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Abstract

Most tumors are unresponsive to immune checkpoint blockade, especially if deep 

immunosuppression in the tumor develops prior to and prevents T cell immunosurveillance. Failed 

or frustrated T-cell priming often needs repair before successful sensitization to PD-1/PD-L1 

blockade. CD40 activation plays a critical role in generating T cell immunity, by activating 

dendritic cells, and converting cold tumors to hot. In preclinical studies, agonistic CD40 antibodies 

demonstrate T cell-dependent anti-tumor activity, especially in combination with chemotherapy, 

checkpoint inhibitory antibodies, and other immune modulators. With the advent of multiple 

CD40 agonists with acceptable single-agent toxicity, clinical evaluation of CD40 combinations has 

accelerated.

Introduction

The Immune Revolution in cancer is upon us. Deep tumor regressions achievable in multiple 

cancers with checkpoint inhibitory antibodies and remissions in refractory leukemia from 

chimeric antigen receptor (CAR) T cells have prompted a series of FDA approvals that have 

begun to change the face of cancer care. Still, there is a bittersweet quality to these 

successes: most patients do not respond to current renditions of checkpoint or CAR T cell 

therapy, and many patients too quickly relapse after an initial response. The PD-1 antibody 

pembrolizumab, for example, is approved for use as first-line therapy for patients with 

metastatic non-small cell lung cancer that overexpresses PD-L1 – outperforming 

chemotherapy in a manner thought impossible 10 years ago. Yet, nearly 30% of such 

patients are found to be refractory to therapy at the first restaging studies and another 25% 

have tumor progression at one year (Reck et al., 2016).

Cold tumors

The extent of intratumoral T cell infiltration positively predicts overall survival across many 

cancer types, and is also considered a major predictor of clinical response to checkpoint 

therapy with PD-1 and PD-L1 monoclonal antibodies (mAb). These so-called “hot” tumors 

stand in contrast to “cold” tumors that do not respond to single-agent PD-1 or PD-L1 

Correspondence to: Robert H. Vonderheide, MD, DPhil, 12 floor South Pavilion, 3400 Civic Center Blvd, Philadelphia, PA 19104. 
rhv@upenn.edu. Tel: 215-662-3929. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cancer Cell. Author manuscript; available in PMC 2019 April 09.

Published in final edited form as:
Cancer Cell. 2018 April 09; 33(4): 563–569. doi:10.1016/j.ccell.2018.03.008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



therapy (Sharma and Allison, 2015; Teng et al., 2015). Pancreatic ductal adenocarcinoma 

(PDA), which now accounts for more deaths in the United States than breast cancer (Siegel 

et al., 2018), is an example of a tumor which remains almost entirely refractory to single-

agent PD-1 or CTLA-4 antibody therapy. The only exception appears to be in <1% of PDA 

patients with high microsatellite instability (Le et al., 2017). Studies of the adaptive immune 

response in PDA, based on the KPC genetically engineered mouse model of this disease 

KRasLSL-G12D/+, Trp53LSL-R172H/+, Pdx1-Cre (Hingorani et al., 2005), highlight the extent 

to which macrophages dominate the spontaneous tumor microenvironment (TME) and the 

extent to which T cells are classically excluded from the TME even at the earliest stages of 

the disease (Clark et al., 2007). These observations are consistent with a model of a “cold” 

tumor (Sharma and Allison, 2015) and “immune privilege” (acquired or not) that requires a 

novel approach for therapy (Vonderheide and Bayne, 2013). T cell exclusion in KPC mice is 

a prominent feature not only in primary tumors but also metastatic lesions (Aiello et al., 

2016; Clark et al., 2007). KPC tumors exhibit a low mutational burden, near absence of 

classically defined neo-epitopes, scant T cell infiltration and resistance to checkpoint therapy 

(Beatty et al., 2011; Evans et al., 2016; Feig et al., 2013; Winograd et al., 2015). In humans, 

