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to review these approaches for the quantification, simulation and early detection of
mechanically-induced skin damage. The review considers different measurements at
the interface between the skin and support surface/medical device, involving pressure,
shear, friction and the local microclimate. The potential of the techniques to monitor
the physiological response of the skin to these external stimuli including biophysical
measurement devices and sampling of biofluids are critically analysed. In addition, it
includes an analysis of medical imaging technologies and computational modelling
to provide a means by which tissue deformation can be quantified and thresholds for
tissue damage defined. Bioengineering measurement and imaging technologies have
provided an insight into the temporal status of loaded skin. Despite the advances in
technology, to date, the translation to clinical tools which are robust and cost effec-
tive has been limited. There is a need to adapt existing technologies and simulation
platforms to enable patients, carers and clinicians to employ appropriate intervention
strategies to minimise soft tissue damage.

Background
The structure and function of skin
The skin represents the largest organ of the body, with its structure being divided into
three separate layers; the epidermis, the dermis and subcutaneous tissue. The former
outermost layer is approximately 75—150 pm thick, although it is considerably thicker in
the palms of the hands and plantar aspects of the feet. The epidermis is divided into five
strata, the deepest of which is the region in which the keratinocytes, the main epider-
mal cells, proliferate and slowly progress through the strata. The most superficial layer,
the stratum corneum, consists of 15-20 layers of dead anucleated cells, termed corneo-
cytes. The other cell types include melanocytes, producing the colour pigment, melanin,
Langerhan cells responsible for immune response and Merkell cells that provide tactile
sensation.

The integrity of the epidermal—dermal junction, an undulating structure, is critical for
the normal transport and communication of biomolecules between the epidermis and
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the underlying dermis [1]. The human dermis contains many structural features includ-
ing blood and lymphatic vessels, nerve endings and skin appendages, such as hair fol-
licles, sebaceous glands and sweat glands. The fibroblasts produce extracellular matrix
components, collagen, elastin and hydrophilic proteoglycans, which vary within the
reticular and papillary dermal layers. The subcutaneous tissue, or hypodermis, is a fibro-
fatty layer loosely connected to the dermis, which varies with anatomical site, age, gen-
der, race, endocrine and nutritional status of the individual. Subjacent to this layer can
be a muscle layer, which overlies either bony prominences or internal tissues and organs.

Functionally, the highly organised skin is designed to permit gas/fluid transport across
its surface and, critically, maintain the internal body homeostasis, via the sweat glands
and blood vessels. Other functions include protection of underling tissues and organs,
excretion, immunity and synthesis of vitamin D [2]. These functional roles can be com-
promised by the external environment where the skin is exposed to a range of insults,
which may be mechanical, physical, biological and chemical in nature. As an example,
when the skin is exposed to high mechanical loads applied over a short time period
(<10 s), trauma can occur. By contrast, there are many situations in which the skin can
be exposed to sustained mechanical loads, for example in individuals who are relatively
immobile and bedridden or function in chairs for much of their waking day. Prolonged
and cyclic loading is also experienced during activities of daily living (ADL) such as
standing and walking.

Pressure ulcers and diabetic foot ulcers

Prolonged loading can lead to damage of skin and subcutaneous tissues and result in
conditions termed either pressure ulcers (PUs) or diabetic foot ulcers (DFUs). PUs may
be defined as a localized injury to skin and/or underlying tissue, usually over a bony
prominence, as a result of pressure, or pressure in combination with shear [3]. PUs are
generally categorised in terms of the extent of the associated soft tissue damage. Thus
PUs confined to the epidermal tissues are referred to as grade (or stage) I ulcers. Grade
IT ulcers affect deeper dermal tissue, although with effective management, generally heal
successfully. By contrast, damage affecting subcutaneous tissues is classified as grade III
and IV, which may account for approximately 30% of the total reported [4]. Another type
of PU, termed deep tissue injury (DTI), is a pressure-related injury to subcutaneous tis-
sues under intact skin. DTIs are typically seen in regions where tissue damage occurs
adjacent to bony prominences i.e. the ischial tuberosity and the wound progresses
upwards towards the skin.

