). (B) Apolipoprotein N-acyltransferase from Mycobacterium smegmatis (UniProt: A0QZ13). Each row on the plot shows the alignment 
region of potential protein from the tblastn search. Stop codons are shown as white pixels and methionine codons are shown as red pixels. 
The significance level of the match is indicated by the rainbow colour scale on the right.

applicable even if zero stop codons are found. Note also that stop 
codons are only counted if they fall within the region of similarity 
reported by tblastn. Finally, because homologous over-extension  
of alignments11 can cause pairwise alignments to extend into  
non-homologous regions, we only count stop codons if they fall  
within the body of the tblastn matching region (Not within the 
first or last 10 amino acids of match positions). Additionally,  
Spurio uses the logarithmized number of homologous sequence  
hits (Equation F2) and the protein sequence length (Equation F3)  
as features, which together describe the dimensions of the  
corresponding blizzard plot.

         1
1   

        

Number of stop codons across all matched sequences
F log

Total number of amino acids in all matched sequences

+
=

2 (    )F log Number of homologous sequences=

3 ( )F = log Sequence length

Probabilistic classification
Having extracted and preprocessed features, we use a probabi-
listic Gaussian process classifier12 to estimate the probability  
of a protein to be spurious. As a supervised learning technique, 
the Gaussian process classifier is dependent on training samples 
to infer the underlying feature distribution. For this, we created 
a balanced sample set of protein sequences. The positive set is  
composed of 3,107 likely spurious proteins derived from the 
AntiFam resource (version 4.0) (See Supplementary File 1).  
The negative control set of 3,107 proteins that are genuinely  
translated were randomly selected from UniProtKB/Swiss-Prot  
(RRID:SCR_002380) (See Supplementary File 1). The  
distribution of these sample sequences after preprocessing  

suggests that the feature space is adequate for the separation of  
real and spurious sequences (see Figure 2).

On this set of sample data, we trained a Gaussian process  
model with a radial basis function kernel implemented in the  
python package scikit-learn13. Figure 3 shows the model after  
training on all samples, overlaid with 500 test samples. The  
performance for the whole approach is reviewed in the following 
section.

Benchmarking of Spurio method
The Spurio software (version 1.0) was tested using 8-fold cross 
validation on the previously described set of 3,107 samples 
per class. This led to 8 iterations of 5,438 training- and 776 test  
samples each. Based on this procedure, we report a mean  
accuracy of 96.8% (training: 97.0%) and area under the curve 
of 0.991 (training: 0.992). The results are summarized in  
Figure 4.

Practical application of the Spurio method
To further understand the performance of Spurio we ran it on 
100,000 random bacterial proteins (See Supplementary File 2) 
from UniProtKB/TrEMBL version 2017_12 in order to estimate 
the number of spurious proteins (See Supplementary File 3). 
5,392 Sequences did not yield any homologous sequences and 
were excluded. How the remaining proteins are distributed in the 
probability space of the Gaussian process classifier is shown in  
Figure 5. We see that the large majority of spurious proteins  
are found to be in the shorter length ranges of 30–150 amino  
acids as we might expect from incorrect gene predictions. As 
expected, we identify many more real than spurious proteins.
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Figure 2. Scatter plots of the separation of AntiFam versus Swiss-Prot proteins. Protein sequences were sampled from either Swiss-
Prot (3,107 sequences shown in blue) or AntiFam (3,107 spurious sequence shown in orange). After preprocessing, every protein sequence 
is represented by a single dot in three-dimensional space. This dataset was later used for the training and testing a probabilistic classifier.  
(A) Shows the log length versus the normalised log of the stop codons per aligned position. (B) Shows the log number of tblastn hits versus 
the normalised log of the stop codons per aligned position. The raw data set can be found associated with this paper.
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Figure 3. A Gaussian process classifier is used to assign probability scores to sequences, describing their likelihood to be spurious. 
Sequences classified as spurious are coloured blue and non-spurious proteins are coloured orange. The classification is performed in three 
dimensions. Shown above are cross-sections along the sequence length dimension. 500 test data samples are projected to the nearest layer 
in this plot. 8-fold cross validation suggests a mean prediction accuracy of 96.8%.

