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Abstract

A new class of TSCs containing piperazine (piperazinylogs) of Triapine, was designed to fulfill

the di-substitution pattern at the TSCs N4 position, which is a crucial prerequisite for the high

activity of the previously obtained TSC compounds–DpC and Dp44mT. We tested the impor-

tant physicochemical characteristics of the novel compounds L1-L12. The studied ligands are

neutral at physiological pH, which allows them to permeate cell membranes and bind cellular

Fe pools more readily than less lipid-soluble ligands, e.g. DFO. The selectivity and anti-can-

cer activity of the novel TSCs were examined in a variety of cancer cell types. In general,

the novel compounds demonstrated the greatest promise as anti-cancer agents with both a

potent and selective anti-proliferative activity. We investigated the mechanism of action more

deeply, and revealed that studied compounds inhibit the cell cycle (G1/S phase). Additionally

we detected apoptosis, which is dependent on cell line’s specific genetic profile. Accordingly,

structure-activity relationship studies suggest that the combination of the piperazine ring with

Triapine allows potent and selective anticancer chelators that warrant further in vivo examina-

tion to be identified. Significantly, this study proved the importance of the di-substitution pat-

tern of the amine N4 function.

Introduction

Thiosemicarbazones (TSCs) have a broad range of biological activity including antitumor,

antimalarial and antimicrobial activity [1], and therefore, for many years, studies of α-(N)-het-

erocyclic TSCs have been attracting considerable interest. In particular, the antitumor proper-

ties of 2-formylpyridine thiosemicarbazone were reported over 50 years ago [2]. With regard

to potential pharmaceutical applications, Triapine (3-aminopyridine-2-carboxaldehyde thiose-

micarbazone; 3-AP) is the most prominent representative of this class, as it has already been

investigated in more than 30 clinical phase I/II trials [3–10]. Moreover, di-2-pyridylketone-

4-cyclohexyl-4methyl-3-thiosemicarbazone (DpC) is currently entering clinical phase I studies

as a potential anticancer agent. Although clinical studies have concluded that Triapine revealed

activity against hematological cancer types (e.g. advanced leukemia [8,11]), it also showed
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disappointing results against a variety of solid tumor types such as advanced adenocarcinoma

of the pancreas [12], non-small-cell lung cancer [3] and renal cell carcinoma [13]. Further-

more, some side effects include the formation of methemoglobin and hypoxia [3,8,9], which

were observed after administration. Therefore, the development of new Triapine analogs with

a potent anticancer activity would be significant.

The broad range of the biological activity of TSCs corresponds to their versatile binding

modes with the transition and main group metal ions [14]. Moreover, it has been observed

that, generally, the biological activity of the complexes of TSCs is often higher than that of cor-

responding metal-free ligands. To gain further insight into the coordination chemistry of

TSCs, thermodynamic data such as the stability constants of metal complexes, which help in

optimizing the chemical or biological properties that are essential for potential medicinal

applications, are needed. In particular, copper complexes have a considerably higher antican-

cer activity than the uncomplexed ligands that also have lower IC50 values against cancer cells

than other described topoisomerase-II inhibitors [15]. In contrast, Triapine complexation to

iron resulted in the reduced cytotoxicity compared to the metal free ligand.

Although Triapine, similar to the recently developed Dp44mT (di-2-pyridylketone-4,4-

dimethyl-3-thiosemicarbazone), has been evaluated as a potential anticancer agent, the molecu-

lar mechanisms of its action have not been fully elucidated. Several paradigms have been pro-

posed to explain the activity of these compounds [16,17] including blocking cellular iron uptake

from transferrin [18]; mobilizing iron from cells; inhibiting ribonucleotide reductase, the iron-

containing enzyme that is involved in the rate-limiting step of DNA synthesis [19] or forming

reactive oxygen species (ROS) [20]. The effect of metal chelation suggested among potential

determinants of the mechanism origins are among the most important determiners deciding

that the mechanism(s) of action of these compounds are incompletely understood.

In this research, we designed and obtained new Triapine analogs for the first time through

incorporating the piperazine ring as a promising new pharmacophore group to replace the N

terminal amino group (Fig 1). While the substitution pattern at the N4 atom of TSCs appears

to be critical for the activity of Dp44mT, there were no similar studies for Triapine. Therefore,

we tested di-substitution at the N4 atom by constructing an N4-based piperazine, which is a

fragment that is present in several active TSCs [21–23]. First, we hoped that this could modu-

late the antiproliferative activity of the new analogs because the piperazine heterocycle is

found in a wide variety of biologically active compounds, some of which are currently being

used in clinical therapy [24–27]. In particular, new derivatives could have a significant impact

on pharmacokinetics and pharmacodynamics, while the replacement of the unsubstituted

NH2 function with the piperazine fragment should increase the lipophilicity of the new ana-

logs. Second, the modification of the substitution pattern of piperazine is a standard drug

design scheme that has often resulted in an increased medicinal potential of the analogs [28].

Accordingly, we describe the synthesis of a series of new N4- piperazinylogs of Triapine

that were tested for their anticancer activity vs. a broad spectrum of cancer cell lines. As the

metal complexation of the piperazine ring has been reported as an important issue in the

biological activity for these compounds [29,30], we tested L1-L12 as potential chelators for tran-

sition metals. Solution equilibria of the all the ligands and their copper(II) and iron(III) com-

plexes were studied using UV-Vis titration.

Results and discussion

Chemistry

Design and synthesis. Identifying the functional fragments for drug design is a complex

problem that involves different approaches including those that have an experimental and
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theoretical basis. The latter consist of a variety of methods, among which are those to identify

advantageous sub-structures, scaffolds and/or linkers on the basis of previously reported com-

pounds. Alternatively, the fragmentation of organic molecules into smaller moieties is an

important method in retrosynthetic analysis and has inspired various pseudo-retrosynthetic

approaches [31]. This has identified fragments that may be useful for drug design. For exam-

ple, the di-2-pyridyl [32–35], quinolinyl [36], piperazinyl [37,38], morpholinyl [39] and qui-

noxalinyl [40] motifs, which are common fragments in other anti-cancer agents, have been

incorporated into the design of the novel TSCs reported herein (Fig 1).