Diabetic foot ulcer is an outcome of a complex array of various risk factors such as
peripheral neuropathy, peripheral vascular disease, foot deformities, arterial insuffi-
ciency, trauma and impaired resistance to infection [5]. The lifetime risk of a diabetic
for developing a foot ulcer can be as high as 25% [6], with DFUs accounting for more
hospital admissions than any other long-term complications of diabetes [7]. As a result,
the rate of lower limb amputations is 6 times higher in diabetic patients compared with
non-diabetics [8].
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These chronic wounds have been traditionally associated with the elderly, particu-
larly those who have limited mobility. However, PUs affect a wider age range includ-
ing neonates nursed in incubators [9], paediatrics and adults in intensive-care units
(ICUs) [10] and the spinal cord injured [11]. Despite the increased attention within
health services, PU and DFU incidence rates remain unacceptably high with corre-
sponding costs of treating all chronic wounds estimated at £5 billion per annum in
the UK [12]. In order to gain further insight into their prevention, bioengineering
researchers have identified mechanisms by which skin and soft tissues are damaged
during prolonged mechanical loading using in vitro and in vivo test methodologies.
This knowledge was acquired using an array of techniques including medical imag-
ing, physical sensors, biosensors and computational modelling to examine tissues
in healthy and diseased/damaged conditions (Fig. 1). This review aims to critically
appraise approaches for the quantification and simulation of mechanical conditions
at the loaded skin surface and provide an evaluation of techniques which can monitor
the risk of skin damage.

Pathogenesis of pressure and diabetic foot ulcers

The aetiopathogenesis of PUs has long been considered to involve the obstruction
of blood vessels within loaded soft tissues leading to pressure-induced ischemia. This
mechanism will result in a limited delivery of vital nutrients, such as oxygen, to the cell
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Fig. 1 Schematic of the intrinsic and extrinsic factors that predispose individuals to skin damage and the
bioengineering measurement techniques which can monitor their tissue status. The numbers relate to the
sections describing the different technologies
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niche. The resulting cell death would impede any remodelling processes and lead to the
accumulation of soft tissue breakdown. However, compelling research utilising bioengi-
neering technologies has revealed that PUs can result from other mechanisms namely:

+ Impaired interstitial and lymphatic flow—this will result in an accumulation of toxic
intercellular waste products, which are both damaging to the cells and can influence
the local cellular environment e.g. reduced levels of local pH [13-15].

+ Ischaemia—reperfusion injury associated with load removal—this results in the rep-
erfusion of blood and transport of other nutrients, which may result in an over pro-
duction and release of oxygen-derived free radicals, also termed reactive oxygen spe-
cies (ROSs), which have been implicated in soft tissue damage [16, 17].

+ Cell deformation—this triggers several effects, which may be involved in early dam-
age, such as local membrane stresses leading to buckling and rupture. This loss of
membrane integrity will alter transport of biomolecules and ions, cause volume
changes and modifications of cytoskeletal organisation, affecting viability and remod-
elling capacity [18—-20].

There are similarities but also some marked differences between the aetiology of DFUs
and that of pressure ulcers. Fundamentally, the presence of pressure and shear, applied
repetitively to tissue sites with a reduced tolerance to mechanical loading is likely to lead
to damage to soft tissue areas adjacent to bony prominences, such as the sacrum and
metatarsal heads. Such a situation can be exacerbated in the presence of elevated tem-
peratures and moisture levels commonly encountered within the shoe. At particular risk
are those individuals with associated soft tissue and bony deformity conditions, such as
Charcot’s foot. In addition, comorbidities resulting from diabetes can lower the toler-
ance to skin and soft tissues loading, namely peripheral vascular disease, peripheral neu-
ropathy or both [21]. A comparison of features associated with the two chronic wounds
is provided in Table 1.