To illustrate the predictions by Spurio we have selected a 
representative example, the AZOBR_140218 protein from  
Azospirillum brasilense (UniProt: G8AMM6). This protein is 648 
amino acids long and so would appear to be very likely a true 
protein coding gene. However, Spurio gives it a probability score 
of 0.979 indicating it is very likely to be Spurious. Inspection  
of the Blizzard plot (Figure 6) shows that the DNA homologues 
of this sequence have a large number of stop codons. Further  
investigation shows that this protein is on the opposite strand to 
the translational GTPase TypA (UniProt: A0A060DFP7) which 
strongly suggests that the AZOBR_140218 protein is indeed  
spurious and is a shadow ORF. Interestingly searching this  
spurious protein for homologues identifies many proteins  
including some that are erroneously annotated as the enzyme  
1-deoxy-D-xylulose 5-phosphate reductoisomerase (see UniProt: 
R5CSG3 as an example).

If we select an arbitrary threshold of 0.8 or greater to represent 
a spurious protein then 0.82% of the 100,000 sample of proteins 
are predicted to be spurious. Of these 26% have matches to Pfam  
which is somewhat surprising (see Table 1). However, if we  
consider proteins with no Pfam match we find that 3.8% of them 
have a Spurio score > 0.8 compared to just 0.25% of proteins  
with a Pfam match. Thus proteins with no Pfam match are  

15 times more likely to be predicted as spurious than those with 
a Pfam match. If we search the sample of 100,000 proteins with  
AntiFam we find it identifies only 12 that are spurious (see  
Supplementary File 4). Therefore, Spurio is able to identify  
62 times more spurious proteins than AntiFam. Of the 12 AntiFam 
matched proteins, 9 had Spurio scores of 0.97 or greater. The results  
of the AntiFam search can be found in Supplementary materials.

It is interesting to highlight an example where Spurio does did 
not match a protein that AntiFam did. If we take the example  
ALP79_101044 (UniProt: A0A0W8HJ99) we find that it has  
a Spurio score of 0.14 and has a strong Pfam match to the  
FAD_binding_3 family (Pfam: PF01494). The blizzard plot  
(Figure 7) shows that there is very little similarity detected to  
other organisms in the N-terminal 100 amino acids. It has an  
AntiFam match at the N-terminus of the protein from residues 
1–25 to a translation of a tRNA. It seems likely that the protein 
should start at the methionine which is at position 31 of the existing 
sequence in UniProt.

We continued to investigate whether sequences predicted as  
spurious are less likely to be members of existing protein  
families in Pfam than those sequences predicted to be true  
proteins. We would expect that spurious proteins would be unlikely 
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Figure 4. Benchmarking plots for Spurio based on 8-fold cross-validation using 5,438 training and 776 test samples per fold. The 
transparent lines represent the individual results of each cross-validation run, the mean over all runs is shown in blue. (A) Receiver Operator 
Characteristic curve. (B) Precision-Recall curve. (C) Calibration plot showing the reliability of the model versus a perfectly calibrated model.
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Figure 5. Distribution of 100,000 TrEMBL matches projected onto the Gaussian process classifier probability space. The Spurio output 
data can be found associated with the paper.

Table 1. Contingency table showing the number 
of matches with Spurio scores >= 0.8 versus the 
presence of a match to Pfam.

No Pfam match Pfam match

Spurio score >= 0.8 551 193

Spurio score < 0.8 13, 863 75, 638

to fall into Pfam families and so in a perfect world we would 
see the expected number of Pfam matches at a Spurio score of  
0 and see no Pfam matches at a Spurio score approaching 1.  
Figure 8 shows that in the 100,000 sequences from TrEMBL this 
is the case for predicted values from zero up to 0.6. But above  
that value we see an excess of matches to Pfam. To understand 
what is causing this excess of matches to families we created a  
list of the top ten most frequently occurring Pfam families, 
shown in Table 2. Inspection shows that eight out of the top ten  
Pfam families are related to transposon function. It is known  
that there can be many copies of degraded transposons within a  
genome. The larger than normal number of these degraded copies  

compared to proteins with normal cellular functions makes them 
appear to be spurious proteins.

We expected that selenoproteins may present problems for the 
Spurio method. To examine this we took an example seleno-
protein GrdA from Carboxydothermus hydrogenoformans  
“(UniProt: Q3A9J5) and ran Spurio on it. We found that indeed 
it was scored as 0.891 probability to be spurious (see Figure 9).  
One can clearly see in the blizzard plot the conserved seleno-
cysteine position as a column of stop codons. It is interesting to  
note that selenoproteins that have been mispredicted to contain  
premature stop codons are unlikely to be predicted as spurious.
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Figure 6. A blizzard plot of AZOBR_140218 protein from Azospirillum brasilense (UniProt: G8AMM6). See Figure 1 for a description of 
the features of the blizzard plot.