We have previously examined a variety of TSCs that demonstrate in vitro anti-proliferative

activity [21,41,42]. Earlier studies indicated that di-substitution at the terminal (N4) nitrogen

Fig 1. Design strategy for novel TSCs (L1-L12). All designed ligands are based on the Triapine skeleton, which is present in the active analogs Dp44mT,

DpC and 1b, 1d that have been described as highly active analogs [21].

https://doi.org/10.1371/journal.pone.0188767.g001
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is crucial for effective anti-cancer activity [21,32,34,42]. Therefore, in the present study, we

transformed the amine function in the southern part of the Triapine molecule into the form of

a piperazine ring. This formed a di-substitution at the N4 position that was discovered to be of

crucial importance for the activity of DpC and Dp44mT, which has never been tested for Tria-

pine. In particular, there is a fragment that is present in several active TSCs in this piperazine

ring [23,43].

The synthetic protocol that was used to produce the target molecules is outlined in Fig 2.

The precursors that are required to obtain the desired Triapine derivatives, the thiosemicarba-

zides K1-K12, were synthesized from commercially available reagents in a two-step process that

mostly produced high yields (69–98%). The treatment of (1,1’-thiocarbonyl)bis-1H-imidazole

with the appropriate derivative of piperazine, followed by the reaction with hydrazine hydrate,

produced the N-substituted piperazine-based thiosemicarbazides in a high yield. The final

TSC series, L1-L12 (Fig 2), were synthesized in a moderate to high yield (20–83%) using the

Schiff-based condensation of the 3-aminopyridine-2-carboxaldehyde with the prepared thiose-

micarbazides K1-K12 in a microwave reactor, which produced novel Triapine-based ligands

after crystallization with methanol. All the synthesized compounds were confirmed using 1H,
13C NMR and MS spectroscopic techniques.

Chelating properties

Protonation constants of the Triapine-derivative ligands. Spectrophotometric titrations

were performed in order to probe the acid-based equilibria that were associated with each

ligand and to determine the pH range over which the chelator was in its charge neutral form.

This property is important in understanding the passage of a molecule through the cell mem-

branes, as charged chelators have poor access [33,44]. These studies were performed in an 80%

(w/w) MeOH/H2O solvent mixture due to the low solubility of these compounds in pure

water. The fully protonated forms of the ligands have four L1-L7 or five L8-L12 dissociable pro-

tons, respectively. All the studied ligands possess one dissociable proton at the hydrazanic

group of the thiosemicarbazone moiety, one at pyridine ring and two at the piperazine moiety.

An additional proton in L8-L12 derives from the additional pyridine, pyrimidine or pyrazine

ring, respectively; however, not all of them could be determined under these experimental

Fig 2. Synthesis of the thiosemicarbazides K1-K12 and thiosemicarbazones L1-L12.

https://doi.org/10.1371/journal.pone.0188767.g002
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conditions. The protonation constants that were obtained are given in Table 1 and the species

distribution diagram of the protonated species of the selected ligand is presented in Fig 3.

The UV/Vis spectrophotometric titrations revealed characteristic spectral changes in the

240–450 nm wavelength range. All studied ligands displayed intense absorption bands in

this range, which were dependent on the protonated state of the molecule. The bands with a

maximum absorption λmax � 380 nm-404 nm were assigned to the n!π� transitions of the

pyridine ring. The less intense bands at � 290 nm originated mainly from the π!π� transi-

tions of the azomethine chromophore [45–47]. During the first deprotonation step ([H3L]2+

! [H2L]+, we observed a blueshift and a decrease in the intensity of the absorption maxi-

mum in the visible region. The next two deprotonation steps were accompanied by a red-

shift and an increase in intensity (Fig 1B and S1 Fig). Following the deprotonation of the

N2-H group, the negative charge is transferred mainly to the S atom via the thione-thiol tau-

tomeric equilibrium.

The proton dissociation constants and the spectra of the individual ligand species (Table 1)

were calculated based on the deconvolution of the pH-dependent UV-Vis spectra. The

obtained logKa values are in a reasonably good agreement with previously reported thiosemi-

carbazones ligands [45–47]. The concentration distribution curves, together with the elec-

tronic spectra as a function of pH, are reported in the Supporting Information (S1 Fig).

For the studied ligands, the first protonation constant corresponded to the protonation of

the hydrazanic = N-NH group. A decreased value, about one order of magnitude lower than in

the other reported N-pyridyl thiosemicarbazones ligands (logK* 10.2–11), can most probably

be attributed to the substitution of the piperazine ring by an aromatic ring (L1-L7), pyridine

(L8-L10) or the pyrimidine and pyrazine moiety in L11 and L12, respectively. This effect is the

result of the electron-withdrawing effect of these substituents. On other hand, the hydrogen

bond between the pyridyl nitrogen and the = N-NH hydrazanic moiety is most probably

responsible for the marked differences in the value of logK. The next protonation constant,

logK with a value of 5.7–7.2 was assigned to the piperazine moiety. The obtained values of

logK of the piperazine functional group of the studied ligands are comparable to the reported

Table 1. Protonation constants (logβ H) of the L1-L12 ligands in the MeOH/H2O mixed solutiona.

logb
H
1

logb
H
2

logb
H
3

logb
H
4

logK1 logK2 logK3 logK4

L1 9.67(1) 16.17(1) 19.49(1) 9.67 6.50 3.32

L2 9.73 (1) 15.40 (2) 18.70(2) 9.73 5.77 3.20

L3 9.25(1) 15. 83(2) 19.05(2) 9.25 6.58 3.22

L4 9.58(1) 13.35(2) 19.76(3) 9.58 6.77 3.41

L5 9.47(1) 15.15(2) 18.31(2) 9.47 5.68 3.16

L6 9.43(1) 15.65(1) 18.91(1) 9.43 6.22 3.26

L7 9.94(1) 16.93(2) 20.21(3) 9.94 6.99 3.28

L8 9.96(1) 17.34 (1) 22.07(3) 25.39(3) 9.96 7.38 4.73 3.32

L9 9.70 (1) 17.26 (2) 22.41(4) 25.58(4) 9.70 7.56 5.15 3.17

L10 9.66 (1) 17.23 (1) 22.74(2) 25.96(3) 9.66 7.57 5.51 3.22

L11 9.55(1) 15.93 (2) 19.33(2) 9.55 6.38 3.40

L12 9.63 (1) 16.37 (2) 19.60(2) 9.63 6.74 3.23

Triapine 10.64 (1) 14.12 (1) 10.64 3.48

Triapine 10.86 (1)[45] 14.65 (1)[45] 10.86 3.79

a Solvent MeOH/H2O 80/20 by weight

I = 0.1 M KCl, T = 25.0˚C. The reported errors on logβ are given as 1σ.