T cell exclusion in PDA – with marked surrounding desmoplasia – is also well-described; 

however, a subset of primary pancreatic tumors do exhibit moderate infiltration of CD8+ T 

cells and other immune cells (Bailey et al., 2016; Balachandran et al., 2017; Fukunaga et al., 

2004; Ino et al., 2013b; Wormann et al., 2014), and this phenotype correlates with 

expression of functional cytotoxicity genes and overall survival (Balachandran et al., 2017; 

Balli et al., 2017; Fukunaga et al., 2004; Ino et al., 2013a). In addition, human pancreatic 

tumors express a moderate range of non-synonymous mutations that are predicted to 

function as neo-epitopes (Balachandran et al., 2017; Balli et al., 2017; Rech et al., 2018). 

Recently, an in-depth evaluation of neo-epitopes in human PDA revealed special qualities of 

neopeptides, such as high differential agretopicity index (DAI) (Duan et al., 2014; Rech et 

al., 2018), that predicts long-term survival (Balachandran et al., 2017). High DAI reflects a 

mutated peptide that binds with high affinity to MHC whereas the wild type counterpart 

peptide does not. Yet, even in the setting of neoepitopes, checkpoint antibody therapy nearly 

universally fails in PDA. Thus, there is a disconnect, at least in PDA, in applying the notion 

that CD8+ T cell infiltration and non-synonymous mutations are sufficient to confer 

responsiveness to checkpoint blockade.

Revisiting cancer immunosurveillance

In the prevailing view of cancer immunosurveillance, T cell recognition of tumor antigens 

leads to tumor clearance unless the tumor undergoes immunoediting (e.g. loss of MHC or 

the antigen) or immunosuppressive pathways arise to dampen T cell reactivity (e.g. PD-L1) 

(Schreiber et al., 2011) (Figure 1). In each case, immune suppression follows as a 

consequence of T cell recognition. These observations were deduced from landmark studies 

in the highly mutated 3-methylcholanthrene (MCA) carcinogen-induced model of mouse 

sarcoma (Matsushita et al., 2012; Shankaran et al., 2001). For PDA and other cold tumors, 

however, it has been hypothesized that immunosuppression is an early (not secondary) event, 

and T cell reactivity fails to fully unfold during the entire natural course of the tumor 

(Vonderheide and Bayne, 2013) (Figure 1). In such tumors, poor T cell priming – or even 
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immunological ignorance – may be linked to downstream mediators of oncogenes such as 

mutant Kras and others. Thus, in one scenario (classic MCA model), checkpoint blockade is 

successful; in another scenario (KPC model), checkpoint blockade alone is ineffective.

To understand immune surveillance further in cold tumors, the class MCA experiments were 

redone in the KPC model (Evans et al., 2016). The development of spontaneous tumors was 

followed in KPC mice that were either replete or depleted of T cells. There was no 

difference in overall survival nor time to diagnosis. Tumor cell lines harvested from T cell 

replete or depleted KPC mice grow equally upon reimplantation into syngeneic normal mice 

and are never rejected regardless of whether host mice are T cell-depleted. These 

observations are in contrast to those from similarly designed experiments in the MCA 

model.

Upon expression of the strong model antigen ovalbumin (OVA), KPC tumors are uniformly 

rejected unless (i) CD8+ T cells were depleted in host mice or (ii) host mice were made 

tolerant to OVA. OVA in these experiments is a neoantigen. When OVA-negative and OVA-

expressing KPC tumor clones are injected together, only the OVA-negative cells grow out in 

T cell competent mice – a variation of immunediting in which only antigen-negative tumor 

cells emerge.

