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A B S T R A C T

When a meta-analysis consists of a few small trials that report zero events, accounting for heterogeneity in the
(interval) estimation of the overall effect is challenging. Typically, we predefine meta-analytical methods to be
employed. In practice, data poses restrictions that lead to deviations from the pre-planned analysis, such as the
presence of zero events in at least one study arm. We aim to explore heterogeneity estimators behaviour in
estimating the overall effect across different levels of sparsity of events. We performed a simulation study that
consists of two evaluations. We considered an overall comparison of estimators unconditional on the number of
observed zero cells and an additional one by conditioning on the number of observed zero cells. Estimators that
performed modestly robust when (interval) estimating the overall treatment effect across a range of hetero-
geneity assumptions were the Sidik-Jonkman, Hartung-Makambi and improved Paul-Mandel. The relative per-
formance of estimators did not materially differ between making a predefined or data-driven choice. Our in-
vestigations confirmed that heterogeneity in such settings cannot be estimated reliably. Estimators whose
performance depends strongly on the presence of heterogeneity should be avoided. The choice of estimator does
not need to depend on whether or not zero cells are observed.

1. Introduction

Meta-analyses (MAs) techniques are commonly employed in order
to obtain a more precise and more general effect estimate of a treat-
ment. Heterogeneity (τ) of treatment effects measured in multiple
Randomized Controlled Trials (RCTs) is a crucial part of the estimation
[1].

In MAs of RCTs, methodological challenges arise when the disease
under examination is rare and only a few small RCTs are available
[2,3]. This is mostly due to the large sample assumptions on which most
MA methods are based. In the case of rare diseases with binary end-
points, zero cells are more likely to be observed in at least one of the
treatment arms of at least one contributing trial [4–6]. Zero cells in MAs
pose challenges as they induce bias in both the estimation of the overall
effect and the between-study variance (heterogeneity) [7–14].

When conducting a MA, the estimation method might be adjusted
conditionally on observing zero cells. Corrections are typically in-
troduced by adding a number to the zero cells observed; furthermore,
the choice of the heterogeneity estimator could change. The latter

choice is by itself a challenging task, given the large pool of options
[15–24]. Prospective choice of analysis strategies is a fundamental
element of statistical inference. The extent to which conditional (on the
observed zero cells) analysis choices can affect robustness is of obvious
concern.

Especially for dealing with a MA of a few RCTs, there is no
straightforward answer to which estimator would be robust across
several heterogeneity assumptions [21]. Most estimators face difficul-
ties in case of a limited number of trials; they induce bias in the esti-
mation of τ [25,26] and may result in inappropriate interval estimation
of the treatment effect. However, not much is known regarding their
behaviour in the presence of zero cells and small populations.

The primary objective of this work is to assess the robustness of
heterogeneity estimators in the (interval) estimation of treatment effect
across ranges of sparsity of events and assumed heterogeneity. The
starting point is the acknowledged poor estimation of heterogeneity in
this setting. We evaluate the estimators in case they are predefined
(unconditional), as well as when they are chosen depending on the
observed zero cells in contributing trials (conditional on the observed
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data, in short: conditional), and explore whether such a retrospective
analysis choice can substantially affect inference.

The paper is organized as follows. First we describe the standard
random-effects (RE) model and introduce the heterogeneity estimators
briefly. Subsequently, we present two motivating examples and their
analysis. Then we describe the simulation study and evaluate the two
distinct approaches. We conclude with recommendations on evidence
synthesis for a sparse-events MA in small populations.

2. Methods

We consider a set of k trials with binary outcomes that compare an
experimental treatment to a control. Patients are randomized between
two groups: treatment (T) and control (C).

By Yi we denote the log odds ratio (logOR) in the ith trial. Following
standard theory (e.g. Ref. [1]), we assume:

∼ = …Y θ N θ σ i k( , ), 1, ,i i i i
2 (1)

The study-specific treatment effect estimates are = ⋅ −
⋅ −( )θ logî

r n r
r n r

( )
( )

Ti Ci Ci
Ci Ti Ti

,

while their variances are = + + +− −si r n r r n r
2 1 1 1 1

Ti Ti Ti Ci Ci Ci
, where ri and ni

denote the number of responders and the total number of subjects in each
trial, respectively.