Table 1 Causation and management of pressure ulcers and diabetic foot ulcers

Pressure ulcer Diabetic foot ulcer
Prime responsibility Nurse Podiatrist
Causation—mechanical Pressure, shear and friction Pressure, shear and friction
Prolonged loading High rate loading applied in a repetitive
manner

lll-fitting shoes
Causation—microclimate  Temperature, humidity, incontinence  Temperature, humidity

Intrinsic factors Immobility Structural deformity e.g. Rheumatoid,
Insensitive Charcot's foot
Neuropathic, Peripheral arterial disease
Tissue susceptibility Reduction in stiffness Increase in stiffness
Tissue atrophy Tissue migration
Management Immersion, pressure redistribution, Pressure redistribution, total casts

alternating pressure

Page 4 of 19
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A bioengineering approach measurement and simulation
From a bioengineering perspective there are a number of technologies which can be
used to monitor the status of loaded soft tissues. These include:

“Monitoring of the interface” section (Fig. 2).
“Biophysical skin sensing” section.

“Biomarkers indicative of early skin damage” section.
“Medical imaging of mechanically loaded tissues” section.

SIS

“Computational modelling” section.

Monitoring of the interface

There is a critical relationship between the magnitudes of pressure and time which can
result in skin damage [22]. Early research established an integral of pressure and time
above which damage would occur [23]. More recently, this model has been adapted to
match a sigmoidal form, which accounts for tissue damage resulting from high tissue
deformations occurring after a short period [24]. This relationship inevitably depends
on the tolerance level of the individual which is, itself, influenced by co-morbidities and
nutritional status [25]. The risk of skin and soft tissue damage will also be affected by
the way in which load is transferred across the skin surface. Indeed, if the load is non-
uniform or localized in nature tissue damage is more likely than if the load is distrib-
uted uniformly. Specifically, these non-uniform loads cause internal shear stresses in
the underlying tissues, which act to distort tissues, pinch and occlude capillaries cross-
ing tissue planes, reduce blood and lymph flow and cause physical disruption of tis-
sues [26]. For example, imaging demonstrates the difference in soft tissue deformation
at the seated buttocks (Fig. 3a) compared with that of the gluteal muscle that has been
indented with a small diameter device (Fig. 3b). In the former case, where the force is
applied across the whole gluteal area the deformation in the underlying skin, fat and
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Fig. 2 Factors influencing tissue health at the boundary between the support surface and the skin surface
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Fig. 3 a MRI of seated buttocks and b gluteal muscle subjected to maximum indenter displacement with
highlighted markers [146]

muscle tissue is relatively evenly distributed. However, in the case with the indenter, high
deformations can be observed directly under the load and internal shear forces in the
tissues adjacent (Fig. 3b). It is therefore critical to understand both the spatial and tem-
poral nature of the pressures applied to the body.

Interface pressure mapping

Sensor arrays have been developed to estimate the distribution of pressures for use in
both research and clinical settings. Pressure mapping systems are often used at discrete
time points offering a “snap shot” of the interface conditions. This provides a limited
perspective of the long-term performance of support surfaces and the effects of sub-
optimal postures, e.g. slumped sitting, which are commonly adopted over time [27].
Recently mapping systems have been adapted to record data over prolonged periods
[28]. These systems can provide visual feedback for repositioning patients and indicators
for patients, carers and healthcare professionals regarding the exposure to prolonged
loads on vulnerable skin sites [29, 30]. However, more research is required to estab-
lish algorithms, which correlates the pressures monitored over prolonged periods with
changes to the physiological response of the underlying skin and soft tissues. In addition,
standards for spatial resolution, sampling frequency, accuracy, sensitivity and calibration
need to be established [31]. Pressure mapping also provides real-time visual feedback of
peak pressure values, providing further evidence to complement decision making when
considering PU prevention [32]. The transferable nature of the sensors has enabled cli-
nicians to assess the effects of posture and mobility in various bed and wheelchair or
leisure chair environments [33].

The results from pressure mapping studies have shown that the recorded values depend
on the individual, their posture and the type of support surface [34—36]. For example,
when lying supine on a typical hospital bed with a viscoelastic foam mattress, pressures
over the sacrum rarely exceed 50 mmHg [34]. However, on a much stiffer surface, such
as a spine board, supine pressures can exceed 150 mmHg [37]. In sitting postures, where
contact areas are restricted to the ischial tuberosities (ITs) and buttocks, the sacrum and
upper thighs, there is a corresponding elevation in interface pressures [38]. In a separate
example involving a ventilation mask attached firmly to the face, interface pressures can
exceed 200 mmHg over vulnerable bony landmarks, such as the nasal bridge [39]. Plantar
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pressures under the foot are necessarily very high during both standing and gait activities
with values of up to 1500 mmHg specifically under the metatarsal heads [40].

