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Abstract

Purpose—In minimally invasive interventions assisted by C-arm imaging, there is a demand to 

fuse the intra-interventional 2D C-arm image with pre-interventional 3D patient data to enable 

surgical guidance. The commonly used intensity-based 2D/3D registration has a limited capture 

range and is sensitive to initialization. We propose to utilize an opto/X-ray C-arm system which 

allows to maintain the registration during intervention by automating the re-initialization for the 

2D/3D image registration. Consequently, the surgical workflow is not disrupted and the interaction 

time for manual initialization is eliminated.

Methods—We utilize two distinct vision-based tracking techniques to estimate the relative poses 

between different C-arm arrangements: (1) global tracking using fused depth information and (2) 

RGBD SLAM system for surgical scene tracking. A highly accurate multi-view calibration 

between RGBD and C-arm imaging devices is achieved using a custom-made multimodal 

calibration target.

Results—Several in vitro studies are conducted on pelvic-femur phantom that is encased in 

gelatin and covered with drapes to simulate a clinically realistic scenario. The mean target 

registration errors (mTRE) for re-initialization using depth-only and RGB+depth are 13.23mm and 

11.81mm, respectively. 2D/3D registration yielded 75% success rate using this automatic re-

initialization, compared to a random initialization which yielded only 23% successful registration.
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Conclusion—The pose-aware C-arm contributes to the 2D/3D registration process by globally 

re-initializing the relationship of C-arm image and pre-interventional CT data. This system 

performs inside-out tracking, is self-contained, and does not require any external tracking devices.
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Introduction

C-arm 2D fluoroscopy is the crucial imaging modality for several image-guided 

interventions. During these procedures, the C-arm is frequently re-positioned to acquire 

images from various perspectives of a target anatomy. Performing surgery solely under 2D 

fluoroscopy guidance is a challenging task as a single point of view lacks the information 

required to navigate complex 3D structures, making the intervention and procedure 

extremely difficult.

Acquiring cone-beam computed tomographic (CBCT) volumes which provides 3D 

information of the anatomy is a solution to this problem [7,9,19]. However, CBCT 

acquisition does not yield real-time feedback. A considerable number of scans would need 

to be performed at every step of the procedure, requiring the surgical site to be prepared for 

each scan [5].

Pre-interventional 3D patient data can be fused to the C-arm images and augment the intra-

interventional fluoroscopy images with 3D information. This multimodal image fusion is 

used in several different interventions, particularly in radiation therapy [11], cardiac and 

endovascular procedures [21], and orthopedics and trauma interventions [26]. Additionally, 

other image-guided orthopedic procedures such as femoroplasty [25], (robot-assisted) bone 

augmentation, K-wire and screw placement in pelvic fractures, cup placement for hips, and 

surgeries for patients with osteonecrosis can benefit from the registration of pre-

interventional data with real-time intra-interventional C-arm images. Therefore, there is a 

need for robust registration techniques that enable a seamless alignment between 3D and 2D 

data. We present a vision-based method to automatically re-initialize the registration of pre- 

and intra-interventional data using the RGBD camera attached to the C-arm.

Background

Intensity-based image registration is one group of image-based registration techniques and 

of special interest in this paper. Registration is typically performed by simulating 2D 

radiographs, so-called digitally reconstructed radiographs (DRRs), from pre-interventional 

patient data, and matching them with the intra-interventional C-arm image [13,17,20]. 

Intensity-based registration becomes challenging where bony structures in the pre- and intra-

interventional data differ due to deformations caused by the surgery. C-arm image 

registration is in particular a complex problem due to the limited views of the C-arm images. 

Atlases of the target anatomy and deformable shape statistics are suggested to support the 

registration in such cases of image truncation [29]. In spite of promising results from using 

shape models, in several trauma and orthopedic cases where the bony anatomy is severely 
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damaged and deformed, the registration is yet prone to failure. Last but not least, intensity-

based registration is very sensitive to initialization due to the limited capture range of the 

intensity-based similarity cost. These are the challenges that prohibit the 2D/3D registration 

to become a part of standard surgical routine.

