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Abstract

Dose reduction in computed tomography (CT) is essential for decreasing radiation risk in clinical 

applications. Iterative reconstruction algorithms are one of the most promising way to compensate 

for the increased noise due to reduction of photon flux. Most iterative reconstruction algorithms 

incorporate manually designed prior functions of the reconstructed image to suppress noises while 

maintaining structures of the image. These priors basically rely on smoothness constraints and 

cannot exploit more complex features of the image. The recent development of artificial neural 

networks and machine learning enabled learning of more complex features of image, which has 

the potential to improve reconstruction quality. In this work, K-sparse autoencoder (KSAE) was 

used for unsupervised feature learning. A manifold was learned from normal-dose images and the 

distance between the reconstructed image and the manifold was minimized along with data fidelity 

during reconstruction. Experiments on 2016 Low-dose CT Grand Challenge were used for the 

method verification, and results demonstrated the noise reduction and detail preservation abilities 

of the proposed method.

Index Terms

artificial neural networks; computed tomography; iterative algorithms; k-sparse autoencoder; 
reconstruction algorithms

Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the 
IEEE by sending a request to pubs-permissions@ieee.org.

Digital Object Identifier: 10.1109/TMI.2017.2753138

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2017 December ; 36(12): 2479–2486. doi:10.1109/TMI.2017.2753138.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. Introduction

X-RAY computed tomography (CT) is one of the most important tools for non-invasive 

diagnoses in modern medicine. The radiation dose is still relatively high in regular CT scans, 

which leads to increased risk of radiation-related diseases such as cancer. Thus, low-dose CT 

has been of great research interests in recent years. The most practical way is to reduce the 

X-ray tube current, but the reduction of photon flux causes increased noises and artifacts in 

the reconstructed images, which jeopardize the accuracy of diagnoses [1]. Compared to 

conventional filtered backprojection (FBP) algorithms, iterative image reconstruction 

methods have great potential in noise reduction and information preservation, by 

incorporating photon statistics and prior information of the image to be reconstructed [2–4].

Prior information design has attracted a lot of research interests in last decades. Most of the 

priors are manually designed to enhance image smoothness and maintain edges. A potential 

function was designed for the difference between neighboring pixels and minimized under 

data fidelity. Priors such as total variation (TV) or non-local patch-based priors have shown 

promising results in CT reconstruction with insufficient data, and some if it has already been 

deployed in commercial software [5][6].

Other than the manually designed priors, some machine learned priors such as dictionary 

learning and principal component analysis has also been applied in CT reconstruction [7][8]. 

The reconstructed images were assumed to lie within a linear manifold trained from normal-

dose images. However, medical images usually lie in a highly nonlinear manifold rather than 

a linear space, and the manifold modeling error may lead to artifacts in reconstructed image 

[9]. On the other hand, with deep artificial neural networks, it is possible to model the 

nonlinear manifold more precisely and potentially it could improve the image reconstruction 

quality because of a more precise knowledge of the normal-dose images.

Autoencoders are widely in data manifold modeling [10–14]. It first uses a neural network to 

map the data to a latent space which has some designed properties, such as sparsity or 

following certain distribution. Then another network (usually with symmetry structures) is 

used to reconstruct the data from the latent space. Because of the high nonlinearity and 

capacity of neural networks, autoencoders have become one of the most important methods 

in unsupervised learning.

In this work, we proposed a novel iterative CT reconstruction method based on priors 

learned by a k-sparse autoencoder [13], which will be further explain in section II-B. The k-

sparse autoencoder (KSAE) learned a nonlinear sparse prior from normal-dose CT images 

reconstructed by FBP. During iterative reconstruction of low-dose data, the distance between 

the reconstructed images and the learned manifold was minimized along with the data 

fidelity with separable quadratic surrogate (SQS) algorithm [2]. Since the proposed method 

was trained in a fully unsupervised way, it has more flexibility and less requirement on 

training data than image denoising algorithms based on deep neural networks [15–23].

The rest of the paper is organized as follows: section II is the methodology, where the k-

sparse autoencoder and reconstruction algorithms will be explained in detail. Section III and 
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IV are the experimental setup and results using the 2016 Low-dose CT Grand Challenge 

datasets [24]. Section V is the discussion and conclusion.