Shear and friction measurement
In contrast to pressure mapping, there is a dearth of studies monitoring shear forces at
the individual-support surface interface. This is mainly due to the technical challenges
inherent in developing compliant, thin and flexible sensors that can distinguish between
signals associated with normal forces with those forces acting parallel to the skin sur-
face. Recently research has exploited the use of 3D printing with elastomeric materi-
als to create sensors, which are capable of simultaneous measurements of pressure and
shear forces [41, 42]. These sensors have been developed for the specific application at
the stump-socket interface of lower limb amputees, where peak shear forces during gait
were reported to be approximately 27 kPa. The modification of these biaxial sensors for
the measurement of the inherently lower shear forces predicted at the sacrum and ITs in
the lying and sitting postures have yet to be described.

The shear force at the individual-support surface interface will be in part dependent
on the friction between the two surfaces. The coefficient of friction of materials, com-
monly textiles, against skin is influenced by:

« the textile characteristics i.e. rougher textiles produce higher coefficients of friction.
« skin moisture content and surface—both increase the coefficient of friction where

skin may be damp from perspiration or incontinence [43].

There have been several experimental studies to determine the coefficient of friction
in typical support surfaces [43, 44]. In many cases, hospital mattresses incorporate pol-
yurethane covers to enable safe cleaning and minimise the intrusion of liquids into the
foam, gel or air inner. However, this covering material restricts vapour transfer through
the skin interface resulting in elevated temperatures and the accumulation of body fluids
such as sweat [45, 46].

Microclimate measurement

Studies have employed thermocouples, thermography and hygrometer devices to moni-
tor the microclimate at a loaded skin interface [47]. They have revealed elevated temper-
ature and humidity values in the plantar aspects of the foot [48], the residual amputee
stump-socket interface of amputees [49] or at tissues where high forces are transmitted
through foot orthoses [50]. These changes will inevitably reduce the skin tolerance to
mechanical-induced damage [51-53]. For example, temperatures in excess of 35 °C have
a detrimental effect on the stratum corneum by affecting its mechanical stiffness and
strength [54]. Skin temperature also affects the local tissue physiology, with a 1 °C rise
resulting in a 13% increase in the metabolic demand [47], providing additional risk to
vulnerable soft tissues already compromised by local vascular and lymphatic occlusion.
Increased skin moisture also contributes to maceration and skin breakdown by weaken-
ing the stratum corneum, [55, 56]. Conversely, an excessively dry skin is liable to damage
by cracking [57]. Thus, achieving an optimal moisture level at the skin interface is critical
for maintaining its barrier function.
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Limitations of interface measurement technologies

In addition to the variability of interface measurements, the large data sets produced
from pressure mapping systems are difficult to interpret. Indeed, the establishment of
a robust pressure index appropriate in research and/or clinical settings is the subject of
considerable debate [58]. For example, common interface pressure parameters include
peak pressure, peak pressure gradient, peak pressure index, dispersion index, average
pressures and symmetry index, the latter comparing values on two sides of the body, in
addition to spatial parameters, such as contact area and centre of pressure [59, 60]. How-
ever, it is inevitable that no single parameter of pressure, shear or microclimate can pro-
vide universal index applicable to all subjects at risk of developing PUs or DFUs. In order
to understand how interface conditions affect local skin physiology several studies have
combined biomechanical, biophysical and biochemical measures to define the effects of
prolonged mechanical loading [34-36, 39].

Biophysical skin sensing

The effects of mechanical loading and/or altered microclimate on barrier function of the
skin can be evaluated with a range of techniques involving transepidermal water loss
(TEWL), pH, subepidermal moisture (SEM) [61], elasticity and colorimetry [62]. These
studies generally reveal that sustained loading increases TEWL at various skin sites,
suggesting sub-clinical damage of the stratum corneum [63, 64]. These increases will
result in an increase in the dermal absorption of chemicals and other potentially toxic
substances [65]. In addition, systems to measure SEM, elasticity and redness have been
reported to detect changes between healthy skin and sites of pressure ulcers, although
they were unable to determine the extent of the damage [61, 66, 67]. However, such bio-
physical measures are associated with a number of challenges. For example, there is vari-
ability in both intra- and inter-rater reliability [68] and regional differences in baseline
values [69]. In addition, there is very little data regarding the sensitivity and specific-
ity of the techniques to distinguish between mechanical, chemical or environmentally-
induced skin damage. Thus although longitudinal studies are recommended, optimal
measurement procedures and test protocols still need to be established if specific tech-
niques are to be translated into clinical practice.