https://doi.org/10.1371/journal.pone.0188767.t001
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values [48–50] or logK values determined for the other TSC-based hybrids, mPip-FTSC and

mPip-dm-FTSC (logK 7.28) [46]. The logK with value 3.1–3.4 can presumable be attributed to

protonation of the pyridinium nitrogen. These values are in good agreement with the most

popular TSC as is Triapine and other published α-N- pyridyl thiosemicarbazones [45,51]. For

ligands L8-L10 were observed additional logK with value 4.73; 5.15 and 5.51 respectively. These

values most probably corresponded to protonation of additional pyridinium unit, which is in

agreement with the tabulated logK values of pyridine (5.23) [52].

The next acidic logKs occurred well below pH 2.5 and the constants corresponding to these

processes were not determined under the experimental conditions used in this study.

It should be noted that all of the measured logKs are macroscopic constants and that further

constants cannot be ascribed to the protonation of either of the donor groups without detailed

NMR titrations of the ligand [53]. However, taking into account the solvent conditions (vide
supra) and comparing the observed data with those of a series of previously investigated

ligands [45,46], the basicity of the substituents included in the studied ligand most probably

follows the trend–hydrazine N2H group > piperazine > additional function group (e.g. pyri-

dine, pyrimidine or pyrazine)� pyridine.

For the studied ligands, the neutral uncharged form dominated at a physiological pH of

7–8.5, thus enabling a facile passage across the cell membranes. This would explain, at least in

part, the high biological activity of these chelators by mobilizing intracellular Fe; preventing Fe

uptake from the serum Fe transport protein, transferrin (Tf) and also inhibiting cellular prolif-

eration [20]. The protonated form (Fig 3) became dominant below pH 5, while the deproto-

nated form was only important above pH 11 (Fig 3 and S1 Fig). Hence, if these agents are ever

given as drugs via the oral route, the low pH of the stomach (pH 1–2) would prevent the

absorption of the drug as the molecule would be charged [54]. More facile absorption would

occur in the small intestine where the higher pH (pH 5–7) would result in a neutral ligand and

a greater uptake [54].

Ability to chelate Cu(II) and Fe(III). To evaluate the complex formation ability for the

studied Triapine-derivative ligands, we performed the spectroscopic titration of the solutions

of all the L1-L12 compounds with copper and iron ions. We titrated the studied ligands with

the above-mentioned metal ions to generate their metal-complexes in situ at the following

Fig 3. (a) Absorption spectrophotometric titration vs. pH of the free L2 ligand; (b) electronic spectra of the protonated

species of L2; (c) concentration distribution curves for the L2 species. (I = 0.1 M (KCl) in 80% (w/w) MeOH/H2O;

T = 25.0˚C; [L2] = 5x10-5M; pH 1.6–11.02).

https://doi.org/10.1371/journal.pone.0188767.g003
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metal to ligand ratios 1:1–1:5. The isosbestic curves for the selected ligands are presented in

Fig 4.

In general, the addition of a metal ion to the ligand solution caused distinguishable changes

in the visible region of the ligand spectra. This behavior suggests an instantaneous complex

formation in the solution from the reaction of each of the studied ligands with the metal ions

used. All the ligands displayed the characteristic intense transitions in the range 400–500 nm

Fig 4. Electronic absorption spectra of the Cu(II) and Fe(III)-L2; L4; L8 system recorded at various metal to ligand ratios. I = 0.1

M (KCl) in 80% (w/w) MeOH/H2O; T = 25.0˚C; [L] = 5x10-5M.

https://doi.org/10.1371/journal.pone.0188767.g004
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for Cu(II) and 380–510 nm for Fe(III) that spanned into the visible region. Fig 4 shows the

electronic spectral change that was observed in the MeOH/H2O 80/20 w/w solution when Cu

(II) or Fe(III) was added to the selected ligands L2, L4 and L8. In the absence of metal ions, the

light yellow solution showed intensive absorption bands at λmax� 250 nm, λmax� 290 nm

and λmax� 380 nm—404 nm. As the Cu(II) or Fe(III) ion solution was added, the signals of

the ligand alone decreased and those of the complexes increased in intensity at 430–450 nm

with some isosbestic points at� 337 nm and 395 nm (S1 Table). The presence of this band

indicates a LMCT (ligand to metal charge transfer), which is typical of the Cu(II) L complex.

This transition band corresponds to the S!Cu(II) and Npy!Cu(II) transition. Similar ligand

to metal charge transfer bands have also been observed in the complexes of other TSC ligands

[45,46,51]. No d-d bands were observed due to the low concentration (~ 10-5M range) of the

Cu(II) complexes in the solution. These bands should have a low intensity in the region of

600–700 nm.

In the studied ligands, the formation of mono complexes for Fe(III) resulted in a shoulder

in the interval 450–620 nm. As metal-free ligands do not absorb in this region, these are most

probably charge-transfer (CT) bands of the Fe-L complexes [46,51]. Additionally, we devel-

oped the characteristic CT bands λmax� 639 nm of the Fe(III)-L complexes in the wavelength

of 580–680 nm, which was also detected in the other Fe(III)-TSC systems [46,51]. In conclu-

sion, the analysis of the results showed that the presented ligands can act as effective copper or

iron chelators.

Anticancer activity

Cytotoxicity of novel Triapine analogs. All the newly synthesized compounds were eval-

uated against a panel of cancer and normal cell lines for their cytotoxic activity (Table 2).