II. Methodology

A. K-Sparse Autoencoders (KSAE)

Autoencoders can be trained as [25]:

E, D = arg min ∑
k

xk − D (E(xk)) + λRl(E(xk)) (1)

where E (·) and D (·) are encoder and decoder respectively, xk are the training samples, Rl (·) 
is some designed constrains on the encoded data, and λ is a hyperparameter to balance 

between the reconstruction precision and prior constrains.

In (1), the encoder E (·) tries to map the highly intractable probability distribution of xk to 

some well-defined prior distributions Rl (·). The power of the mapping increases with the 

complexity and capacity of the neural network E (·). The decoder D (·) usually has symmetry 

structures with E (·), which tries to reconstruct xk from the latent space defined by Rl (E (x)).

When applying autoencoders to CT image reconstruction, the autoencoders’ detail 

preservation capabilities are more important than its general structure modeling ability. 

Depends on the success of sparse coding in image restoration and several experimental 

trials, k-sparse autoencoder was used for the data manifold modeling for low-dose CT 

reconstruction.

A KSAE was trained as [13]:

E, D = argmin∑
k

xk − D(E(xk)) 2

s . t E(xk) 0K

(2)

where K is the hyperparameter to control the sparsity of the latent space.

Patch-based fully connected neural networks with ReLU activations were used for both 

encoder and decoder. ReLU was used for its advantage in edge preservation compared to 

other activation functions such as tanh and sigmoid [26]. To ensure the sparsity constrain in 

(2), an extra mask layer was added after E (xk). It would select the K largest elements in E 
(xk) and set all the others to zeros. During the training, the mask was first calculated in each 

iteration. Then it was considered as a constant during the backpropagation, i.e. gradient 

calculation. The algorithm was greedy and could converge to local minimum empirically 

[13]. The structure of the neural network is shown in figure 1.
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B. Problem Modeling

The reconstruction problem was modeled as unconstrained optimization to minimize the 

distance of the image to the trained manifold along with the data fidelity term [7]:

x, y = argmin Ax − b w
2 + β∑

m

M
Pmx − D(E(ym)) 2

2

s . t E ym 0 ≤ K, m = 1, 2, 3, …, M

(3)

where x is the image to be reconstructed, y = (y1,…, yM) is the projections of the patches on 

the manifold trained by the autoencoder. Pm is the extraction matrix of the mth patch. β is 

the hyperparameter to balance between priors and data fidelity. A is the system matrix and b 
is the logarithm sinogram. w is a diagonal noise weighting matrix where wii = exp (−bi), 

which assumed a zero electronic noise because there was no information about it.

In (3), E (ym) defined the latent coordinates of the L2 projection of Pmx on the trained 

manifold. A simplified geometric interpretation of the problem is shown in figure 2. Due to 

the difficulty of tackling the zero-norm constrain, an indirect latent representation E (ym) 

was used rather than a direct latent variable.

C. Optimization Algorithm

It should be noted that (3) is highly non-convex because of the constrains and the structure 

of E (·) and D (·), thus the solution would be sensitive to the initial point x0 and the 

algorithm. A monotonically non-increasing alternating optimization algorithm was used to 

solve (3) [7]. Define two sub-problems regarding x and y:

f x, yn = Ax − b w
2 + β∑m Pmx − D (E(ym

n )) 2
2

(4)

f xn, y = Axn − b w
2 + β∑m Pmxn − D(E(ym)) 2

2

s . t . E(ym) 0 ≤ K

(5)

where xn and yn are the x and y in the nth iteration respectively.

Separable quadratic surrogate (SQS) algorithm was applied on the convex problem (4):

xn + 1 = xn −
ATw Axn − b + β∑

m
Pm

T (Pmxn − D (E(ym
n )))

ATwA1 + β∑mP
m
T Pm1

(6)
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where AT is the transpose of A and refers to backprojection, Pm
T  is the operation to put the 

mth patch back to where it is extracted, 1 is an all-ones vector.

Steepest descend was applied on (5):

ym
n + 1 = ym

n − α ⋅
∇ Pmxn − D (E(ym)) 2

2

∇ Pmxn − D (E(ym)) 2
2

2
ym = ym

n

s . t . E(ym) 0 ≤ K

(7)

where α is the step size. Equation (7) could be repeated for several times with small α for 

better convergence. Experimental results showed that proper choice of a fixed α was enough 

to decrease f (xns, y) for most of the iterations.