Monitoring the ischemic response in the dermal vasculature during and after mechani-
cal loading typically involves physical sensors, sensitive to both direct and indirect meas-
ures of blood flow. These studies, often utilising transcutaneous gas tensions (TcPO, and
TcPCO,) measurements, have examined the response of able-bodied cohorts to peri-
ods of prolonged and intermittent pressures [35, 36, 70, 71], and sub-groups of patients
known to be at risk of DFUs [72] and pressure ulcers i.e. spinal cord injured (SCI) sub-
jects [73]. The results of these studies revealed ischemic responses, as reflected in a
reduction in T PO, with an associated increase in T .PCO,, during postures known to
create both pressure and shear forces at vulnerable sacral tissues, for example, when the
head of bed angle has raised to 45° [36, 70]. Indeed, the increase in TcPCO, is hypoth-
esised to be a critical indicator of skin and soft tissue compromise [74]. Microcirculatory
flow has been explored in a number of PU and DFU-related studies using laser Dop-
pler (LD) technologies. As examples, it has been shown that microcirculatory flux differs
in the feet of diabetic patients with and without neuropathy [75] and can distinguish



Bader and Worsley BioMed Eng OnLine (2018) 17:40 Page 9 of 19

between areas of undamaged skin with sites of PUs and DFUs [76-78]. In addition, LD
flux measurements have revealed that the combination of pressure and shear decreased
local tissue perfusion [79]. LD imaging has also provided a means to assess burn depth
[80] and is sensitive to chemical irritation on skin sites [81]. However, the arbitrary
units of flux derived from these measurements can not be directly related to physiologi-
cal parameters and are strongly influenced by motion artefacts, ambient temperature
changes and inter-operator variability.

Biomarkers indicative of early skin damage

There are a number of biofluids, which can be collected directly at the skin surface or
systemically in blood or urine, for which a number of biomarker concentrations can
be analysed. These biomarkers can be targeted to represent inflammatory processes
[C-reaction protein (CRP), cytokines and chemokines], local metabolic activity (metabo-
lites) or the release of oxygen free radicals during reperfusion (purines). Previous studies
on both healthy volunteers and individuals at risk of developing PUs, have demonstrated
the potential of some biomarkers, for example, sweat lactate [82], the pro-inflammatory
cytokine, IL-1a [83] and CRP levels in blood [84].

Seminal research has combined transcutaneous gas tension measurement with bio-
marker analyses from sweat to evaluate the effects of different loading regimens on
able-bodied individuals [82]. The authors revealed a significant relationship between the
reduction in TcPO, and an elevation of sweat lactate a marker of anaerobic cellular res-
piration. In addition, the findings revealed that during localised skin loading in excess of
80 mmHg (10.7 kPa), there was considerable accumulation of TcPCO2. In addition, above
a threshold of pressure and loading time, there was a distinct elevation of sweat lactate
and urea. Recently, analysis has revealed that there is also a temporal change in the ratio
between lactate and pyruvate concentrations in sweat sampled pre- and post-mechanical
loading [85]. Concentrations of sweat biomarkers indicative of reperfusion injury, namely
purines, have also been reported to be sensitive to periods of mechanically induced-
ischemia [86]. Sophisticated chromatographic techniques have been more recently
employed to measure both metabolites and purines in small concentrations, allowing
for quantitative analysis of several analytes to be performed simultaneously [87]. Subse-
quently, the potential to interrogate the biochemical milieu of skin and soft tissues to pro-
vide an early indicator of potential damage has become an emerging area of interest.