These observations (Evans et al., 2016), and similar findings in other genetically engineered 

mice (Casanovas et al., 2005; Ciampricotti et al., 2012; Ciampricotti et al., 2011; DeNardo et 

al., 2009), suggest that (i) the cardinal features of immunoediting are not universally 

observed, (ii) in such cases, this lack of immunoediting may be a consequence, and not a 

cause, of poor antigenicity, and (iii) antigen strength dictates the outcome of immune 

surveillance and can overcome even deep immmunosuppression in the TME. These 

conclusions are similar to other experimental models that highlight the dependency of cancer 

immunosurveillance on antigenic strength (DuPage et al., 2012). These observations carry 

an important implication for the design of novel clinical strategies: namely, in the absence of 

strong antigens, there may be no Darwinian-like pressure from T cells; thus, the underlying 

tumor cells may remain susceptible to T cells, but only if these T cells can be boosted or 

provoked.

CD40 and T cell priming

Increasing attention has turned toward evaluating and repairing insufficient T cell priming as 

a root cause of cold tumors and checkpoint unresponsiveness. Antigen presenting cells 

(APC), particularly BATF3-dependent type I classic dendritic cells (DC), are critical in 

driving T cell priming and function in tumor-bearing mice (Broz et al., 2014; Byrne and 

Vonderheide, 2016; Durai and Murphy, 2016; Engelhardt et al., 2012; Roberts et al., 2016; 

Salmon et al., 2016; Sanchez-Paulete et al., 2016; Spranger et al., 2017), reinforcing a long-

standing appreciation of DC dysfunction in the TME (Aspord et al., 2007; Gabrilovich, 

2004). Impaired T cell trafficking into the tumor as well as hostile TME factors that limit T 

cell persistence in the TME are additional likely factors that drive a T cell-poor tumor 

(Spranger et al., 2017; Stromnes et al., 2015; Vonderheide and Bayne, 2013).
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In KPC mice, classic DCs are a rare but definite population in the TME. Notably, these cells 

express CD40 (Winograd et al., 2015). CD40 is a cell-surface member of the TNF receptor 

superfamily that is most prominently expressed on DC, B cells, and myeloid cells (van 

Kooten and Banchereau, 2000). It is a well-known regulator of T cell immunity including in 

cancer (Grewal and Flavell, 1997). CD40-ligand, primarily expressed on activated T cells, 

interacts with CD40 on APCs resulting in a ‘licensed’ state (Lanzavecchia, 1998). Licensed 

DC exhibit upregulation of cytokines (such as IL-12), antigen-presenting molecules (such as 

MHC), costimulatory molecules (such as CD80 and CD86), adhesion molecules (such as 

ICAM-1) and an array of other TNF receptor family ligands that then engage receptors of 

the TNF superfamily on T cells. CD40 signaling mechanisms have been summarized 

previously (Vonderheide, 2007). The TNF ligand-receptor orientation is uniquely reversed 

for CD40/CD40-ligand in the DC:T cell synapse, and as such, CD40 is as a proximal 

regulator of other TNF family signaling receptors on T cells. Thus, upon activation of CD40 

on DCs, multiple other agonistic pathways such as OX40, GITR, and 41BB are engaged. 

Importantly, CD40 is also prominently expressed by B cells and CD40 activation massively 

upregulates APC function (Coughlin et al., 2004; Schultze et al., 1997). Thus, it is possible 

that CD40 activation will also influence B cell function in the TME, including B regulatory 

cells and tertiary lymphoid structures (Gunderson et al., 2016; Lutz et al., 2014; Poschke et 

al., 2016).

Both loss-of-function and gain-of-function studies in KPC model systems point to a critical 

role for the CD40 pathway in regulating T cell priming in tumors. OVA-expressing KPC 

tumor clones are rejected in wild type mice but grow progressively in CD40 knock out mice 

or BATF3 knock out mice that do not have CD103+ DCs (Byrne and Vonderheide, 2016). 

KPC tumor cells, which do not express CD40, are poor APC. Agonistic CD40 mAb triggers 

T cell-dependent tumor rejection in certain experimental models with antigenic tumors 

(Sandin et al., 2014; van Mierlo et al., 2002), and CD40 mAb used in combination with 

blocking PD-L1 or PD-1 mAb functions to promote tumor regression further (Zippelius et 

al., 2015). CD40 can drive an IL-12-dependent downregulation of PD-1 expression on T 

cells, reversing T-ccell exhaustion and permitting tumor response in otherwise PD-1 mAb 

refractory tumors (Ngiow et al., 2016).