Related works

Reliable registration is often performed using external navigation systems [4]. In navigation-

guided fluoroscopy, it is a common practice to drill the fiducials into the bone to maintain 

the registration in the presence of patient movement [24]. Generally, these fiducials are 

implanted before the 3D pre-interventional data are collected, and will remain inside the 

anatomy until after the intervention. Fiducial implantation requires a separate invasive 

surgery and increases the risk of fracture in the osteoporotic bones.

Fiducial-based C-arm tracking was used for intensity-based image registration in [24]. This 

method achieves submillimeter accuracy and, however, requires the implantation of a 

custom-made in-image fiducial. The mean target registration error (mTRE) is 0.34mm for 

the plastic bone phantom with 90° rotation, and 0.99mm for the cadaveric specimen with 

images 58.5° apart. In [16], anatomical features or beads on patient surface are located in the 

C-arm images and used for C-arm pose estimation. This work tackles the problem of intra-

interventional calibration and reconstruction and does not address registration to pre-

interventional data. Despite the high registration accuracy of navigation-guided systems near 

the fiducial markers, the registration error and uncertainty increase in distant areas. 

Furthermore, these systems have a complex setup, occupy additional space, and change the 

surgical workflow. Last but not least, the line of sight issues limit the free space in the 

surgical site.

In order to initialize the 2D/3D registration for several number of C-arm images, Uneri et al. 

[30] proposed to use each successful registration of a C-arm image to 3D data as the 

initialization for the latterly C-arm image. This work avoids the use of any external trackers 

by solely relying on image-based registration. But on the other hand, in order to robustly 

initialize the registration, the allowed displacement between consecutive C-arm images was 

limited to only 10mm.

The initial alignment and outcome verification are introduced as two main bottlenecks of the 

registration problem [31]. In order to address the problem associated with initialization of a 

2D/3D registration task, Gong et al. [14] suggested an interactive initialization technique 

where the user performs the alignment by utilizing a gesture-based interface or an 

augmented reality environment together with a navigation system. The tedious initialization 

procedure makes the system impractical in a surgical setting.

Generalized Hough Transform is used in [32] to learn large number of 2D templates over a 

variety of 3D poses. During intervention, this information is used to estimate the 3D pose 

from the 2D C-arm images and initialize the 2D data with respect to 3D pre-interventional 

CT. Projection-slice theorem and phase correlation are also used to estimate the initialization 

of the 2D/3D registration problem [2].
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Proposed solution for automatic re-initialization of registration

In this work, we use vision information from an RGB-depth (RGBD) camera mounted near 

the detector of a mobile C-arm to estimate the pose of the C-arm relative to the patient. We 

refer to this C-arm as pose-aware. The proposed C-arm tracking will result in estimating the 

projection geometry of the C-arm relative to the surgical scene at arbitrary poses of the C-

arm. The tracking information will be used to transform the 2D C-arm images globally near 

their correct alignment with respect to the pre-interventional data. Next, intensity-based 

registration is utilized to align images locally. In the spirit of using one modality 

(ultrasound) to initialize the registration of another imaging modality (endoscopic video 

images), the method suggested in [34] resembles our work. Our methodology aims at 

improving the automation during C-arm guided interventions. This technique is more 

effective when the registration has to be repeated for multiple C-arm poses. The workflow 

(Fig. 1) initiates by performing an initial registration of the C-arm to the pre-interventional 

data. The registration loop is then closed by using this pose as the reference for the tracking 

of different C-arm arrangements. This system is self-contained and requires a single factory 

calibration, and the surgical workflow remains intact.