Cytokines, which are derived from active keratinocytes in the epidermis may be col-
lected from sebum at the skin surface using specially designed tapes. These commercially
available tapes are applied to the skin for short periods (2 min) and the sebum is extracted
in a solution of saline with additional non-ionic surfactant, Tween, using sonication. The
extracts can be analyzed for human cytokines using commercial immunoassay test kits.
The cytokine levels recovered from each tape extract are generally normalized to total
protein (TP) levels. This mechanism has yielded a number of recent studies involving
the response of skin tissues to prolonged loading via medical devices e.g. respiratory
masks [39] and spine boards [88], as well as the combined effects of prescribed shear and
pressure [83]. However, certain technical limitations remain before appropriate robust
biosensors could be incorporated into routine screening protocols and used in conjunc-
tion with traditional risk assessment scales. These include limited sample volumes, low
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concentration levels, particularly for cytokines and the temporal profiles and interaction
of the biomarkers. The advent of low cost highly sensitive portable point-of-care (PoC)
testing systems based on printed electrochemical sensors could provide a means of clini-
cal translation. Although biomarkers sampled from the skin surface provide a means to
examine the status of both epidermal and dermal tissues, it provides little indication of
compromise to the underlying subcutaneous and muscle tissues. Biomarkers of deep
tissue injury, specifically concerning muscle cell damage, have been identified in blood
where CRP levels were significantly raised in SCI subjects with PUs [89].

Medical imaging of mechanically loaded tissues

The relationship between interface pressures and the resulting internal mechanical state
involving the interstitial stresses/strains is necessarily complex in nature. It is dependent
on the thickness of the tissue layers and the mechanical and anatomical characteristics
of the tissue composite between the skin surface and the bone [90]. In order to quantify
the distortion of skin and soft tissues, medical imaging modalities can provide quantita-
tive, volumetric data of loaded tissues. The relative volume changes in skin, fat and mus-
cle can provide an indication of how load is transferred through soft tissues and provide
a basis to relate mechanical loading to pathophysiological events within deeper tissues.
Imaging studies of mechanically compromised tissues have included both animal [91—
93] and human models [26, 94—96]. These have utilised a number of modalities, each of

which will be discussed separately.

MRI-based studies

During MRI scanning, protons (hydrogen atoms) in tissues containing water molecules
create a signal that is processed to provide high contrast images of soft tissues. Using ani-
mal models, MRI has been used to reveal prolonged and intermittent loading can cause
muscle oedema, inflammation and structural damage [20, 93, 97-100]. Accordingly, T2
MRI data has been established as a quantitative damage marker in musculoskeletal MRI.
In addition, MRI has been used with both able-bodied and at risk sub-groups in clinical
settings. These include the interface between a socket and residuum in amputees [101],
supine postures on a spine board [94], the loaded plantar surface of the foot [102] and
seated postures in healthy and spinal cord injured patients [90, 103]. These studies have
revealed high levels of tissue deformation during commonly adopted postures e.g. sitting
and lying. This deformation appears to be dependent on factors such as the characteris-
tics of the support surface [104], the underlying anatomy [105] and the multidirectional
translation of soft tissues [106].

CT-based studies

CT imaging offers a continuous scanning method to provide full volumetric, quantita-
tive data. Several studies have used CT scans to image loaded soft tissues and provide
accurate tissue geometry for computational models simulating pressure ulcer risk [90,
107-109]. The resulting high contrast images of bony anatomy distinguishes between
trabecular and cortical bone, offering the potential to accurately assess deformity of foot
structures which may predispose individuals to DFUs [110]. However, CT imaging is



Bader and Worsley BioMed Eng OnLine (2018) 17:40 Page 11 of 19

associated with radiation exposure and the image sequences are limited in differentiat-
ing between the individual soft tissue structures [111].

Other imaging-based studies

High frequency dermal ultrasound imaging (USI) has been used to investigate underly-
ing tissue changes involving the presence of oedema in the deep sub-dermal and superfi-
cial dermal layers prior to skin breakdown [112]. USI is portable and can be incorporated
into a 3D printed orthotic device to examine the functional behaviour of the foot during
gait [113] and hence the performance of off-loading orthotic devices to prevent DFUs.
US measurements have also shown promise for risk assessment to guide clinicians in
appropriate interventions to prevent DTI, with measures corresponding to MR image
data [114]. The technique has also been shown to be reliable when assessments of tissue
composition are made offline [115]. However, it has been recently reported that although
real-time interpretation of images related to muscle and fat are highly reliable, this is not
the case for skin and bone morphology [116].