In KPC mice bearing spontaneous tumors, CD40 therapy leads to non-durable tumor 

regression and transient involution of tumor stroma in a fraction of mice, each dependent on 

the presence of CD40-activated macrophages (Beatty et al., 2011). T cells are not required 

for this effect. Although tumor regressions were observed with agonistic CD40 mAb in a 

clinical trial of patients with metastatic PDA (Beatty et al., 2011; Beatty et al., 2013), neither 

tumor-bearing patients nor mice demonstrate durable tumor regressions from this approach.

Prior to activation, but not after, DCs have uniquely enhanced capacity to take up antigen 

(Albert et al., 1998; Heath and Carbone, 2001). This paradigm explains how chemotherapy 

followed by CD40 activation (but not CD40 followed by chemotherapy) results in the 

establishment of effective, T-cell dependent immunity and memory in tumor-bearing mice 

for which CD40 alone is insufficient (Nowak et al., 2003). The rate-limiting step of 

chemotherapy/CD40 effectiveness appears to be the extent to which the chemotherapy is 

cytotoxic against the tumor and presumably “spills antigen” (Byrne and Vonderheide, 2016). 
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In the KPC model, gemcitabine (Gem) followed by agonistic CD40 is effective in generating 

‘hot’ T cell-inflamed tumors and tumor regression only in a subcutaneously implanted 

tumors that have a far less complicated TME (Beatty et al., 2015). However, the addition of 

nab-paclitaxel (nP) to gemcitabine, which is a combination more effective in patients than 

Gem alone, synergizes to trigger tumor regression, establish T cell memory, and improve 

survival in subcutaneous, orthotopic, and spontaneous KPC tumors (Byrne and Vonderheide, 

2016). This phenotype is entirely dependent on T cells, and not macrophages. In each case, 

the combination of Gem/nP plus CD40 leads to a marked increase in T cell infiltration in the 

TME, with a skewing toward IFNγ and TNFα secreting T cells, an increase in activated 

DCs, and loss of M2 macrophages. In addition, Tregs are cleared from the TME with 

therapy. Importantly, Gem/nP/CD40 completely fails in BATF3 or CD40 knockout mice, 

suggesting a critical therapeutic dependence on DCs (Byrne and Vonderheide, 2016).

The anti-tumor effect of Gem/nP chemotherapy with agonistic CD40 antibody is 

independent of toll-like receptor pathways and other innate signaling mechanisms because 

tumor regressions are observed in MyD88, TLR4, TLR3, TRIF, Casp 11, IL-1R, and P2X7R 

knock out mice as well as STING mutant and IFNAR knockout mice (Byrne and 

Vonderheide, 2016). Thus, CD40 activation with chemotherapy obviates the need for STING 

or type I interferon activation; however, these observations also suggest that the addition of 

CD40 mAb with STING agonists, for example, may be synergistic, given the non-redundant 

aspects of these pathways on DC activation.

From an immune surveillance perspective, these data in KPC mice are important for two 

reasons. First, the use of chemotherapy plus CD40 agonists has the capacity to sensitize 

tumors to checkpoint blockade (Figure 1). Combination therapy with Gem/nP/CD40 plus 

PD-1 antibody further extends the activity and durability of response to chemo/CD40 alone 

(Winograd et al., 2015). Similarly, agonistic CD40 mAb also cooperate with radiation 

therapy and checkpoint blockade for tumor regression (Verbrugge et al., 2012). Second, T 

cell infiltration, tumor regressions, and immunological memory in response to 

chemotherapy/CD40 is accomplished in a murine model system that does not express 

classically defined nor alternatively defined (i.e. high DAI) neopeptides (Evans et al., 2016). 