Assuming a fixed-effects (FE) model, θ is common for all studies
( =θ θi ). Assuming a RE model, the θi are considered exchangeable and
follow a normal distribution, that is,

∼θ θ τ N θ τ, ( , )i
2 2 (2)

where θ is the overall effect and τ2 is the between-study variance. When
=τ 02 , then the RE model reduces to the FE model. The pooled effect

estimate is calculated as a weighted average = ∑ ∑θ w Y wˆ /i i i i i. The

inverse variance (IV) weights are then defined as = +w s τ1/( ˆ )i RE i,
2 2 for

the RE model and as =w s1/i FE i,
2 for the FE model.

A standard confidence interval is calculated as, ± −θ σ zˆ ˆθ a1 /2, where
−z a1 /2 is the ( − a1 /2) quantile of the standard normal distribution and
= ∑σ wˆ 1/θ i i .
To apply the RE model, estimation of heterogeneity is required. In

the presence of zero cells, heterogeneity estimators entail the addition
of a small continuity correction (CC) on zero cells in order to provide
finite estimates. Several methods for estimating τ2 are proposed in the
literature. Table 1 presents a summary of the 15 estimators that are
included in this study. For a detailed overview of heterogeneity esti-
mators, we refer the reader to two systematic reviews [27,28].

3. Motivating examples

3.1. Intravenous immunoglobulin (IVIG) for Guillain-Barre syndrome
(GBS)

GBS syndrome has a prevalence of 1–9/100.000 [29], the term is
used to describe a number of rare post-infection neuropathies. Patients
may recover completely, remain unable to walk 6 months after disease
onset or have a fatal outcome. A recent Cochrane review and MA
summarized four RCTs that compared IVIG to plasma exchange [4].
Treatment discontinuation was reported, as a secondary outcome.
Trials which were relatively small either failed to report any event or
they only had one in each arm. On the contrary, the largest of these
trials reported a considerable number of events in both arms (Fig. 1).
For the initial analysis the Mantel-Haenszel (MH) FE risk ratio 0.14
(95% 0.05–0.36) was used. By using the MH, the authors excluded
information from trials with no reported event, which resulted in a
significant overall effect with moderate estimated heterogeneity.

Table 1
Summary of heterogeneity estimators, including their equation, abbreviation and source.

Methods Equation Abbreviation Source
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3.2. Sapropterin dihydrochloride for phenylketonuria (PHK)

PHK is a common inborn error of amino acid metabolism that causes
mental disability (mild to severe) to patients who are not treated
properly. It is considered a rare child disorder with a prevalence of 1–5/
10.000 [29]. A Cochrane review consisted of two studies on sapropterin
dihydrochloride and reported on several adverse events, such as vo-
miting [5]. The two studies produced contradictory but not significant
results overall (Supplementary material A - Table 1). Even though, the
estimated heterogeneity was substantial, the studies were again pooled
using a FE MH on the risk ratio 1.04 (95% 0.28–3.91) [5].

3.3. Analysis of motivating examples

In regards to our first example (GBS), the final conclusion is influ-
enced considerably by the choice of the heterogeneity estimators.
Estimators that lead to a larger estimate value of τ fail to reject the null
hypothesis and therefore result in a more conservative conclusion
(Fig. 1).

In the second example (PHK), the overall treatment effect changes

direction, depending on the choice of estimator (Supplementary mate-
rial A - Table 2). The overall treatment effect remains non-significant
due to the contradictory results of the two available trials. When esti-
mating the heterogeneity, we observe a behaviour similar to the first
example.

4. Simulation study

In order to assess the performance of a predefined versus a data-
driven choice of analysis in the aforementioned setting, we conducted a
simulation study that is divided in two parts; (1) evaluating the op-
erational characteristics for the whole simulation, which represents the
”unconditional approach” strategy and (2) evaluating the operational
characteristics for subsets of the whole simulation that are defined by
the number of observed zero cells in a simulated MA. The second part
represents the ”conditional approach” strategy.

4.1. Unconditional approach

Following the strategy of Hartung and Knapp [30] we simulated

Fig. 1. Forest plot of the overall treatment effect (log odds ratio) for the Guillain-Barre syndrome (GBS) example. The inverse-variance random-effects method is applied in combination
with the seven heterogeneity estimators. The between-study standard deviations τ are presented alongside each estimator The confidence intervals are calculated as ± ⋅ −θ σ Zˆ ˆθ α1 /2. The
Mantel-Haenszel analysis is plotted as well.
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Fig. 2. Unconditional approach operational characteristics ( >Pr τ(ˆ ) 02 , mean bias of τ, coverage of the 95% confidence intervals, empirical power and type I error of θ) for two to four
studies and =τ 0r