Figure 7. A blizzard plot of ALP79_101044 protein from Pseudomonas savastanoi pv. fraxini (UniProt: A0A0W8HJ99). See Figure 1  
for a description of the features of the blizzard plot. The Pfam domain architecture of this protein has been added at the top of the figure.
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Figure 8. Histogram showing the proportion of sequences matching Pfam across the range of Spurio scores. 5,392 Sequences did 
not yield any homologous sequences and were excluded. Another 4,363 samples were processed by spurio, but were released later than the 
current version in InterPro and were thus excluded. The plot shows the remaining 90,245 sequences.

Table 2. Table showing the ten most prevalent Pfam families among proteins with Spurio 
scores >= 0.8. Pfam accessions for the families that are likely to be transposon associated are 
underlined.

Pfam accession / Pfam identifier Number of 
matches

Pfam description

PF13610 / DDE_Tnp_IS240 14 Transposase DDE domain

PF00313 / CSD 10 Cold-shock domain

PF01609 / DDE_Tnp_1 9 Transposase DDE domain

PF03400 / DDE_Tnp_IS1 8 IS1 Transposase

PF14104 / DUF4277 8 Domain of unknown function (DUF4277)

PF13340 / DUF4096 8 Putative transposase

PF13586 / DDE_Tnp_1_2 7 Transposase DDE domain

PF00936 / BMC 6 Bacterial Microcompartment domain

PF00239 / Resolvase 6 Resolvase, N-terminal domain

PF13358 / DDE_3 5 DDE superfamily endonuclease
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Figure 9. A blizzard plot of the selenoprotein GrdA from Carboxydothermus hydrogenoformans (UniProt: Q3A9J5). See Figure 1 for a 
description of the features of the blizzard plot.

Discussion
The identification of spurious genes is an area of genomic  
annotation that has received very little attention. This is partly 
due to the difficulty of proving that a gene is not expressed in any 
condition. We have made a generic tool to discover spuriously  
predicted proteins from bacterial genome sequences. Our attempt 
is reasonably successful, but we find that while we can indicate 
likely spurious genes, there are some failure modes that mean 
that the Spurio results should be considered indicative and that  
they will require inspection for some applications. For exam-
ple, transposon related genes are apt to be predicted as spurious  
because they have many pseudogenized homologues. It may 
be possible that this could be turned into a positive attribute to  
help identify regions of a genome with high predicted spuriousity 
that may be transposons.

In order to improve the accuracy of Spurio we recommend 
that users focus on proteins that do not fall into known Pfam  
families as well as short proteins less than 150 amino acids in  
length. A use case where Spurio may be particularly appropri-
ate is in the case of overlapping genes. If genes are called on  
opposite strands then Spurio could be used to detect if either or  
both the genes may be due to spurious gene prediction. A  
preliminary study of 21,452 genes in overlapping pairs  
(>50 nucleotide overlap) showed that 8.7% (1,867) of them had a 
Spurio score of 0.8 or higher (See Supplementary File 5).

Spurio could be further developed by the addition of new  
features for training the model. Possible features could include 
the fraction of residues covered by Pfam domains. We would  
expect that spuriousness would negatively correlate with this  
feature. Also the number or proportion of insertions or deletions 

may carry useful information to discriminate real from spuri-
ous genes. It is worth noting that Pearson showed that protein  
sequences are essentially random and so features based on pro-
tein sequence or composition may not be informative14. Because 
we have found that transposons have a propensity to be predicted 
as spurious it may be beneficial to have a feature that measures 
how many times a protein matches within a particular genome,  
i.e. the average copy number. Transposons are often found in  
multiple copies per genome. We might expect this to be higher  
for transposon proteins.

Although we did not see amino acid recoding to be an important 
factor in testing Spurio, it would be possible to attempt to make 
an ab initio prediction of recoding of stop codons. For example 
if we saw a TGA stop codon was consistently aligned to cysteine  
residues in the tblastn output we could predict that stop codon 
as a selenocysteine position. This may make an incremental  
enhancement of prediction accuracy.

With a method to assess the level of spurious proteins in hand we 
can assess the quality of a variety of protein sequence datasets.  
One future avenue to explore, would be to use Spurio as a quality 
control metric for complete proteomes. By looking at the  
fraction of predicted spurious proteins on a per proteome basis  
one could assign a quality index. In addition, we could also  
investigate how the quality of protein datasets has changed over 
time. It has been suggested that the quality of databases and 
their annotations may degenerate over time due to new protein 
sequences being based on previous erroneous protein sequences.  
Spurio gives us an initial estimate of 0.82% of TrEMBL proteins 
being spurious. Depending on your perspective this might be  
considered reassuringly low, or alarmingly high. Whatever 
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your perspective, we believe that Spurio gives us a new and  
important tool to address issues of gene misprediction and we  
hope this will motivate further work in the area of gene  
unprediction.