Among the cancer cells, we analyzed the cytotoxicity of the tested compounds against colon

cancer with a normal (HCT116 p53+/+) and deleted TP53 suppressor gene (HCT116 p53-/-),

which encodes the p53 protein. This was designed to allow the assayed activities to be com-

pared with the literature data as a number of previous reports on the antiproliferative potency

of TSCs presented results from these cells [21,41,42,55–58]. Moreover, colon cancers are

among those that are particularly associated with a higher iron uptake and metabolism [59,60].

Table 2. Anti-proliferative activity (IC50 values) of the novel Triapine analogs compared to Triapine in several tumor cell-types and normal human dermal fibro-

blast (NHDF) cells. Individual IC50 values IC50< 1μM, IC50 1–10 μM, IC50> 10 μM are coded by red, yellow and grey, respectively.

Name IC50 [μM]

HCT116 p53+/+ HCT116 p53-/- MCF-7 U-251 Hs683 NHDF

L1 1.524 ± 0.445 0.128 ± 0.012 0.532 ± 0.145 0.403 ± 0.090 1.436 ± 0.358 >25

L2 0.526 ± 0.077 0.152 ± 0.074 0.360 ± 0.111 0.887 ± 0.158 2.487 ± 0.512 >25

L3 0.120 ± 0.005 0.167 ± 0.018 0.204 ± 0.049 0.128 ± 0.012 1.483 ± 0.335 >25

L4 1.328 ± 0.209 0.185 ± 0.088 0.424 ± 0.149 0.649 ± 0.170 4.457 ± 0.954 >25

L5 1.450 ± 0.452 0.7461 ± 0.354 3.807 ± 1.023 2.569 ± 0.675 10.050 ± 2.643 >25

L6 0.139 ± 0.016 0.270 ± 0.007 0.470 ± 0.097 0.381 ± 0.042 1.894 ± 0.812 >25

L7 0.762 ± 0.238 1.133 ± 0.049 2.536 ± 0.400 3.084 ± 1.273 4.624 ± 1.031 >25

L8 1.900 ± 0.292 0.139 ± 0.020 1.120 ± 0.113 1.070 ± 0.280 1.162 ± 0.307 >25

L9 0.422 ± 0.113 0.123 ± 0.061 0.204 ± 0.024 0.277 ± 0.058 0.844 ± 0.238 >25

L10 0.170 ± 0.015 0.159 ± 0.011 0.258 ± 0.040 0.137 ± 0.016 0.195 ± 0.021 >25

L11 0.668 ± 0.045 0.650 ± 0.055 1.730 ± 0.388 1.268 ± 0.374 2.838 ± 0.581 >25

L12 0.435 ± 0.108 0.342 ± 0.042 2.218 ± 0.638 0.743 ± 0.109 2.595 ± 0.237 >25

L13/3-AP 1.121 ± 0.277 1.336 ± 0.338 2.328 ± 0.431 1.476 ± 0.558 1.763 ± 0.292 >25

https://doi.org/10.1371/journal.pone.0188767.t002
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This makes them potentially vulnerable to treatments that target iron homeostasis. We also

tested the cell lines of the brain tumor (U-251, Hs683) and breast cancer (MCF-7) cell lines.

Breast cancers are among the most frequent cancers and their aggressiveness and treatment

prognosis is strongly connected with iron metabolism [61–63]. Namely, it has been confirmed

that the regulation pattern of the iron regulatory genes determined the metastasis potency and

may be used as a predictive factor in the therapeutic strategy planning [62,64]. Glioblastomas,

on the other hand, are one of the most dangerous cancers because no effective therapeutic

regimes exist to treat them. The prognoses in these types of cancer are generally poor and the

mean survival time does not exceed two years even under combination therapy [65,66]. Inter-

estingly, those cancers also express an altered metabolism of iron and remain susceptible to

treatments with iron chelators [67]. Both desferioxamine (DFO) and deferiprone have shown

promising results in the U-251 cell line [68]. However, despite these encouraging promises,

there are very few reports concerning the activity of TSCs in glioblastomas. Importantly, for

the compounds to be useful as anti-cancer drugs, the selectivity between the tumor cells and

normal, mortal cell types must be revealed. Therefore, we additionally tested the new com-

pounds on the NHDF cell line. In general, all the examined analogs showed a significantly

higher anti-proliferative activity than the reference Triapine. The most active compound was

compound L3 with an IC50 value equal to 0.12 μM in the HCT116 p53+/+ cell line. The activity

of this compound was very similar for all the cancer lines and fluctuated around 0.12–0.2 μM.

This derivative also has a promising therapeutic index (208 in HCT116 p53+/+ see S2 Table) as

its cytotoxicity against normal cell lines is relatively low. However, the glioma cell line Hs683 is

an exception here as it has an IC50 with a ten-fold higher value for L3. In fact, the glioblastoma

Hs683 exhibited resistance to almost all the tested analogs except for the L9 and L10 derivatives.

Those two analogs were active against all the tested cancer cell lines. In general, ligands that

are halogenated at the terminal aromatic ring exerted a higher activity than their unsubstituted

non-halogenated counterparts (compare L1 vs. L2, L3). The compounds with diazine rings

appeared to be less active than phenol (L1 vs. L11 and L12) and the pyridine ring produced a

derivative that was even less active (L8). This may have been the result of the unfavorable pKa
of the molecule and is in contrast with previous reports [21]. The trifluoromethyl substitution

was very active against all the cancer cell lines that were tested. It also appeared to be less toxic

against normal fibroblasts (L6, L9, L10).

The effect of the TP53 status on a cell’s susceptibility to the some of the Triapine analogs is

interesting. The derivatives L1, L4, L5 and L8 were approximately 2–14 times more effective

against HCT116 (p53-/-) than against the wild-type cells. In turn, this scheme was inverted for

compound L7, which exhibited a reversed effect, as these compounds appeared to be slightly

less active against the p53-/- cell line. In addition to these observations, the colon cancer cells,

breast and U-251 glioma appeared to be similarly susceptible to TSCs. A particularly interest-

ing exception was the Hs683 cell line, which appeared to be relatively resistant to almost all of

the compounds with a ten-fold higher mean IC50. This phenomenon is important when con-

sidering the similar origin of the U-251 and Hs683 lines (from a malignant glioblastoma

tumor and from a glioma lesion of 75-year-old Caucasian male patient, respectively). The

explanation probably lies in a different level of the basal iron homeostasis, e.g. originating

from the different activity and concentration of the transferrin (Tf) receptors. It has previously

been reported that Hs683 is significantly more resistant than U-251 to Tf-toxins such as the

pokeweed antiviral protein, momordin or gelonin [69]. This suggests that in resistant cells, the

cellular metabolism of iron can be restored more easily.