2 . For abbreviations see Table 1.
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Fig. 3. Unconditional approach operational characteristics ( >Pr τ(ˆ ) 02 , mean bias of τ, coverage of the 95% confidence intervals, empirical power and type I error of θ) for two to four
studies and =τ 1r

2 . For abbreviations see Table 1.
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Fig. 4. Conditional approach operational characteristics (Mean bias of τ, mean bias, coverage of the 95% confidence intervals, empirical power and type I error of θ) for four studies and
=τ 0r

2 . For abbreviations see Table 1. First row y-axis - 1000: 1,000,000, 500: 500,000, 100: 100,000 simulations.
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Fig. 5. Conditional approach operational characteristics (Mean bias of τ, mean bias, coverage of the 95% confidence intervals, empirical power and type I error of θ) for four studies and
=τ 12 . For abbreviations see Table 1. First row y-axis - 1000: 1,000,000, 500: 500,000, 100: 100,000 simulations.
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logORs from the null and alternative hypothesis. We varied the overall
treatment effect as ∈θ {0, 1}r and set the heterogeneity equal to

∈τ {0, 0.5, 1, 2}r
2 . These four values correspond to
∈τ {0, 0.71, 1, 1.41}r and to ≃I {0%, 40%, 60%, 75%}r

2 levels of re-
lative heterogeneity, which are calculated via simulation of

= +I τ τ s/( )2 2 2 2 , =s 2 ∑ = sj j1
10 25

/105 where j: number of simulations. The
total number of trials was restricted within ∈k {2,3,4}. Ten fixed values
as of ∈ …P {0.05, 0.06, ,0.15}cr were used for the control group event rate
of the outcome. By simulating a uniformly random draw between
{[20,30]} for each trial arm, we varied the samples sizes between trials,
while we kept the allocation ratio within each trial equal to 1:1. The
sample size and allocation ratio were kept fixed in order for similar
number of zero events to be produced in each arm. In this way, the
small sample sizes in combination with different levels of control event
rate led to specific levels of expected zero-event arm percentages
(Supplementary material A - Table 3).

4.2. Conditional approach

For the second approach we focused on the evaluation of a four
(k=4) trial MA, since the relative performance of the heterogeneity es-
timators was similar across k=2,3,4 trials. The conditional simulation
theoretically leads up to a maximum of 8 distinct subsets, since a four trial
MA results from a minimum of 1 to a maximum of 8 zero-event arms. Of
course, the latter ones are not useful to consider for a meta-analysis.

For the unconditional approach we based performance measures on
10,000 simulated MAs and evaluated all 15 τ estimators, while for the
conditional approach we based performance measures on 1,000,000
simulated MAs and evaluated 7 selected τ estimators that we considered
important from the unconditional analysis. A constant CC of 0.5 was
added to all cells of a trial that reported at least one zero event. All
computations were performed using R and the high performance cluster
supported by Utrecht Bioinformatics Center. An overview of the varied
parameters for each simulation approach is presented in Supplementary
material A (Table 4).

4.3. Performance measures

We assessed the bias of heterogeneity and overall treatment effect
estimates. We calculated the empirical type I error, the power and
coverage of the 95% confidence intervals of the overall effect estimate.
Finally, we computed the probability of each estimator to observe a
non-zero heterogeneity estimate ( >Pr τ(ˆ ) 02 ).

5. Results

In our small population settings, many heterogeneity estimators
performed similarly. More specifically, estimators can be grouped
-based on their performance-in two groups. Estimators dl, dl2, dlp, he,
he2, mvvc, pm and rb0 displayed similar behaviour in our study.
Estimators ml and hs showed a similar insufficient performance in
identifying heterogeneity (Supplementary material B). Based on this we
selected a key set of 7 estimators for detailed evaluation; dl from the
first group, ml from the second group and five estimators that displayed
the most divergent behaviour sj, ipm, rbp, hm and reml. In the case of
two studies, most heterogeneity estimators behaved similarly.

Regarding the unconditional approach, we summarize the results in
two figures Fig. 2 ( =τ 0r

2 ) and Fig. 3 ( =τ 1r
2 ). The same two scenarios

are presented for the conditional approach in Figs. 4 and 5. Interested
readers can find the figures of the remaining scenarios in
Supplementary material B.

5.1. Unconditional approach

Alternative heterogeneity estimators had little impact on the bias of

θ̂. As the control event rate (Pcr) decreases, bias increases for all esti-
mators. In addition, the point estimation of τ is problematic as well.
Under homogeneity ( =τ 0r

2 ), all estimators greatly overestimate τ, ex-
cept for ml, while under heterogeneity ( =τ 1r

2 ) rbp, sj and ipm induce
the least bias on τ (Figs. 2 and 3).