Operation
To run Spurio, blast15 and bedtools16 must first be installed. 
 Spurio has several Python dependencies, which are listed in the 
requirements.txt file. Spurio requires Python 3.

Software availability
Spurio software and source code is available at: https://bitbucket.
org/bateman-group/spurio

Supplementary material
Supplementary File 1: Training data for the Spurio classifier. This file contains the 3,107 positive AntiFam proteins and the negative set 
of 3,107 UniProtKB/Swiss-Prot proteins. As well as the UniProtKB identifier we include the feature values used by the classifier.

Click here to access the data.

Supplementary File 2: List of the 100,000 protein sample from UniProtKB/TrEMBL. List accession numbers of the 100,000 bacterial 
protein sample randomly taken from UniProtKB/TrEMBL from UniProtKB version 2017_12.

Click here to access the data.

Supplementary File 3: Spurio matches to the 100,000 sample of UniProtKB/TrEMBL. This file contains the Spurio match data for the 
94,602 proteins which could be scored by Spurio from the 100,000 random TrEMBL sample sequences. Column 1 contains the TrEMBL 
accession, column 2 contains the Spurio score, Columns 3 to 5 contain the feature values used by the Spurio classifier.

Click here to access the data.

Supplementary File 4: AntiFam matches to the 100,000 sample of UniProtKB/TrEMBL. This tab delimited file describes the 12 Anti-
Fam matches found in the 100,000 random TrEMBL sample sequences. The Spurio scores for each are included for reference.

Click here to access the data.

Supplementary File 5: Spurio matches to the 21,452 overlapping proteins from UniProtKB/TrEMBL. This file contains the Spurio 
match data for the 21,452 overlapping proteins sampled from UniProtKB/TrEMBL. Column 1 contains the TrEMBL accession, column 2 
contains the Spurio score, Columns 3 to 5 contain the feature values used by the Spurio classifier.

Click here to access the data.

Archived source code as at time of publication: https://doi.
org/10.5281/zenodo.118443717

License: MIT
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Prokaryotic structural and functional annotation improves over time as growing resources, such as Pfam
or CDD, add to the collections of rules that automated annotation pipelines can call on for genome
analysis.  A considerable amount of genomic “dark matter” remains in the form of proteins not currently
reached by any annotation rule.   Most large clusters in the dark matter really do represent real proteins in
need of characterization and a name.  But some merely appear to be real, and to be suitable for the
invention of new “domain of unknown function” protein families, when actually they reflect a long legacy of
false-positive errors in the prediction of protein-coding regions.  The authors here introduce Spurio, a tool
that finds suspicious proteins whose would-be homologs from related DNA show a statistically damning
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falseness.  Some protein families, encoded by selfish genetic elements such as transposons, have
members decay into pseudogenes so frequently a blizzard of stop codons can mislead.  What Spurio
actually offers is a new analytical metric that can integrate into workflows for building new protein families,
or for deprecating old ones, or for culling bad data from large databases such as UniProt and RefSeq. 
 Some human review, or use in combination with other indicators, may be necessary for most uses.
 
Spurio is likely to find its most enthusiastic users among the biocurators and bioinformaticians who build
new protein family definitions such as the HMMs of Pfam, and the developers of prokaryotic annotation
pipelines such as RAST or PGAP.   Because so many researchers in the biology and biochemistry of
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The authors report a novel tool to detect "spurious" hits in gene assignments. The methodology is based
on the assumption that "homologous gene sequences" that  contain a substantial amount of stop codons
indicate that a gene is "not under selective pressure. 

The tool seems to be superior to the earlier tool (antifam) and is therefore a useful tool for automatic 
annotations of genomes.

Although this assumption most likely is correct in most cases - it also might miss non-spurious genes, in
particular orphan genes. It is generally accepted that there exist a birth and death process where novel
(orphan) genes can occur from non-coding regions and also that existing genes turns into pseudo-genes.
This could be discussed further.

There exist quite good set of orphans in drosophila and yeast - it would be interesting to see how spurio
would rank these. (I am aware that this tool is mainly for bacteria - but at least in yeast most of these
orphan genes are single exon so it should be possible to run it I think).
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