USI and MRI scanning techniques can also be used in conjunction with mechani-
cal systems which displace the skin and soft tissues with a prescribed shear wave. The
resulting deformation patterns, termed elastograms, enable quantitative values of shear
modulus to be estimated, which depict local tissue elasticity or stiffness [117, 118]. Sub-
sequently, magnetic resonance elastography (MRE) has been used to evaluate material
property changes in foot fat pads of individuals with and without diabetes [119]. MRE
was also used in an animal model to demonstrate changes in local tissue shear storage
modulus of muscle exposed to damage-inducing indentation [120]. Experimental studies
have also proposed ultrasound elastography (USE) as a promising technique to detect
PUs at an early stage [121]. However, there are many practical issues to be resolved
before technologies can be used routinely in a clinical setting to assess skin damage.

In order to determine the effects of mechanical loading on impaired lymphatic flow
(“Pathogenesis of pressure and diabetic foot ulcers” section), seminal experimental stud-
ies have been conducted using lymphoscintigraphy with a canine model [122, 123].
These authors reported that both impaired lymphatic clearance occurred at an uniax-
ial pressure above 60 mmHg (8 kPa) and subsequent recovery of lymphatic clearance
was highly dependent on the magnitude of the post-occlusive pressure [123]. Adopting
a similar approach with radioisotopes is contraindicated in human volunteers due the
inevitable risks associated with radiation exposure. However, recent research adopting
the less invasive approach of near infra-red (NIR) fluorescence imaging, has revealed
distinct changes in both the local interstitium and surrounding superficial lymphatic
vessels following a period of loading [124, 125]. Further research is required to establish
critical thresholds of both pressure and shear, which reliably occlude lymphatic vessels
and damage associated lymph valves.

Computational modelling

The input of experimentally derived data including boundary conditions (“Monitoring
of the interface” section), subject-specific biomechanical properties and tissue geometry
(“Medical imaging of mechanically loaded tissues” section) have been incorporated into
finite element (FE) models to simulate various clinical situations. This computational
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approach provides a means to estimate the internal mechanical conditions within loaded
soft tissues. The FE approach has enabled pre-clinical analysis of medical device-skin
interactions, providing a platform for sensitivity analyses to optimise designs of inter-
faces and effective offloading regimes [126]. Bony and soft tissue geometry can be
defined using the volumetric data from imaging technologies (Fig. 4A), with proprie-
tary software designed to translate stacked images into a mesh containing tetrahedral or
hexahedral elements, using linear or quadratic shape functions (Fig. 4B). Although mus-
cle, tendon, fat pads and ligament borders are visible using MRI, theses tissues are often
modelled as one homogenous material to allow for convergence of tissue geometry. This
approach, although computational efficient, creates an assumption that mechanical
behaviour is uniform across these different structures. Indeed adding geometric detail
(Fig. 4C) on a subject-specific basis provides the basis to estimate regional mechanical
behaviour [127]. As an example, a two dimensional FE model of a transverse section of
a transfemoral amputee has been developed [128]. The authors reported that the pre-
dicted stress magnitude in the residuum increased by 60% when different material prop-
erties were assigned to the muscles, inter-muscular tissues and the fascia. In addition,
when the muscles were permitted to slide against other soft tissues, the peak stresses
reduced by approximately 20%.

The successful implementation of FE analysis is highly dependent on the quality of
material data characterising the behaviour of human tissues. Material parameters are
often selected based on animal models, assuming that parametric values approximate
those in human tissues [129]. For skeletal muscles data from in vivo animal experi-
ments have been used [130, 131], while skin properties have been derived from both
animal [132] and human data [133]. By contrast, there is very little data describing adi-
pose tissue [134]. These studies confirm that the response of soft tissues to loading can
be characterised as non-linear and time dependent. In order to account for the former,
hyperplastic models have been developed, which will yield a strain energy density (SED)
function. The SED function contains constitutive parameters, which represent material
constants, as derived from experimental data [133]. FE studies have cited material char-
acterization reports to provide these values, although the range of investigations cited
has resulted in a large range of SED parameters being employed [135]. The incorporation
of both non-linearity and time-dependency into a continuum material model represents
a highly complex mathematical problem and, as such, has led to a range of approaches.
For example, Portnoy et al. [95] used a neo-Hookean material model to represent the