The presence of heterogeneity impacts the type I error heavily. In
non-sparse conditions, when =τ 0r

2 , all estimators behave con-
servatively in interval estimating the overall effect, while in hetero-
geneous conditions ( =τ 1r

2 ) most of the estimators behave liberally. On
the contrary, all estimators display conservative behaviour in very
sparse conditions, regardless of the presence of heterogeneity (Figs. 2
and 3). In addition, decreasing Pcr levels impact the 95% coverage. We
also note that no estimator shows potential to control the coverage,
when only two or three small trials are available (Figs. 2 and 3).

The properties of the estimators' depend on the levels of true het-
erogeneity. As true heterogeneity will not be known, nor very reliably
estimated we seek some robustness. And thus, we would prefer esti-
mators that are less dependent on levels of true heterogeneity; for ex-
ample, sj, hm and ipm (Figs. 2 and 3).

5.2. Conditional approach

The first row in Figs. 4 and 5 represents simulations that produce a
specific number of zero cells. The first column refers to MAs with no
observed zero cell. The rest refer to MAs with an exact number of ob-
served zero cells.

In terms of bias of θ̂, we notice similar properties across conditional
subsets; hence, an increase of negative bias, as the Pcr decreases (Figs. 4
and 5). In the particular case of exactly no zero cell we observe an
overall negative bias (Figs. 4 and 5). The point estimation of τ is im-
pacted by zero cells as well. When no zero cell trial is observed in a MA,
all estimators produce values that are relatively close to each other. The
increasing number of zero cells makes the estimation of heterogeneity
unstable (Figs. 4 and 5).

The performance of the estimators in terms of 95% coverage and
type I error, depends again on the levels of true heterogeneity. In
homogeneous cases ( =τ 0r

2 ), independently of observed zero cells, all
estimators lead to conservative inferences. When no zero cell trial is
observed in a MA, and heterogeneity exists ( =τ 1r

2 ), then most esti-
mators result in liberal inferences. As the number of zero cells increases,
estimators result in conservative inferences (Fig. 5). Again estimators
whose performance is less dependent on levels of true heterogeneity are
sj, hm and ipm. In addition, ipm produces relative higher power in
comparison to sj and hm when one or two zero cells are observed in a
MA (Figs. 4 and 5).

In the case of no observed zero cells in a MA of heterogeneous
settings ( ≥τ 1r

2 ), all estimators induce negative bias on the estimation
of θ and the estimation of τ (Fig. 5). When at least one zero trial is
observed, inference becomes unstable. Such a behaviour could be ex-
plained by the impact of CCs on the study weights. When a zero cell
trial is observed and a CC is applied, this trial's weight decreases.
Therefore, RCTs with low event rates that probably point towards a
small or no treatment effect would be down-weighted.

5.3. Revisiting the motivating examples

According to our simulation study, the conditional selection of
heterogeneity estimator, which is based on the exact number of zero
cells, would bring no added value, compared to the unconditional se-
lection of an estimator when a sparse-events MA in small populations is
expected. As heterogeneity cannot be reliably estimated in such sparse
settings, the chosen estimator should be robust against the level of true
heterogeneity. For example, if we had selected the sj, an estimator that
was found to be less impacted by the levels of true heterogeneity, we
would not have rejected the null hypothesis for the GBS example
(Fig. 1).
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Supplementary material A (Table 2) presents an extensive analysis
that demonstrates the effect of applying alternative heterogeneity es-
timators on the overall treatment effect for the two motivating ex-
amples.

6. Discussion

In this paper we assess and discuss the problematic (interval) esti-
mation of the overall treatment effect, in the presence of heterogeneity
for a MA of a few small RCTs with zero events. In this context a truly
robust estimation of heterogeneity appears not feasible. Neither can we
recommend a single heterogeneity estimator which provides overall
satisfactory performance in our small population sparse-event setting.
In addition, the comparison between the two simulation approaches
showed that the relative performance of heterogeneity estimators did
not differ. Therefore, there is no material issue between making a
predefined (unconditional) or a data-driven (conditional) choice.
Further insights are provided by the conditional approach, which
showed that even one observed zero cell has a considerable impact on
the inference.