The SQS step (6) guaranteed f (xn+1, yn) ≤ f (xn, yn), and with proper choice of step size α, 

(7) would lead to f (xn+1, yn+1) ≤ f (xn+1, yn). Therefore, alternation between the two steps 

gave:

f xn + 1, yn + 1 ≤ f xn + 1, yn ≤ f xn, yn (8)

which indicated that the cost function was monotonically nonincreasing.

To deal with the non-convexity of the problem, several additional techniques were used to 

avoid bad local minimum and saddle points:

1. x0 was selected as the mean of the adjacent 3 layers of the original FBP results, 

which was one of the simplest way for a better starting point. More recent 

denoising algorithms could be used but they are currently out of scope of this 

study.

2. Instead of using fixed patch extraction matrices Pm, overlapped patches were 

extracted from random locations at each iteration. This was similar to the 

stochastic gradient descend algorithm, where part of the data was used to 

calculate the gradient each time, which could converge to local minimum and 

escape saddle points [27][28].

3. Due to the random patch extraction strategy, the cost to keep track of ym was too 

high. Instead, the initial value of ym was first estimated with:
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ym
n, 0 = D E Pmxn (9)

then several steps of the gradient descend (7) was carried out. 5 steps of (7) with 

a step size of 0.05 was used in our experiments.

The reconstruction algorithm is summarized in table 1. Nesterov’s momentum method [29] 

was used to accelerate the algorithm.

In table I, NSD is the step of steepest descend (7) and γ is the parameter for Nesterov’s 

momentum method. Step 4 to 6 were to calculate the projection of the current image xn on 

the trained manifold, where the gradient was calculated according to (7). Step 7 and 8 were 

the SQS and momentum acceleration step, where SQS (xn, yn) was the second term on the 

right-hand side of (6). Fixed number of iterations based on experience were used for the 

stopping criteria.

D. Three-Dimensional Reconstruction

Due to the large number of variables in the fully connected neural network, it was 

impractical to train the autoencoders on 3D patches. Instead, three independent autoencoders 

were trained from axial, sagittal and coronal slices, and the reconstruction problem was 

reformed as:

x, y = argmin Ax − b

× w
2 + β

3 ∑
s = 1

3
∑
Ms

m
Psmx − Ds(Es(Ysm)) 2

2

s . t . Es(Ysm) 0 ≤ K, s = 1, 2, 3; m = 1, 2, …, Ms

(10)

where s stands for one of the three directions. Psm is the patch extraction matrix along the 

sth direction. Ds (·) and Es (·) are the decoder and encoder trained for the sth direction 

respectively. Ms is the number of patches along the sth direction. y is the collection of all the 

ysm. Equation (10) could also be solved by algorithm 1.

III. Experimental Setup

A. Datasets

The experiments were carried on 2016 Low-dose CT Grand Challenge datasets, which 

contained projection and image data of the chest and abdomen from 10 different patients. 

The data were acquired with Siemens Somatom Definition CT scanners, under 120kVp and 

200 effective mAs. Quarter-dose data were provided by the challenge committee, which 

were simulated from the normal-dose data by noise injection. The challenge committee also 
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provided the FBP results for both normal- and low-doses, where the spatial resolution varied 

from 0.66mm × 0.66mm to 0.8mm × 0.8mm, with a slice thickness of 0.8mm.

B. Training of KSAE

3 independent KSAEs were trained for axial, sagittal and coronal directions, where 1 million 

16 × 16 patches were randomly extracted from 5 of the 10 patients’ data for each direction. 

The Hu values of the patches were divided by 500 for better training conditions.

The KSAEs had the structure in figure 1, where 3 fully connect layers with 1024 units was 

used for both encoder and decoder. 50 epoches of ADAM algorithm with a step size of 

0.0001 with other parameters same as in [30]. A minibatch size of 100 was used for the 

training. A weight decay of 0.1 was also added to stabilize the trained weights [25]. The 

KSAEs were implemented with tensorflow [31].

C. Reconstruction Setups

The data from the patients other than the training set were used for reconstruction study. The 

projections were first rebinned to multi-slice fan beam geometry before reconstruction for 

computational efficiency [38] as was shown in figure 3. Some key geometry parameters for 

the original and rebinned data are shown in table 2.

The images were reconstructed with 0.8 × 0.8 × 0.8 mm3 voxel size, with an axial resolution 

of 640 × 640 pixels, which was enough to cover the entire field of view (FOV). Ray-driven 

forward projection and pixel-driven backprojection were used for the iterative reconstruction 

[32]. The number of iterations was fixed to 50 for reconstruction, which was enough to reach 

a stable result.