Materials and methods

The proposed pose-aware C-arm uses a co-calibrated RGBD camera to track the surgical site 

in the course of the C-arm re-positioning. The joint calibration of C-arm and RGBD imaging 

devices is discussed in “Calibration of RGBD camera and C-arm” section. We then 

introduce two distinct tracking methods based on depth-only and RGB+depth data for pose 

estimation of the C-arm (“Estimation of C-arm trajectory using visual tracking” section). 

“Pose-aware C-arm for intensity-based 2D/3D image registration of pre- and intra-

interventional data” section presents the intensity-based registration of 2D intra-

interventional C-arm images and 3D pre-interventional CT using DRRs and the automatic 

re-initialization using the pose-aware C-arm system.

Calibration of RGBD camera and C-arm

The RGBD camera is attached rigidly to the C-arm, allowing tracking performed using the 

camera to be translated to the pose of the X-ray source and detector. To obtain the 

relationships between RGB camera, depth sensor, and X-ray source, we perform a standard 

multi-view calibration [10,35]. To enable this technique, we deploy a multimodal 

checkerboard, which can be observed by the RGB camera, the infrared camera in the depth 

sensor, and the X-ray imaging device [8]. Note that the X-ray image is usually flipped adjust 

of the X-ray source to be below the table, while the clinician is observing the patient from 

the top. Finally, we obtain the transformation XTRGBD from RGBD sensor, where we define 

the depth component to be the origin, to the X-ray source.

Estimation of C-arm trajectory using visual tracking

The tracking of C-arm source during C-arm re-positioning is performed by first observing 

the surgical site (patient) using the RGBD camera. These relationships, denoted as PTRGBD 
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and PTRGBD′, are shown in Fig. 2. The relative transformation between the RGBD camera 

poses is then derived as:

 RGBD′ TRGBD =P TRGBD′
−1 ⋅P TRGBD (1)

Since the RGBD camera is rigidly mounted on the C-arm, the multi-view relation between 

the RGBD origin and X-ray source remains fixed (XTRGBD =X′ TRGBD′). We can then obtain 

the relative displacement of the X-ray source as:

 X′ TX =X′ TRGBD′ ⋅
 RGBD′ TRGBD ⋅X TRGBD

−1 (2)

In the following, we discuss two distinct vision-based methods for tracking the surgical site 

with depth-only and RGB+depth data.

Tracking and surface reconstruction using depth data

We deploy an algorithm to automatically estimate the depth sensor trajectory and create a 

smooth dense 3D surface model of the objects in the scene [23]. The relative camera poses 

are acquired by iteratively registering the current depth frame to a global model. This 

iterative stage is performed using multi-scale iterative closest point (ICP), where depth 

features among frames and the global model are matched using projective data association 

[28].

RGBD-based simultaneous localization and mapping

Modern RGBD cameras are small devices which provide color information as well as depth 

data. Therefore, greater amount of information is extracted and processed compared to a 

single RGB or infrared camera. We aim at using depth and color information concurrently 

and acquire 3D color information from the surgical site. Ultimately, we use this knowledge 

to track the C-arm relative to the patient. For this purpose, we use an RGBD SLAM system 

introduced in [3]. The underlying tracking method uses visual features (e.g., SURF [1]) 

extracted from the color images and constructs feature descriptors. The feature descriptors 

are matched among the consecutive frames to form a feature correspondence list. The initial 

transformation is then computed using the correspondence list and a random sample 

consensus (RANSAC) method [6] for transformation estimation. The outcome is later used 

to initialize ICP to further refine the mapping between consecutive frames. Lastly, to 

compute a globally consistent trajectory, a pose graph solver is used that optimizes the 

trajectory using a nonlinear energy function [15,18].

Pose-aware C-arm for intensity-based 2D/3D image registration of pre- and 

intra-interventional data

Intensity-based 2D/3D image registration is an iterative method which 6 DOF parameters 

are estimated for a rigid body transformation that brings the input 2D and 3D data to a 
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common coordinate frame. The key component of this process is the creation of many 2D 

artificial radiographs, so-called digitally reconstructed radiographs (DRRs), from the CT 

data and comparing them against the C-arm X-ray image. This process continues until the 

similarity cost between the DRR and X-ray images is maximized using an iterative 

optimization.