To summarize, the novel compounds demonstrated the greatest promise as anti-cancer

agents with both a potent and selective anti-proliferative activity (Table 2). Accordingly, the

structure-activity relationship reveals that the combination of the piperazine ring with
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Triapine allows potent and selective anticancer chelators that warrant further in vivo examina-

tion to be identified. In particular, the compounds L9 and L10, which have fluorine atoms,

appeared to have the best activity against all of the cancer lines that were tested. For this rea-

son, we selected L9 for a more thorough investigation of the molecular mechanisms of its

activity.

Cell cycle analysis. The results presented in Fig 5 illustrate the effects of L9, which is one

of the most active TSCs of the current series, on the regulation of the cell cycle in the HCT116

p53+/+, U-251 and MCF-7 cell lines. In general, we observed a decrease in the percentage of

cells in the G0/G1 phase 24 h after treatment with L9 in all the cell lines. This effect was espe-

cially strong in the U-251 cells, in which L9 decreased the cell count in the G0/G1 phase to 50%

compared to the untreated cells (78%) (Fig 5B). Additionally, the L9 compound induced an

increase in the percentage of cells in the S phase in all of the tested cell lines. The strongest

Fig 5. Influence of L9 on the regulation of the cell cycle in the HCT116 p53+/+, U-251 and MCF-7 cells. The histograms show the percentage of cells in the G0/G1, S

and G2/M phases of the cell cycle for one of the experiments (A). The table shows the mean ± SD percentage of the cells in the G0/G1, S and G2/M phases of the cell cycle

from three independent experiments (B). Data were analyzed using one-way ANOVA with Bonferroni’s post-hoc test: �p<0.05, ��p<0.01, ���p<0.001 compared to the

control (C).

https://doi.org/10.1371/journal.pone.0188767.g005
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effect was observed for U-251 (41%). Moreover, 24 h after treatment with L9, we did not

observe any changes in the percentage of cells in the G2/M phase compared to the untreated

control. These results suggest that the tested TSCs may induce the arrest of the cell cycle in the

G1/S phase, thus contributing to the induction of cell death. This result is in good agreement

with literature data for TSC [70,71] as well as iron chelator in general [72–74]].

Analysis of programmed cell death–annexin V-FITC assay. The ability of L9 to induce

apoptosis in the HCT116, U-251 and MCF-7 cells was determined using Annexin V-FITC

staining. The results are presented in Fig 6. The largest percentage of apoptotic cells was

observed in the MCF-7 cell line. In this case, we detected a six-fold increase in the number of

dead cells (compared to the untreated cells). The total apoptotic value was 55% (Fig 6B). For

HCT116 p53+/+, we also noticed a four-fold increase in the number of dead cells. The situation

was different for the U-251 cell line, in which the percentage of total apoptotic cells was three

times higher in L9-treated cells than the control. All observed changes are statistically

significant.

Western blot analysis of the cell cycle and cell death proteins. Alterations in the iron

level are associated with the progression of the cell cycle. Due to their ability to bind with cellu-

lar iron, iron chelators may affect the expression of many proteins that are responsible for con-

trolling the cell cycle. The most important regulators of the cell cycle are cyclins, cyclin-

dependent kinases (cdks), p53 and cyclin-dependent kinase inhibitors such as p21 [73]. The

cdks are dependent on the cyclins to modulate their phosphorylation activity, and therefore

the activity of the cyclin-cdk complexes are affected by the cyclin-dependent kinase inhibitors.

The progression through the G1 phase and then transition to the S phase of the cell cycle are

controlled in part by the activation of the cyclin D1/cdk4 and cyclin E/cdk2 complexes [74].

Additionally, the activity of cyclin D1 is associated with the p21 protein, which plays a crucial

role in triggering various effects on cell cycle regulation. Thus, a decrease in the expression of

the p21CIP1/WAF1 protein may lead to the arrest of the cell cycle in the G1/S phase since this

protein can stabilize the cyclin D1-cdk complexes [75,76]. On the other hand, the effect of iron

chelation may up-regulate p21CIP1/WAF1, which may induce the signaling pathways, thus lead-

ing to apoptosis [74,77]. In turn, the cdc2 protein, which is the catalytic subunit that complexes

cyclin A, B, is responsible for the transition into the G2/M phase of the cell cycle [74,77]. With

this in mind, we evaluated the impact of L9, as well as reference 3-AP, on the expression of

cyclin E, p21 and the cdc2 proteins in HCT116 p53+/+, U-251 and MCF-7 cells. As is presented

in Fig 7, we observed various patterns of the expression of the cell cycle proteins in the investi-

gated cell lines. Treatment with L9 led to a slight increase in the expression of cyclin E in the

HCT116 cells. Reversely, we observed a slight down-regulation of this protein in the other cell

lines. A reference compound (3-AP) caused overexpression od cyclin E in all testes cell lines.