D. Comparison Study

The widely used TV prior and the dictionary learning based prior were used for comparison 

studies [5][7]. For the TV prior, the L1-norm of gradients with a regularization factor was 

used, which lead to differentiable cost functions:

x = argmin Ax − b w
2 + β∑

j
∑

k ∈ N j

1
2 x j − xk

2 + δ (11)

where Nj is the 4- or 6-neighbourhood of pixel j, δ = 10−6. Problem (11) was solved via the 

SQS algorithm.

The dictionary learning prior was similar to (3):
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x, h = argmin Ax − b w
2 + β∑

m

M
∑
Ms

m
Pmx − Dhm 2

2

s . t . hm 0 ≤ K, s = 1, 2, 3; m = 1, 2, …, M

(12)

where h = (h1, h2,…, hM) is the coefficients for the dictionary on each patch. D is a global 

dictionary trained with KSVD [33] on the same training set with the KSAE. The number of 

elements in the dictionary was set to 1024. A smaller dictionary trained on 8 × 8 patches was 

also tried, but it was outperformed by the dictionary trained on 16 × 16 patches. Problem 

(12) was also optimized with algorithm 1, where the gradient descend step 6 and 7 was 

replaced with orthogonal matching pursuit (OMP) [34]. All the techniques for non-convex 

optimization proposed to solve (3) was also applied on (12). The 3D realization of dictionary 

learning prior was in the same format with (10). KSVD and OMP were realized with 

SPAMS [35].

IV. Experimental Results

A. Algorithm Verification

To verify that algorithm 1 could indeed minimize (3), 200 iterations were run to investigate 

the change of the total cost function and prior term under different hyperparameters. There 

was a peak on the total loss curve in early iterations which was due to the momentum 

acceleration, but the algorithm was converging overall. The prior term loss was also 

decreasing with increased hyperparameter β as expected. For the reconstructions in the 

following sections, the iterations were truncated at 50.

B. Determination of Hyperparameters

A single slice as shown in figure 5 was used to determine the hyperparameters β and K. The 

FBP results from normaldose image was used as the reference image to calculate the 

structural similarity index (SSIM) [36] of a region near liver. The SSIM was used as the 

primary indicator of reconstruction quality to determine the optimal hyperparameter. The 

value of the images was cropped to 40 HU ± 200 HU when calculating the SSIM so that the 

high-density bones would not cause significant impact on the SSIM.

To investigate the algorithms’ ability of recovering lesions in the liver, the contrast to noise 

ratio (CNR) was also calculated from the lesion highlighted with the white box in figure 5. 

The mask for the lesion and background areas were the shared across low-dose 

reconstruction results. A separate segmentation was used for the normal-dose FBP, because 

of some noticeable structural difference between low-dose and normal-dose results.

The SSIM-β and SSIM-CNR curves of the reconstructed results are shown in figure 6. For 

KSAE and dictionary learning, the sparsity level K was basically determined by the peak 

SSIM. However, K = 90 for KSAE and K = 30 for dictionary learning were unstable with 

regard to β and they were not used for the reconstruction of other cases. K was selected as 
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100 and 40 for KSAE and dictionary learning respectively. β was selected as 5, 7, and 

0.00125 for KSAE, dictionary and TV, respectively.

In figure 6 (d), the SSIM-CNR curve demonstrated that TV emphasized on structural 

preservation, whereas dictionary learning had some advantage of noise suppression. KSAE 

had the best overall peak performance among the 3 algorithms for the selected slice.

C. Quarter-dose Reconstruction Results

The algorithms were applied on the quarter-dose data provided by the Low-dose Challenge 

committee and the reconstruction results are shown in figure 7 to 9. SSIMs were calculated 

for regions that contained liver, and CNRs were calculated for the lesions. Furthermore, to 

evaluate the texture preservation ability, the 13 Haralick texture features [39][40][41] were 

calculated for each result inside the ROI, and the normalized distance to the full-dose FBP’s 

features:

L x, xFBP = ∑i

hi(x) − hi(xFBP)
hi(xFBP)

2
(13)

where hi (x) stands for the ith components of the Haralick texture features of x.

The corresponding results are listed in table 3. The proposed KSAE algorithm could achieve 

the best quantitative indicators for most of the cases, except for case 3 (figure 9), where TV 

achieved better SSIM mainly because of its better smoothness in the flat region.