CT image is a collection of voxels representing X-ray attenuation. In order to generate a 

DRR from a given CT data, 6 DOF rotation and translation parameters are used together 

with the intrinsics of the C-arm to position a virtual source and a DRR image plane near the 

CT volume [33]. The intrinsic calibration of the C-arm allows us to estimate the source to 

detector arrangement and use this information to generate DRR images [22]. Next, by means 

of raycasting [12], the accumulation of intensities along each ray (that originates from the 

virtual source and intersects with the image plane) is computed. The accumulated values 

then form a DRR image. In this work, we first perform a single image-based C-arm image to 

CT registration using manual initialization. There-after, we track the C-arm new pose 

relative to the surgical site. The tracking results of the C-arm are later used as the 6 DOF 

initialization parameters of the new coming C-arm images.

Next, the C-arm X-ray images are converted to linear accumulation of X-ray attenuation by 

means of log-normalization. Hence, the DRRs and detector images become linearly 

proportional. Furthermore, we apply a circular mask on the detector images to discard the 

saturated areas near the detector boundaries and only include relevant information in the 

similarity cost.

After estimating the re-initialization transformation T0 obtained as results of the 

composition of transformations  X′ TX estimated by the pose-aware system, and that of the 

first pose of the C-arm, the DRR image is generated and compared against the C-arm X-ray 

image IX using a similarity cost S. In this work we utilize the normalized cross-correlation 

(NCC) as the similarity cost defined as:

NCC: = S((R, t) |T0, IX, ID) = ∑
ΩX, D IX ⋅ ID

((R, t T0)

σXσD
(3)

where IX and ID are the mean-normalized X-ray and DRR images, (R, t) are the rotation and 

translation parameters used to form the DRR image, ΩX,D is the common spatial domain of 

the two images, and σX and σD are the standard deviations of the X-ray and DRR image 

intensities in ΩX,D.

The final parameters (R,t  are estimated by an iterative optimization:

[R, t ] = arg max
R,t

S((R, t) |T0, IX, ID) (4)
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The optimization is performed using bound constrained by quadratic approximation 

(BOBYQA) algorithm [27].

Experimental validation and results

Experimental setup

X-ray images are acquired using an Arcadis Orbic 3D mobile C-arm from Siemens 

Healthineers with the detector size of 230mm×230mm. In order to remove low noise, the X-

ray images are captured as digital radiographs (DRs) where a weighted average filter is 

applied to the images. The DR images are acquired using 0.2–23mA and 40–110kV. For 

safety purposes, the maximum power for taking a DR image is set to 1000W. The CT scan 

data are acquired using a Toshiba Aquilion One CT scanner, where the slice spacing and 

thickness are 0.5mm, and the volume elements are created using 16bits. An Intel RealSense 

SR300 camera from Intel Corporation is rigidly mounted on the image intensifier using a 

custom-made 3D printed mount. The SR300 has a small form factor (X = 110.0±0.2 mm, Y 
= 12.6±0.1mm, Z = 3.8–4.1mm), and integrates a full-HD RGB camera, an infrared 

projector, and an infrared camera. To ensure a wide visibility range of the patient surface, the 

RGBD camera is positioned with a particular tilt angle that the center of the image is nearly 

aligned with the C-arm iso-center. The C-arm imaging device is connected via Ethernet, and 

the RGBD camera is connected via powered USB 3.0 to the development PC which runs the 

tracking and the registration software. The tracking is performed in real-time, and the 2D/3D 

registration module is fully parallelized using graphical processing unit acceleration.