Moreover, the western blot analysis revealed the influence of L9, especially, by the significant

decrease of the expression of p21 protein in HCT116 cells. On the other hand, after treatment

with L9, we observed the considerable down-regulation of p21 in the MCF-7 cells. We

observed the similar pattern in changes in the expression of the cdc2 protein. Investigated

compound influenced on the slight down-regulation of the cdc2 in the HCT116, and MCF-7

cell lines. In the case of 3-AP this effect was much stronger (MCF-7). This suggests that the

TSCs have no influence on the entry of cells into the mitosis phase of the cell cycle. The

obtained results indicate that the novel analogs of Triapine induced the arrest of the cell cycle

in the G1/S phase and thus triggered apoptosis. Typically, this effect is connected with the acti-

vation of caspases–a family of endoproteases that participates in triggering the cellular

response to damage. Caspase-8 is the initiator that participates in the extrinsic apoptosis path-

way. Its activation comes via dimerization and leads to the initiation of the executioner cas-

pases (-3, -6, -7) or activates the intrinsic pathway of apoptosis. The second type of cell death is

Piperazinyl fragment improves anticancer activity of Triapine

PLOS ONE | https://doi.org/10.1371/journal.pone.0188767 April 13, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0188767


also called mitochondrial apoptosis and is connected with the release of cytochrome c into the

cytosol [78,79]. Therefore, we examined the effect of a 24 h treatment with L9 on the regulation

Fig 6. Evaluation of the induction of apoptosis in the HCT116 p53+/+, U-251 and MCF-7 cells 48 h after treatment with L9. The histograms show the percentage of

early and late apoptosis for one of three independent experiments (A). The table shows the mean ± SD percentage of live, early and late apoptotic cells from three

independent experiments (B). Data were analyzed using one-way ANOVA with Bonferroni’s post-hoc test: �p<0.05, ��p<0.01, ���p<0.001 compared to the control (C).

https://doi.org/10.1371/journal.pone.0188767.g006
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of cytochrome c, and caspase-3, 8, 9 proteins. Additionally we explored another proteins,

which are involved in the apoptosis pathway: p53, and PARP. Similar to previous results, we

observed some differences among the investigated cell lines, which may be associated with var-

ious lengths of their cell cycle. The obtained results confirm that treatment with L9 induces the

release of cytochrome c from the mitochondria into the cytosol in case of HCT116 cells. Addi-

tionally, we observed a slight down-regulation of cytochrome c in and MCF-7. For 3-AP we

detected release of cytochrome c in all tested cell lines. To further elucidate the mechanism, we

evaluated the influence of L9 on the extrinsic pathway of caspases activation.

In the case of caspase-3 we did not detect any significant changes in its expression for

HCT116, and U-251 cell lines. It is commonly known that MCF-7 cell line do not express cas-

pase-3 [80], and thus we investigate another caspase proteins. In general we observed the same

pattern for caspase-8. In the case of caspase-9 we detected slight down-regulation for HCT116,

and no influence on the MCF-7 cell line. A small up-regulation occurred for glioma cells.

Results of caspases expression may indicate another pathway of the apoptosis triggering.

Another investigated protein was p53, which is involved in many proliferating, and survival

signals in cell. We detected interesting dependence in glioma cells, for which the upregulation

of p53 was noticed. However it should be highlighted that U-251 cells are mutants with R273H

missense mutation of p53. This resulted in normally expressed protein, that is able to cross the

nucleus and interact with DNA [81,82]. Although overexpression of mutp53 in U-251 cells do

not correlate with apoptosis. With this in mind increased level of cytochrome c and caspase-9

may suggest p53-independent apoptosis pathway. In colon and breast cancer influence of p53

protein was unnoticeable. Very popular protein for detection of cell death is PARP. Analysis of

the lines on the gel indicated PARP cleavage for HCT116. This was also observed for glioma

cell, but just for 3-AP. Summarizing, our hypothesis suggests influence of the cytochrome c

(HCT116, MCF-7), and PARP (HCT116) on the apoptotic pathway.

Fig 7. The effect of L9 on the expression of the proteins: GADPH, PARP, caspase-3, 8, 9, p53, cyclin E, cdc2, p21, and cytochrome c, in the HCT116 p53+/+, U-251

and MCF-7 cells. (A). Densitometric analyses of western blot images. Expression level signals are relative to GADPH expression. Data were analyzed using one-way

ANOVA with Bonferroni’s post-hoc test: �p<0.05, ��p<0.01, ���p<0.001 compared to the control (B).

https://doi.org/10.1371/journal.pone.0188767.g007
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Conclusions

In the current study, a new class of TSCs, piperazinylogs of Triapine, was designed to fulfill the

di-substitution pattern at the TSCs N4 position, which is a crucial prerequisite for the high

activity of the previously obtained TSC compounds–DpC and Dp44mT. We tested the impor-

tant physicochemical characteristics of the novel compounds L1-L12. The studied ligands are

neutral at physiological pH, which allows them to permeate cell membranes and bind cellular

Fe pools more readily than less lipid-soluble ligands, e.g. DFO.

The selectivity and anti-cancer activity of the novel TSCs were examined in a variety of can-

cer cell types. In general, the novel compounds demonstrated the greatest promise as anti-can-

cer agents with both a potent and selective anti-proliferative activity (Table 2). Accordingly,

structure-activity relationship studies revealed that the combination of the piperazine ring

with Triapine allows potent and selective anticancer chelators that warrant further in vivo
examination to be identified. In particular, compounds L6 and L10 with a fluorine atom within

the piperazine fragment appeared to enhance the activity and selectivity of the new analogs.

Significantly, this study proved the importance of the di-substitution pattern of the amine

N4 function, thus identifying new potent and selective anticancer chelators that warrant fur-

ther in vivo examination.

Experimental section

Chemistry

Microwave reactions were carried out in a Discover1 BenchMateTM (CEM) microwave

equipped with 10 mL vessels. Melting point measurements were determined in a Stanford

Research Systems OptiMelt (MPA 100). 1H and 13C NMR spectra were recorded on a Bruker

Ascend 500 MHz spectrometer at frequencies of 500 MHz and 126 MHz and a Bruker Avance

III 400 MHz FT-NMR spectrometer at frequencies of 400 MHz and 101 MHz using DMSO-d6
as the solvent and TMS as the internal standard. The NMR solvents were purchased from

ACROS Organics. The chemical shifts (δ) are given in ppm and the coupling constants (J) val-

ues are reported in hertz (Hz). The spin multiplicities are described as s (singlet), d (doublet),

dd (double of doublets), t (triplet), q (quartet) and m (multiplet). All evaporations were per-

formed on a rotary evaporator under diminished pressure at 60˚C. All reagents and solvents

were purchased from ACROS Organics, Asta-Tech, Maybridge, Santa Cruz Biotechnology and

Sigma-Aldrich and were used without further purification.