Although further investigations are ongoing to identify potential neoantigens in the KPC 

model beyond those arising from non-synonymous tumor mutations, there is evidence that 

shared antigens are responsible for the effect of Gem/nP/CD40. Cured mice are protected 

against subsequent challenge with unrelated KPC tumors (Byrne and Vonderheide, 2016; 

Evans et al., 2016). These data suggest that that are likely other types of tumor rejection 

antigens beyond those derived from non-synonymous mutations in the tumor.

It is not yet clear if CD40 chemoimmunotherapy, as described above, boosts weak 

preexisting responses and/or truly primes new anti-tumor T cells. In KPC mice bearing 

spontaneous tumors, implantation of syngeneic KPC tumor cells subcutaneously (i.e. two 

tumors) results in CD8+ T cell infiltration into the implanted tumor, and chemotherapy/

CD40 triggers regression of subcutaneous tumors (Beatty et al., 2015). In contrast, KPC 

tumor cells implanted subcutaneously in wild type mice do not trigger the same level of 

CD8+ T cell infiltration, suggesting that the presence of a spontaneous KPC tumor is 

associated with a prior priming event in KPC mice (Beatty et al., 2015). In other studies, T 
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cell reactivity against KPC tumors, including against shared KPC antigens, is evident among 

splenic T cells isolated from of tumor-bearing KPC mice, although the level of this reactivity 

is very low (Feig et al., 2013). In these experiments, the combination of CXCR4 inhibitor 

with PD-1 and CTLA-4 mAb – delivered without chemotherapy – results in T cell 

infiltration and modest, transient regressions (Feig et al., 2013). These observations are 

consistent with a low-level pre-existing T cell immunity in KPC mice, insufficient to 

infiltrate or persist in the spontaneous tumor. On the other hand, TCR deep sequencing 

shows that Gem/nP/CD40 treatment of subcutaneous KPC tumors leads to expansion of 

certain, pre-existing T cell clones but also is able to recruit new T cell clones specifically to 

the TME (Byrne and Vonderheide, 2016).

CD40 with vaccines

It is thought that chemotherapy and radiation cooperate with CD40 largely by spilling 

antigen and as such, function as “vaccines”. CD40 mAb also exhibit capacity to enhance the 

activity of conventional vaccination in both tumor and non-tumor experimental systems in 

mice (Li and Ravetch et al, 2011; Vonderheide, 2007). In some studies, CD40 activation 

substitutes for T cell help. Thus, any reagent that activates adaptive immunity, especially 

while sparing systemic immune suppression, may be considered a logical partner for CD40 

mAb. These possibilities include true “vaccine” approaches (such neoepitope-based 

vaccines) but also anti-tumor antibodies, oncolytic viruses, and targeted therapy 

(Vonderheide and Glennie, 2013). In nearly every case studied, the addition of CD40 

activation enhances the activity of the “vaccine”. There is strong preclinical data that CD40 

activation and TLR agonists may synergize for APC activation (Ahonen et al., 2004; Ahonen 

et al., 2008; Carpenter et al., 2009; Scarlett et al., 2009). It is also possible that certain 

chemotherapies or hypofractionated radiation therapy themselves have adjuvant properties 

and trigger inflammatory or immunogenic signals beyond simply antigen release from dying 

tumor cells (Demaria et al., 2015; Gandhi et al., 2015; Harding et al., 2017). Finally, STING 

agonists along with T cell agonists (e.g. CD137 or OX40 agonists) are additional strategies 

now entering clinical trials aimed at enhancing tumor vaccine activity even further 

(Broomfield et al., 2009; Uno et al., 2006).