Results

In the following, we evaluate the pose-aware C-arm system by presenting the calibration 

accuracy, tracking results, and 2D/3D registration performance with and without the 

automatic re-initialization.

Calibration outcome

A 5 × 6 checkerboard calibration target is employed to calibrate the X-ray, RGB, and 

infrared (depth channel of the RGBD camera) imaging devices. The length of each side of a 

single checkerboard square is 12.66mm, and the total dimensions of the checkerboard are 

63.26 and 75.93mm. The checkerboard size is carefully selected according to the field of 

view of the C-arm and the RGBD camera images to ensure full visibility among a variety of 

checkerboard poses. Next, 72 X-ray/RGB/IR images were simultaneously recorded to 

perform the calibration. A subset of images that produced high reprojection error were 

discarded as outliers. Ultimately, we used 42 image pairs and performed stereo calibration 

between RGB camera and X-ray source where the stereo mean reprojection error was 0.86 

pixels. The stereo calibration in this work does not refer to the calibration of a single moving 

camera, instead it refers to estimation of the extrinsic parameters of two stationary cameras 

(RGB and X-ray imaging devices). RGB and X-ray images had individual mean reprojection 

errors of 0.75 and 0.97 pixels, respectively.
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RGB and IR cameras were calibrated using 59 images, and the mean stereo reprojection 

error was 0.17 pixels, with individual mean reprojection errors of 0.18 and 0.16 pixels for 

each camera, respectively.

Tracking accuracy

The accuracy of the vision-based tracking methods is evaluated by rotating the C-arm 

around different axis, computing the pose of the X-ray source, and comparing the outcome 

to the ground truth provided by an external optical tracking system. An exemplary rotation is 

shown in Fig. 3, where the C-arm orbits around the surgical bed.

The optical position sensor tracks a single-faced passive rigid body fiducial mounted on the 

C-arm which is pre-calibrated to the X-ray source. The tracker is a Polaris Vicra System 

from Northern Digital Inc., where the measurement area for the minimum distance (557 mm 

away from the tracker) is 491 mm × 392 mm, and 938 mm × 887 mm for the maximum 

distance (1336 mm) from the tracker.

The C-arm is rotated along three main axis, and the tracking results from the depth-only 

algorithm and RGBD SLAM are recorded and compared to an optical tracking system. First, 

C-arm is orbited 45° around the cranial/caudal axis. The tracking errors are shown in Fig. 

4a, b in the form of Euclidean distance, as well as the rotational error. The rotational error is 

computed as the norm of mal-rotation angle along the three axis with respect to the ground 

truth. Next, the C-arm is swiveled by ±10°, and the tracking errors are plotted in Fig. 4c, d. 

Lastly, the C-arm is rotated to anterior-posterior oblique view with ±30°. The results of this 

experiment are shown in Fig. 4e, f.

Note that the C-arm rotation does not only result in the rotation of the X-ray source, but also 

by construction of the device a significant translation is applied to the X-ray source. In an 

exemplary case, considering the C-arm source to iso-center distance (approximately 

600mm), a 45° orbit of the C-arm results in approximately 430mm displacement of the X-

ray source. Therefore, the aforementioned experiments all involve rotation as well as 

translation of the X-ray source.

The ranges selected for these experiments were solely defined by the limited capture volume 

or line of sight constraints of the tracking system, or the range of C-arm motion (e.g., swivel 

is only possible up to 10° for this C-arm).

2D/3D registration with automatic re-initialization

To evaluate the effect of re-initialization on intensity-based 2D/3D image registration, we 

attempt to register CT and C-arm images of a dry femur-pelvis phantom with the automatic 

re-initialization. In addition to re-initialization, the optimizer search space is limited 

according to the aforementioned tracking errors, i.e., the optimizer bounds are 10 and 20mm 

for <15° and >15° rotation of the C-arm, respectively. For speedup, the registration software 

is fully parallelized using GPU acceleration.