The purity of all compounds were tested using the HPLC/MS method. The HPLC–MS anal-

yses were performed on Varian model 920 liquid chromatograph equipped with the Varian

900-LC model autosampler, the gradient pump, the Varian Pro Star 510 model column oven,

the Varian 380-LC model evaporative light scattering detection (ELSD) detector. This was cou-

pled with Varian 500-MS IT. HRMS were determined with high resolution mass spectrometer

Waters LCT Premier XE with electrospray ionisation (ESI).

General procedure for the synthesis of thiosemicarbazides. The mixtures of (1,1’-thio-

carbonyl) bis-1H-imidazole (5 mmol) and a suitable derivative of piperazine (5 mmol) in

methylene chloride (25 mL) were stirred for 24 h at room temperature. The solutions were

extracted with distilled water three times and the organic phases were dried over anhydrous

magnesium sulfate, filtered and then evaporated on a rotary evaporator. The obtained deriva-

tives of thioketone were added to a solution of 5 mmol of hydrazine hydrate in 25 mL of etha-

nol at room temperature. The reaction mixture was refluxed for 2 h and cooled to obtain a

precipitate, which was collected via filtration. The final thiosemicarbazides were crystallized

from methanol.
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4-phenylpiperazine-1-carbothiohydrazide (K1)

White powder; yield 69%; mp: 173–174; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.15 (s,

4H, CH2), 3.87 (s, 4H, CH2), 6.80 (t, 1H; J = 7.1 Hz), 6.95 (d, 2H; J = 8.0 Hz), 7.22 (t, 2H; J = 7.7

Hz), 9.17 (s, 1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 48.3; 56.5; 116.0; 119.7; 129.4;

151.1; 183.0. MS (ESI+): m/z calculated for C11H16N4S: 236.11, found: 237.64 [M+H]+, 276.05

[M+K]+.

4-(4-fluorophenyl)piperazine-1-carbothiohydrazide (K2)

Light pink powder; yield 97%; mp: 180–181; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.09

(m, 4H, CH2), 3.87 (m, 4H, CH2), 4.77 (s, 2H, NH2), 6.97 (m, 2H, CH), 7.05 (m, 2H, CH), 9.19

(s, 1H, NH). 13C-NMR (101 MHz, d6-DMSO, ppm): δ 40.3; 49.1; 115.9; 117.9; 148.0; 157.8;

183.0. MS (ESI+): m/z calculated for C11H15FN4S: 254.10, found: 276.30 [M+Na]+.

4-(4-chlorophenyl)piperazine-1-carbothiohydrazide (K3)

White powder; yield 90%; mp: 195–196; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.16 (t, 4H,

J = 5.2 Hz), 3.86 (t, 4H, J = 5.2 Hz), 6.95 (m, 2H, CH), 7.24 (m, 2H, CH), 9.18 (s, 1H, NH). 13C-

NMR (126 MHz, d6-DMSO, ppm): δ 47.3; 48.0; 117.3; 123.0; 129.1; 149.8; 182.9. MS (ESI+): m/z
calculated for C11H15ClN4S: 270.07, found: 270.35 [M]+.

4-(4-methoxyphenyl)piperazine-1-carbothiohydrazide (K4)

White powder; yield 81%; mp: 194–195; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.00 (m,

4H, CH2), 3.68 (s, 3H, CH3), 3.86 (m, 4H, CH2), 4.76 (s, 2H, NH2), 6.83 (m, 2H, CH), 6.92 (m,

2H, CH), 9.17 (s, 1H, NH).13C-NMR (101 MHz, d6-DMSO, ppm): δ 19.0; 49.9; 56.5; 114.8;

118.2; 145.4; 153.7; 183.1. MS (ESI+): m/z calculated for C12H18N4OS: 266.12, found: 288.02

[M+Na]+.

4-(4-cyanophenyl)piperazine-1-carbothiohydrazide (K5)

White powder; yield 86%; mp: 179–180; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.42 (m,

4H, CH2), 3.88 (m, 4H, CH2), 4.76 (s, 2H, NH2), 6.99 (m, 2H, CH), 7.59 (m, 2H, CH), 9.15 (s,

1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 40.6; 48.8; 98.6; 114.3; 120.5; 133.8; 153.1;

182.9. MS (ESI+): m/z calculated for C12H15N5S: 261.10, found: 284.75 [M+Na]+.

4-[2-nitro-4-(trifluoromethyl)phenyl]piperazine-1-carbothiohydrazide (K6)

Light orange crystals; yield 75%; mp: 167–168; 1H-NMR (500 MHz, d6-DMSO, ppm): δ
3.26 (m, 4H, CH2), 3.88 (m, 4H, CH2), 4.76 (s, 2H, NH2), 7.44 (d, 1H; J = 8.8 Hz), 7.86 (dd, 1H;

J1 = 9.0 Hz, J2 = 2.3 Hz), 8.17 (dd, 1H; J1 = 2.3 Hz, J2 = 0.9 Hz), 9.15 (s, 1H, NH). 13C-NMR

(126 MHz, d6-DMSO, ppm): δ 46.9; 49.4; 119.7; 121.2; 123.0; 124.4; 130.5; 139.1; 147.5; 183.0.

MS (ESI+): m/z calculated for C12H14F3N5O2S: 349.08, found: 349.05 [M]+.

tert-butyl 4-(hydrazinylcarbonoth ioyl)piperazine-1-carboxylate (K7)

White powder; yield 70%; mp: 165–167; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 1.41 (s,

9H, CH3), 3.32 (m, 4H, CH2), 3.71 (m, 4H, CH2), 4.72 (s, 2H, NH2), 9.11 (s, 1H, NH). 13C-

NMR (126 MHz, d6-DMSO, ppm): δ 19.0; 28.5; 47.4; 49.0; 79.6; 154.3; 183.1. MS (ESI+): m/z
calculated for C10H20N4O2S: 260.13, found: 283.77 [M+Na]+.