Figure 7 gave the 3D reconstruction results, where the 3-layer mean of quarter-dose FBP 

images were used as x0 for the reconstruction algorithms, which provided a relatively good 

start point for the non-convex dictionary learning and KSAE algorithms. There was no 

obvious blurring and artifacts induced by the reconstruction algorithms in the sagittal and 

coronal views.

In figure 9, there was a lesion-like artifact in the quarter-dose images (yellow arrow 3) near 

the benign cyst (white arrow 2), which was not presented in the normal-dose FBP result. The 

CNR for this artifact was also calculated and KSAE achieved the lowest score. The artifact 

was very similar to the benign cyst in the results of TV and dictionary learning, but its 

visibility was much lower in the KSAE result.

D. Lower-dose Reconstruction Results

To study the stability of the proposed algorithm and investigate its dose reduction limit, 

lower-dose data was generated by angular subsampling from the quarter-dose data. A 

portion of projections uniformly distributed across 360° was removed for further dose 

reduction. Although this approach would lead to non-uniform angular sampling such as 

missing 1 projection every 4 projections, no obvious artifacts were observed in the FBP 

results because of the original dense angular sampling rate (2304 samples per rotation) and 

strong noises in the images.
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1/6, 1/4, 1/3, and 1/2 samples were reduced from the quarter-dose data of the slice in figure 

5, the SSIMs and CNRs of the reconstructed results are shown in figure 10. The same 

hyperparameters used for the quarter-dose reconstruction were used. It could be observed 

that KSAE kept the best performance until 1/3 sample reduction, which was equivalent to 

1/6 of the normal-dose. The reconstruction results of KSAE are shown in figure 12. It could 

be observed from both the CNR curve and the reconstructed results that when the half of the 

samples were reduced, the lesion became barely visible.

Figure 11 demonstrated the SSIMs of the reconstructed results with different 

hyperparameters under various dose. With lower dose, the different between large β and the 

peak performance β vanished, because of the increased demand in noise control during 

reconstruction. The performance of larger K also deteriorated due to the fact that larger K 

had less constrains on the trained manifold and noises would be included in the 

reconstructed images. There was no dramatical changes on the curves, which indicated the 

stability of both K and β for different dose level.

V. Conclusion and Discussion

In this paper, an unsupervised learning method was proposed to train a prior function for 

iterative low-dose CT reconstruction with K-sparse autoencoders. Alternating optimization 

and SQS was used to solve the problem with several techniques applied to deal with the non-

convexity. Experimental results on 2016 Low-dose CT Challenge data demonstrated that 

KSAE prior could achieve better performance than dictionary learning and total variation for 

quarter-dose data, with better noise suppression and structural preservation. The proposed 

algorithm could still achieve acceptable performance until 1/6 dose.

The machine learning methods demonstrated a more uniform noise patterns in the 

reconstruction results compared to TV. But the manifold modeling bias may lead to a 

deteriorated performance on SSIMs, especially for low contrast structures in livers. Both 

KSAE and dictionary learning used sparse assumptions on the latent space, but with deep 

structures and nonlinear mapping functions, KSAE could achieve more precise manifold 

description and lead to better performance on noise reduction and structural preservation. In 

figure 13 we demonstrated the SSIMs of the reconstruction results with different number of 

layers for both encoders and decoders, which indicated that deeper structures increased the 

performance of the prior.

In the study, it was noticed that the optimal sparsity level K for KSAE was much larger than 

that in the dictionary learning. one of the possible reason was for a more complicated 

manifold modeled by the neural network, more variables were needed to describe it.

In this study, the dataset from the low-dose challenge was simulated with noise injection, 

which could be different from real situations. But since the KSAE was trained in an 

unsupervised way and no knowledge on the noise property was assumed during the training, 

the method should be still applicable to real data. The application of the method on real data 

and more rigorous evaluation of the results other than SSIMs and CNRs would be one of our 

future works.
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One big issue raised with the neural network was the dramatically increased parameters of 

the algorithm. Besides obvious parameters such as β, K, depth of autoencoders and patch 

size, optimal network structure is also an open question. We demonstrated the feasibility of 

manifold modeling with K-sparse autoencoders constructed by fully connected neural 

networks, but the feasibility of other neural network structures and assumptions on the latent 

space are yet to be explored. Theoretically, given enough data, deeper neural network with 

higher capacity could always yield better results. However, as an unsupervised learning 

method, the design of the constrains on the latent space is an even more crucial issue, which 