A CT scan is acquired from the femur-pelvis phantom that is encased in gelatin and partially 

covered with drapes (to simulate realistic surgical scenario). Next, the phantom is placed on 
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the surgical bed using laser guidance where the femur head is near the iso-center of the C-

arm orbit. A C-arm X-ray image is then acquired and registered to the CT data using manual 

initialization. Thereafter, we rotate the C-arm within a range of 30° and collect multiple C-

arm images while tracking the C-arm using vision-based methods in “Estimation of C-arm 

trajectory using visual tracking” section. For each C-arm image, the tracking outcome is 

used for re-initialization of the intensity-based 2D/3D registration. In Table 1, the 

registration outcome is presented for all successful registration attempts. We consider a 

registration attempt successful only if the mTRE error after registration is <2.5mm. mTRE is 

computed as the mean of the absolute Euclidean distances between radiolucent landmarks 

on the phantom in the CT coordinate frame. Registration using random initialization yielded 

a 23% success rate, where vision-based re-initialization yielded a 75% success rate. An 

example demonstrating the registration steps is presented in Fig. 5.

Discussion and conclusion

The marker-free pose-aware C-arm system proposed in this work is an RGBD enhanced C-

arm system that uses vision-based techniques to track the relative displacement of the C-arm 

with respect to the surgical site. Before the vision-based tracking takes place, C-arm is 

registered to pre-interventional CT data using a single 2D/3D registration with manual 

interaction. Thereafter, the relative C-arm poses are estimated with respect to the initial C-

arm pose and consequently to pre-interventional 3D data. An error in the initial registration 

of the C-arm to CT data will directly affect the accuracy of the vision-based tracking system. 

The fusion of 3D pre- and 2D intra-interventional data allows the surgeon to understand the 

relationship between the current state of surgery, the complex 3D structures, and the 

preoperative planning. This increases the surgeon’s confidence, reduces the mental task load, 

and lowers the probability of a revision surgery.

Classically tracking the C-arm/patient using external optical trackers may provide better 

accuracy, but involves longer and more complex preparation, line of sight issues, and the 

invasive implantation of pins into bone, hampering surgical navigation from being widely 

adopted in orthopedics. In contrast to these systems, the pose-aware C-arm is noninvasive 

and requires no interaction time for manual re-initialization, and the workflow remains intact 

(manual initialization for authors as expert users takes between 30 and 60s). The registration 

step after a re-initialization takes <10 s.

The tracking accuracy is evaluated at various C-arm poses. The results in Fig. 4 indicate that 

an RGB+depth tracking method slightly outperforms a depth-only tracking system. The 

translation error for a wide range of displacement is 10–18mm, and the rotation error is 

below 2°. The reported mTRE values are only for the re-initialization step. The range of 

acceptable mTRE for clinical application depends on the registration method and its capture 

range. Surgical navigation can only be performed after the 2D/3D registration takes place.

Registration using the re-initialization has 75% success rate, where random initialization 

only yielded 23% success rate. Our method increases the likelihood of a successful 

registration, which therefore improves the practical applicability and usefulness of surgical 

navigation. A similar fiducial-less initialization method in [2] yielded only 68.8% success 
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rate, where in 95% of the cases the initialization error was below 19.5mm. Spine imaging is 

the focus of the 2D/3D registration proposed in [32], where DRRs are generated from each 

vertebra and used to generate Hough space parametrization of the imaging data. The success 

rate of the registration using Generalized Hough Transform is 95.73%. The interactive 

initialization method in [14] with average interaction time 132.1 ± 66.4s has an error of 7.4 

± 5.0 mm.

RGBD camera is mounted on the image intensifier that allows the X-ray source to remain 

under the surgical bed; hence, the workflow is not disrupted. Despite the benefits of 

mounting the camera near the detector, large distance between RGBD camera and the X-ray 

source (approximately 1000mm) may result in significant propagation of error. In other 

words, minute tracking error in the RGBD coordinate frame may produce large errors in the 

X-ray source coordinate frame.