Role for blocking PD-1/PD-L1 and other checkpoints

If T cell vaccination overcomes privilege or ignorance to generate an anti-tumor adaptive 

response, it is likely that anti-PD-1/PD-L1 will be needed to address T cell exhaustion that 

subsequently develops after priming. Cancer vaccines developed more than 15 years were 

shown to break tolerance to tumor antigens, but objective tumor responses in patients were 

unusual. Yet, none of these vaccines had the benefit of combination with anti-PD-1 or anti-

PD-L1. In both humans and mice with PDA, the potential role of anti-PD-1/PD-L1 as an 

immunological assist after vaccination has been highlighted (Lutz et al., 2014; Winograd et 

al., 2015) as well as in other tumor models (Zamarin et al., 2014). There are of course many 

other negative immune “checkpoints” in the TME and stroma beyond PD-1/PD-L1 that may 

also need to be blocked at the cellular or molecular level to fully enable vaccine therapy 

(Coussens et al., 2013; Kraman et al., 2011).
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Clinical translation

Activation of the CD40 pathway in cancer is therapeutically tractable, as has been previously 

extensively reviewed (Remer et al., 2017; Vonderheide and Glennie, 2013). Three main 

approaches have been: (i) recombinant multimeric CD40-ligand (Vonderheide et al., 2001), 

(ii) gene therapeutic delivery of CD40-ligand (Messmer and Kipps, 2005), and (iii) agonistic 

CD40 mAb, for which there is the largest clinical experience (Vonderheide and Glennie, 

2013). Like all agonists in medicine, dose and schedule of CD40 agonists have been difficult 

to define, and there remains no consensus on the optimal route of administration. For at least 

two CD40 agents, a transient, moderate cytokine release syndrome has defined the 

maximum tolerated dose following intravenous infusion. Typical symptoms include fever, 

chills, and fatigue that resolve with supportive care over 1 hr to 24 hr in the outpatient 

setting (Johnson et al., 2017; Vonderheide et al., 2007). Agonistic CD40 mAb infusion has 

been associated with mild-to-moderate, transient liver function test abnormalities and 

transient decreases in platelets. There have no reports of autoimmune events involving 

colitis, hypophysitis, pneumonitis, or uveitis which are characteristic of checkpoint 

antibodies (Vonderheide and Glennie, 2013). The serum half-life of agonistic CD40 mAb is 

less than 24 hr, decidedly shorter than typical for human IgG, yet understood in relation to 

the large sink of CD40 molecules found on, for example, B cells and endothelial cells. 

Whether CD40 activation of B cells and endothelial cells contributes to treatment-related 

cytokine release syndrome, or to the mechanism of anti-tumor action for that matter, remains 

poorly understood.

Objective tumor responses with single-agent agonistic CD40 mAb therapy have been 

observed, but the rate has been <20% in advanced, metastatic patients with solid tumors 

(Vonderheide and Glennie, 2013). In the absence of chemotherapy, radiation therapy or 

another immune combination partner, preclinical studies predict a low single-agent response 

rate in cold tumors. One patient with refractory metastatic melanoma was treated with 

repeated doses of CD40 for one year and remains in complete remission for more than a 

decade without other therapy (Bajor et al., 2014). The adaptive immune response in this 

patient has been extensively documented (Bajor et al., 2014). Response rates are higher in 

clinical trials of agonistic CD40 mAb combined with chemotherapy in solid tumors (Beatty 

et al., 2011; Nowak et al., 2015; Vonderheide et al., 2013), but the CD40 contribution to 

tumor regressions over and above chemotherapy has not been definitively discerned in 

randomized studies. The response rate of Gem/CD40 was 23.8% in treatment-naive patients 

with metastatic pancreatic cancer, with a progression free survival of 5.6 months (Beatty et 

al., 2011), higher than typically reported for Gem. In patients with metastatic melanoma 

previously untreated with PD-1 or PD-L1 mAb, the combination of CD40 and CTLA-4 mAb 

produced a response rate of 27.3% and a 1-year overall survival of 26.1 months (Bajor et al., 

2015). Clinical trials are now underway with at least five different CD40 mAb across 

multiple cancers and in various combinations, including with PD-1, PD-L1, and CSF1R 

mAb.

Immune pharmacodynamics studies have provided evidence of CD40-induced activation of 

B cells and DC (Johnson et al., 2015; McDonnell et al., 2017; Ruter et al., 2010; 

Vonderheide et al., 2007). These effects are dose dependent and transient. From these 
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studies, it seems unlikely that the maximum tolerated dose of agonistic CD40 mAb is the 

maximum biological dose.