Fig. 4 Conversion of CT stacked images (A) into a mesh containing tetrahedral elements (B). C Material
properties are assigned to the model including skin (yellow), bone (blue), cartilage (green) and muscle (red).
D Von Mises stress on the skin and medical device (respiratory mask)
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hyperelastic response of muscle tissues. Following the calculation of the strain energy
density from the FE model, viscoelasticity has been derived from a Prony expansion.

Despite the challenges of converting experimental data to FE models, the computa-
tional approach offers significant insight into the mechanical behaviour of skin and
soft tissues under varying loading regimes. The models have demonstrated how tissues
are highly deformed under prolonged loading, resulting in soft tissue strains regularly
exceeding 50% [106, 136], which are comparable to those estimated in MRI images. It
is not known if these shear strain values correspond damage to the skin and underlying
soft tissues in humans. However, animal testing has revealed that strains above a thresh-
old could cause direct deformation damage of skeletal muscle [137] and strain may pro-
vide greater insight into the risk of deep tissue injury compared to pressure mapping
measures at the skin interface [138]. To date, researchers have used FE models to exam-
ine the effects of support surface design [139-141] and microclimate at the interface
[142-144], prophylactic dressings [145], insole performance for diabetic patients [146]
and medical devices attached to skin tissues [143] (Fig. 4d). Authors have also used FEA
as a platform to perform sensitivity analyses on parameters which mimic pathophysi-
ological changes associated with chronic disease, including scar tissue [144], bone shape
adaptation and muscle atrophy [139]. Although the clinical translation of these simula-
tions has been limited to date due to the complexity within the models, several authors
have attempted to simplify the process to provide real-time feedback during clinical situ-
ations. For example, Luboz and colleagues created a simplified FE model which provides
personalised modelling for real-time pressure ulcer prevention in the sitting posture
[145].

However, the interpretation of these models should be made in the light of the
assumptions employed for both the geometry and material properties of the simulation.
The clinical value will remain limited until stringent validation has been completed.

Conclusions

Based on the technologies presented in this review, it is evident that there is a consider-
able armory of bioengineering techniques available to assess the effects of mechanical
loading on the integrity of skin tissues. They are based on measurements at the skin-
device interface, the physiological and biological response at the skin, as well as the
imaging and modelling of the internal tissue status. The combination of these distinct
technologies has provided the basis to predict the conditions which can lead to skin and
soft tissue damage in a range of clinical situations e.g. pressure ulcers in sitting or dia-
betic foot ulcers during gait. Future research should focus on the translation of these
technologies to provide robust, cost effective means by which individuals can be moni-
tored over prolonged periods and targeted interventions delivered to those who are at
high risk of tissue damage. In particular, sensors which can monitor the local carbon
dioxide levels and inflammatory response in loaded skin sites could provide the potential
to identify early compromise of tissues prior to gross damage. The modification of exist-
ing technologies such as long-term pressure and shear monitoring could also provide a
means by which patient posture and mobility can be tracked over prolonged periods.
This could inform patients, carers and clinicians of behaviors which will predispose indi-
viduals to increased risk of PUs, DFUs. The creation of algorithms which can format and
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process the large data generated from such sensors could also lead to improved trans-
lation of these technologies, with the potential for machine learning to facilitate this
process. There is also a significant opportunity to use the bioengineering approaches to
optimise the design of medical devices, including their material combinations, in con-
tact with the skin. Future goals related to both PU and DFU prevention, which could be
achieved in the research and clinical setting, can be summarised as:

« Establishment of objective risk assessment tools for PU and DFU applications, which
are reliable and robust.

+ Development of an integrated system to monitor conditions at the loaded body-sup-
port interface, including pressure, shear and microclimate (Fig. 2).

+ Use of novel materials and advanced support systems to create a ‘closed loop system’
for skin protection.

+ Prediction of the interface/interstitial conditions which may lead to tissue break-
down.

« Validation of computational models, which can provide clinical translation for the
prevention and management of chronic wounds.
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