Skip to main content
. 2018 Jan 9;9:98–107. doi: 10.1016/j.conctc.2017.11.012

Table 1.

Summary of heterogeneity estimators, including their equation, abbreviation and source.

Methods Equation Abbreviation Source
DerSimonian Laird τˆdl2=max(0,(QFE(k1))/cFE) dl [15]
Positive DerSimonian Laird τˆdlp2=τˆdl2,τˆdl2>0 and τˆdl2=0.01,τˆdl2<=0 dlp [17]
Two-step Der Simonian Laird τˆdl22=max(0,QRE(wi,RE2si2iwi,RE2si2iwi,RE)/cRE) dl2 [16]
Hedges τˆhe2=max(0,i(YiY¯FE)2k1isi2k) he [24]
Two step Hedges Similar to DL2 using the Hedges estimator he2 [16]
Positive Sidik-Jonkman τˆsj2=max(i((YiYFE¯)2/(ri+1))k1,0.01), ri=si2/τˆO2 sj [20]
Model error variance - vc τˆmvvc2=i((YiYFE¯)2//ri+1)k1, ri=si2/τˆHE2 mvvc [20]
Paul-Mandel (τpm2), F(τ2)=iwi,RE[YiYw(τ2)]2(k1) pm [18]
Improved Paul-Mandel (τipm2), F(τ2)=iwi,RE[YiYw(τ2)]2(k1) Ipm [19]
Hartung - Makambi τˆhm2=QFE2[2(k1)+QFE]cFE hm [22]
Hunter-Schmidt τˆhs2=max(0,(QFEk)/iwi,FE) hs [23]
Maximum Likelihood τˆml2=max(0,iwi,RE2((YiY¯ML)2si2)/iwi,RE2) ml
Restricted Maximum likelihood τˆreml2=max(0,iwi,RE2((YiY¯ML)2si2)iwi,RE2+1iwi,RE) reml
Rukhin Bayes zero estimator τˆrb02=i(YiY¯FE)2k+1i(nik)(k1)isi2k(k+1)i(nik+2) rb0 [21]
Rukhin Bayesian positive τˆrbp2=i(YiY¯FE)2/(k+1) rbp [21]

wi,RE=1(si2+τ2),wi,FE=1si2, Y¯RE/FE=iwi,RE/FEYiiwi,RE/FE, QRE/FE=iwi,RE/FE(YiY¯RE/FE)2, cRE/FE=iwi,RE/FEiwi,RE/FE2iwi,RE/FE, wi=1(τ2+vi,ipm),vi,iPM=1n(T,i)+1(ePrcOY˜+τ2/2+2+ePrcO+Y˜+τ2/2)+1n(Ci)+1(ePrcO+2+ePrcO)Prc,o: Observed control event rate, τO2=i(YiYFE¯)/k. The pm, ipm, ml and reml are iterative estimators.