needs further studies and explorations.
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Fig. 1. 
The structure of the k-sparse neural network. FC stands for fully connected layers. The 

orange blocks are the encoder E (·) and the green blocks are the decoder D (·). Three layers 

were demonstrated for both encoder and decoder, but the number of layers may vary. The 

mask was only updated during forward propagation and considered as constant during 

backpropagation.
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Fig. 2. 
The geometric interpretation of the reconstruction algorithm. The solid spiral represents the 

trained manifold, which has a coordinate system defined by E (y). The green ellipse is the 

data feasible domain. The optimization would minimize the distance between the feasible 

domain and the manifold, which could converge to either x1
∗ or x2

∗, depending on the starting 

point and the algorithm. Constrained optimization concept is used here for better 

demonstration.
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Fig. 3. 
Projection rebinning: (a) the helical geometry before rebinning, there was also a flying focal 

spot during scanning; (b) the multi-slice fan-beam geometry after rebinning.
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Fig. 4. 
The convergence curve for algorithm 1: (a) The total loss and prior term loss under different 

iterations with β = 5 and K = 100. (b) The prior loss at 200th iteration for different βs.
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Fig. 5. 
FBP results from normal-dose (left) and quarter-dose (right) data of the selected slice. The 

quarter-dose result was the mean of 3 adjacent slices. A metastasis was highlighted with the 

dashed white boxes and zoomed in. The SSIM was calculated using the region inside the big 

green box. Display window was 40 HU ± 200 HU.
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Fig. 6. 
The SSIM-β and SSIM-CNR curves for the selected slice: (a) KSAE; (b) Dictionary 

learning; (c) TV; (d) SSIM-CNR curve for the selected K of KSAE and dictionary learning. 

The points used for the other reconstructions were marked with arrows for each algorithm.
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Fig. 7. 
3D Reconstruction results of case 1 with metastasis. The quarter-dose FBP results were the 

mean of 3 adjacent layers. The SSIMs were calculated as the mean of the slice-wise SSIMs 

inside the big green box. The Haralick features were also calculated in the green box. The 

CNR of the lesion was calculated for the displayed axial layer. The display window is 40 

HU ± 200 HU.
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Fig. 8. 
2D Reconstruction results of case 2 with focal fat/focal fatty sparing. The display window is 

40 HU ± 200 HU.
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Fig. 9. 
2D reconstruction results of case 3 with metastasis (white circle) and benign cyst (arrow 2). 

There is also a false positive lesion on low-dose reconstruction results marked with the 

yellow arrow 3. The display window is 40 HU ± 200 HU.
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Fig. 10. 
SSIMs and CNRs of the reconstructed test slice given different sample reduction rate from 

quarter-dose data. The hyperparameters were the same with that in section IV. C.
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Fig. 11. 
SSIMs of KSAE reconstructed test slice given various hyperparameters under different 

doses: (a) SSIM-β curves for K = 100; (b) SSIM-K curves for β = 5.
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Fig. 12. 
The KSAE reconstruction results under different dose achieved by subsampling from 

quarter-dose projections. The metastasis was barely visible under half sampling, which was 

equivalent to 1/8 dose.

Wu et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
SSIMs of the KSAE reconstructed quarter-dose results with different depth of neural 

network. The hyperparameters were K = 100 and β= 5.
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TABLE I

Reconstruction Algorithm

Algorithm 1. Optimization algorithm for (3)

1 Initialize x0 from FBP, α = 0.05, NSD = 5, γ = 0.5. Select β;

2 Let z0 = x0, n = 0;

3 Repeat until stop:

4  Randomly select M overlapped Pm

5
 For each m, ym

n = D E Pmxn ;

6  For k = 1:NSD do:

7
  For each m, ym

n ym
n − α ⋅ Grad (xn, ym

n ), according to (7);

8  xn+1 = zn −SQS (xn,yn), according to (6)

9  zn+1=xn+1+γ(xn+1−xn)

10  n ← n + 1
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TABLE II

Data geometry

Parameter Original geometry Rebinned geometry

Views per rotation 2304 2304

Detector resolution 736 × 64 736 per slice

Pixel size 1.2858 × 1.0947 mm2 1.2858 × 1.0 mm2

Source-center distance 595 mm 595 mm

Source-detector distance 1085.6 mm 1085.6 mm

Pitch 0.6 - 0.8 N/A

Flying focal spot Yes No
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