When performing a MA of rare diseases with anticipated or reported
zero cells, regardless of a predefined or a data-driven analysis choice,
one should avoid methods whose performance depends strongly on the
presence of heterogeneity. Following this context, we identify and
suggest estimators that perform modestly robust in (interval) estimating
the overall treatment effect across a range of heterogeneity assumptions
such as sj, hm and ipm. On the contrary, estimators whose performance
depends heavily on the true level of heterogeneity, such as rbp and ml,
should be avoided. In such a setting, one strategy might be to apply the
key set of heterogeneity estimators. If this leads to treatment effect
estimates and confidence intervals, which are not comfortably in the
same direction, we should probably be cautious to draw firm conclu-
sions.

With few events, the estimated study effects are biased, a bias which
reveals itself in between-study variance. Few events also result in large
within-study variance which masks between-study variance. Therefore,
a trade-off exists; due to the biased effect estimates, heterogeneity in-
creases but due to the large within-study variances, heterogeneity de-
creases. Hence, we conclude the following; (i) when no heterogeneity
exists it can only be overestimated due to the biased estimates but (ii)
when large heterogeneity exists, it is masked and underestimated.

The simulation study results pair with previous research. In our
small population setting, a number of heterogeneity estimators showed
small differences in performance [31]. In the particular case of two
studies, most of the heterogeneity estimators behaved similarly as also
was theoretically expected [31]. As noted already, a considerable dif-
ference was observed on the (interval) estimation of the overall treat-
ment effect among heterogeneity estimators that are known to over-
estimate (rbp) or underestimate (ml) the true heterogeneity [17,25,28].
Such choices should be avoided in our setting as their performance is
dependent on the level of true heterogeneity, which cannot be properly
estimated. Furthermore, note that simulation studies results in such
settings can significantly depend on the Data-Generating Model em-
ployed in the design of the simulation [32]. The relative behaviour of
the compared heterogeneity estimators did not differ under alternative
generating models applied. Relative behaviour also did not differ when
applying a CC of 0.1 instead of 0.5, though the general performance of
the inverse variance method was affected (see Supplementary Material
B).

We only considered a simple Wald test for hypothesis testing via the
IV method. We note the existence of an alternative test [30], which has
the ability to control the type I error, in a more effective manner than
the Wald test for a small number of trials. However, this test does not
have sufficient power to detect a true effect [33,34]. In addition, the
simple IV RE model might underperform in a few trials MA, thus so-
phisticated techniques that control type I error might be preferred. In

this context a sensitivity analysis based on a variety of techniques was
suggested [35].

We also restricted our comparison to the commonly employed RE
model which assumes normally distributed effects across studies, with a
common variance. This assumption and Data Generating Model has
been challenged, and alternative methods for data synthesis, based on
quasi-likelihood approaches have been proposed [36]. Such methods
might be useful for robust interval estimation but their operational
characteristics need to be further examined.

Simulation studies have evaluated several other meta-analytical
methods regarding their ability to account for zero cells [9,12–14].
Among others, they include: (1) the evaluated IV method with alter-
native CCs [9], (2) the Peto method, which excludes trials with zero
events in both arms internally from a MA [14], (3) the MH method for
the OR [14], (4) methods that use alternative effect measures, such as
the arcsine difference [13] and (5) multilevel models or with alterna-
tions in their likelihood [12]. The latter are prone to convergence issues
when the number of levels (groups or trials) and the number of events
or patients is limited [12,37]. These studies [9,12–14] focused on
sparse-events MA, particularly in cases of relatively large sample sizes
and large numbers of available studies. Hence, results could not be
generalized directly to rare diseases, as the latter have both a limited
number of trials and small sample sizes. Further research could focus on
the aforementioned methods' behaviour, on the basis of the exact
number of observed zero cells in a MA when only a few trials are
available.

Further, by utilizing historical data, experts' opinions or priors that
cover plausible heterogeneity values, Bayesian inference might provide
a suitable alternative for cases of small populations [38–40]. Although
it was not our primary focus, initial evaluations showed that a similar
two-level normal Bayesian hierarchical model combined with in-
formative priors [39] produces smaller biases on the estimation of
heterogeneity but similarly problematic 95% coverage for very low
control event rates.

In this study, we did not evaluate heterogeneity estimation within
complex meta-analytical settings, such as a multiple outcome MA [41]
or a network MA [42,43]. However, we expect that the impact of zero
cells in small MAs could be relevant for this context as well, and a
similar conditional examination could offer further insight.

Concluding, the choice of heterogeneity estimator does not need to
depend on whether or not zero cells are observed in a MA of few small
trials. Therefore, regardless of a predefined or data-driven analysis
choice, when dealing with zero cells in a MA of rare diseases, we re-
commend methods with performance that does not strongly depend on
the presence or absence of heterogeneity.
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