Role of CD40 mAb crosslinking

The bulk of preclinical investigations using agonistic CD40 mAb utilize reagents that require 

Fc crosslinking by host Fc receptors. Activity of these CD40 mAb is minimal in vitro and 

lost in vivo in FcR deficient mice (Li and Ravetch, 2011; Richman and Vonderheide, 2014; 

White et al., 2013; White et al., 2011). Nevertheless, the CD40 therapeutic agent for which 

there is the largest clinical experience – selicrelumab (formally known as CP-870,893 or 

RO7009789) – is a fully human IgG2 for which crosslinking is not necessary for activity in 
vitro (Richman and Vonderheide, 2014). Although selective enhancement of FcγRIIB-

binding remains possible and can increase in vivo activity (Dahan et al., 2016), FcR-

independent activity of human IgG2 CD40 mAb is also provided by a conformationally 

distinct subfraction characterized by a unique arrangement of hinge disulfide bonds (White 

et al., 2015). CP-870,893 also does not compete with the CD40-ligand site on CD40. Each 

of these features (i.e., lack of required crosslinking, distinction from the CD40-ligand 

binding site) contrasts those of the anti-CD40 mAb used in the vast majority of murine 

studies, which absolutely require crosslinking and bind the CD40-ligand binding site. 

Considering that not all CD40 antibodies are “the same” – and to explore whether this 

translates into clinical reagents with important distinguishing clinical manifestations – newer 

CD40 clinical reagents have been designed to mimic the pharmacology of murine reagents 

on which the large body of preclinical data is based (Remer et al., 2017). APX005M, for 

example, is an Fc-mutated, humanized IgG1 that requires crosslinking for activity and 

competes with the CD40-ligand binding site (Johnson et al., 2017). In the first-in-human 

study, infusional side effects of APX005M were dose dependent and manageable, and 

immune pharmacodynamic studies revealed strong activation of APC, increased systemic 

levels of IL-12 and T cell activation after treatment (Johnson et al., 2017). Multiple 

combination studies with APX005M are underway, including one for treatment-naive 

patients with metastatic PDA who receive Gem/nP/APX005M with or without PD-1 mAb 

nivolumab (NCT03214250).

Conclusions and Perspectives

Immune privilege – manifesting with tumor T cell exclusion – is a biology without 

immunoediting. It may be especially notable in oncogene-driven carcinomas in which 

tumor-driven immunosuppression establishes in the earliest stages of the disease. Addressing 

deficient T cell priming, therefore, represents a large opportunity in cancer immunotherapy 

particularly for PD-1/PD-L1 refractory cancers. CD40 activation is one therapeutically 

tractable approach with multiple new reagents available to exploit this. Mechanistically, 

CD40 activation is a proximal event in T cell priming and thus, CD40 mAb may be critical 

in converting cold tumors to hot and generating effective T cell immunity. In the clinic, 

concerns that the therapeutic index of CD40 mAb is too narrow to permit clinical activity at 

tolerable doses have fortunately not been realized. Current efforts are aimed at using CD40 

mAb in combination with non-redundant immune modulators, which is likely the best route 

to success.
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Fig. 1. Potential manifestations of cancer immunosurveillance
In situations of an active T cell response to cancer (illustrated in the Figure by small round 

blue cells), a heterogenous tumor (illustrated in the upper left by a mix of red and green 

cells) may respond by immunoediting (top pathway) or by invoking peripheral tolerance 

pathways such as PD-1 and CTLA-4 (middle pathway) – each an example of immune 

escape. In some settings (bottom pathway), however, there is poor T cell reactivity from the 

start of tumor formation – potentially related to immune ignorance or immune privilege 

(illustrated by concentric circles around the tumor) – and thus there is no classic “escape” as 

noted in the first two scenarios. Rather priming or boosting of T cell responses, potentially 

enabled by CD40 or other means of dendritic cell activation, is required for therapeutic 

effect and sensitization to checkpoint blockade.
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