The depth-only algorithm performs a global tracking and utilizes points from foreground as 

well as the background. Therefore, patient movement in a static background is not tracked. 

Moreover, this method requires a complex scene with dominant structures. Lastly, the 

tracking is only maintained when the C-arm is re-arranged slowly. On the other hand, RGBD 

SLAM uses color features and assigns a dense feature area in the image (e.g., surgical site) 

as the fore-ground, and discards the background. Therefore, RGBD SLAM accounts for 

patient rigid movement.

The errors from the vision-based tracking show that the translational components are subject 

to larger errors than the rotational components. The errors depend on the choice of the color 

features and the accuracy of depth data. The error in tracking the X-ray source using the 

RGBD SLAM is the result of unreliable color features, drift from the frame-to-frame 

tracking, large translations of the RGBD camera in the world coordinate frame, and the 

propagation of error due to the large distance between the X-ray and the RGBD imaging 

devices. Fast C-arm movement as well as the presence of reflective and dark objects in the 

surgical scene that reflect and absorb IR are factors that result in poor tracking. Tracking 

accuracy can be further improved by incorporating application specific details such as drape 

color and using model-based tracking methods based on the known representations of the 

surgical tools. Additionally, the drift caused by frame-to-frame tracking can be reduced 

using bundle adjustment. Other improvements can take place by using stereo RGBD 

cameras on the C-arm, or using a combined tracking algorithm with both RGBD SLAM and 

depth-only. Alternative feature detectors that provide better representations can be used to 

extract relevant information from the surgical scene. Redundancy tests may also be 

necessary to reject color features where the depth information is sparse or unreliable. Lastly, 

high-end RGBD imaging devices with more reliable depth information can significantly 

improve the tracking quality.

The tracking accuracy of the RGBD SLAM method presented in this paper is within the 

capture range of an intensity-based image registration and provides reliable registration. We 

believe that an RGBD enhanced C-arm system can contribute to automated fusion of pre- 

and intra-interventional data.
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Fig. 1. 
Workflow of a pose-aware C-arm system for intensity-based 2D/3D registration. Every C-

arm image is globally aligned (initialization for 2D/3D registration) with pre-interventional 

CT based on vision-based tracking. The main contribution of this work is shown in green
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Fig. 2. 

Relative displacement between camera poses  RGBD′ TRGBD is used for estimation of the 

relative displacement of the X-ray source  X′ TX
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Fig. 3. 
Pose of the X-ray source is tracked at different C-arm positions. Tracking based on a depth-

only, and b an RGBD SLAM system is shown in red, and the tracking outcome based on the 

external tracking system is shown in blue. While drift (mistranslation) is observed in the 

tracking of the X-ray source, misrotation compared to the ground truth is minimal
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Fig. 4. 
Tracking errors of X-ray source pose estimation with respect to ground truth are presented in 

Euclidean distance as well as rotational misalignment. The plots indicate the results when 

using depth-only data, and RGBD SLAM with RGB+depth information. a, b are the errors 

for 45° C-arm rotation in cranial/caudal direction, c, d correspond to 10° C-arm swivel, and 

e, f are errors for ±30° of C-arm rotation in oblique ± direction. Regarding the composition 

of errors, results show a relatively small rotational and large translational component. Note 

that here the C-arm extrinsics recovered from vision-based methods are compared to 

tracking results using an external optical tracking system. Therefore, any changes in the 
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intrinsic parameters (due to mechanical deformation of the C-arm) do not contribute to the 

errors
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Fig. 5. 
DRR is overlaid with C-arm X-ray image, a before re-initialization, b after pose-aware re-

initialization, and c after the 2D/3D registration. The pelvic-femur phantom and the gelatin 

are shown in d. During the experiment, the bone phantom is encased in gelatin and covered 

with drape to simulate a realistic surgical condition
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