4-(pyridin-2-yl)piperazine-1-carbothiohydrazide (K8)

White powder; yield 98%; mp: 172–173; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.18 (s,

4H, CH2), 3.85 (m, 4H, CH2), 4.77 (s, 2H, NH2), 6.83 (m, 1H, CH), 7.56 (m, 1H, CH), 8.13 (m,

1H, CH), 9.13 (s, 1H, NH). 13C-NMR (101 MHz, d6-DMSO, ppm): δ 39.6; 51.0; 107.6; 113.7;

138.0; 148.0; 159.1; 183.0. MS (ESI+): m/z calculated for C10H15N5S: 237.10, found: 237.65

[M]+.

4-[5-(trifluoromethyl)pyridin-2-yl]piperazine-1-carbothiohydrazide (K9)

White powder; yield 70%; mp: 206–207; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.70 (s,

4H, CH2), 3.87 (s, 4H, CH2), 4.76 (s, 2H, NH2), 6.93 (d, 1H, J = 9.1 Hz), 7.82 (s, 1H, CH), 8.42

(s, 1H, CH), 9.14 (s, 1H, NH). 13C-NMR (101 MHz, d6-DMSO, ppm): δ 43.8; 46.9; 49.1; 106.7;

Piperazinyl fragment improves anticancer activity of Triapine

PLOS ONE | https://doi.org/10.1371/journal.pone.0188767 April 13, 2018 15 / 25

https://doi.org/10.1371/journal.pone.0188767


134.9; 145.6; 145.7; 160.3; 183.0. MS (ESI+): m/z calculated for C11H14F3N5S: 305.09, found:

305.25 [M]+.

4-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]piperazine-1-carbothiohydrazide (K10)

White powder; yield 85%; mp: 191–192; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.51 (m,

4H, CH2), 3.88 (m, 4H, CH2), 4.83 (s, 2H, NH2), 8.20 (d, 1H; J = 2.1 Hz), 8.56 (s, 1H, CH), 9.18 (s,

1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 47.3; 48.1; 120.2; 122.8; 125.0; 136.8; 143.5;

159.7; 183.2. MS (ESI+): m/z calculated for C11H13ClF3N5S: 339.05, found: 340.28 [M+H]+.

4-(pyrimidin-2-yl)piperazine-1-carbothiohydrazide (K11)

White powder; yield 92%; mp: 208–209; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.75 (m,

4H, CH2), 3.83 (m, 4H, CH2), 4.76 (s, 2H, NH2), 6.66 (t, 1H, J = 4.7 Hz), 8.38 (d, 2H, J = 4.7

Hz), 9.13 (s, 1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 43.2; 47.3; 110.9; 158.4; 161.5;

183.0. MS (ESI+): m/z calculated for C9H14N6S: 238.10, found: 238.35 [M]+.

4-(pyrazin-2-yl)piperazine-1-carbothiohydrazide (K12)

Light pink crystals; yield 88%; mp: 177–178; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.61

(m, 4H, CH2), 3.87 (m, 4H, CH2), 4.77 (s, 2H, NH2), 7.86 (d, 1H; J = 2.7 Hz), 8.09 (dd, 1H; J1 =

2.7 Hz, J2 = 1.5 Hz), 8.31 (d, 1H, J = 1.5 Hz), 9.16 (s, 1H, NH). 13C-NMR (126 MHz, d6-
DMSO, ppm): δ 43.7; 47.0; 131.7; 133.0; 141.9; 154.7; 182.9. MS (ESI+): m/z calculated for

C9H14N6S: 238.10, found: 238.57 [M+H]+.

General procedure for synthesis of thiosemicarbazones. We added two drops of glacial

acetic acid as a catalyst to the mixtures of thiosemicarbazides (0.5 mmol) and 3-aminopyri-

dine-2-carboxaldehyde (0.5 mmol) in ethanol (5 mL). The glass tubes were sealed and placed

into a microwave reactor at 83 ºC for 20 minutes (the reactor power did not exceed 50 W).

The obtained thiosemicarbazones were crystallized from methanol.

N’-[(3-aminopyridin-2-yl)methylidene]-4-phenylpiperazine-1-carbothiohydrazide (L1)

Light yellow crystals; yield 83%; mp: 189–190; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.26

(s, 4H, CH2), 4.09 (s, 4H, CH2), 6.82 (t, 1H; J = 7.3 Hz), 6.99 (d, 2H; J = 8.2 Hz), 7.10 (m, 2H,

CH), 7.18 (s, 2H, NH2), 7.25 (t, 2H; J = 7.8 Hz), 7.84 (dd, 1H; J1 = 4.0 Hz, J2 = 1.6 Hz), 8.53 (s,

1H, CH), 11.44 (s, 1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 48.3; 48.6; 116.0; 119.6;

122.4; 124.5; 129.5; 134.2; 137.2; 144.2; 149.5; 150.9; 180.0. HRMS (ESI): m/z calculated for

C17H21N6S: 341.1548, found: 341.1547 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(4-fluorophenyl)piperazine-1-carbothiohydraz ide
(L2)

Yellow crystals; yield 70%; mp: 210–211; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.18 (s,

4H, CH2), 4.08 (s, 4H, CH2), 6.96–7.03 (m, 2H, CH), 7.04–7.13 (m, 4H, CH), 7.17 (s, 2H,

NH2), 7.84 (d, 1H; J = 3.9 Hz), 8.53 (s, 1H, CH), 11.44 (s, 1H, NH). 13C-NMR (126 MHz, d6-
DMSO, ppm): δ 48.6; 49.3; 115.8; 117.9; 122.4; 124.5; 134.2; 137.2; 144.2; 147.8; 149.5; 155.8;

157.6; 180.1. HRMS (ESI): m/z calculated for C17H20FN6S: 359.1454, found: 359.1466 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(4-chlorophenyl)piperazine-1-carbothiohydrazide
(L3)

Yellow powder; yield 83%; mp: 206–207; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.27 (t,

4H, J = 5.2 Hz), 4.08 (t, 4H, J = 5.3 Hz), 6.99 (m, 2H, CH), 7.06–7.08 (dd, 1H; J1 = 8.3 Hz, J2 =

4.2 Hz), 7.09–7.12 (dd, 1H; J1 = 8.4 Hz, J2 = 1.6 Hz), 7.14–7.22 (s, 2H, NH2), 7.25–7.28 (m, 2H,

CH), 7.84 (dd, 1H; J1 = 4.2 Hz, J2 = 1.6 Hz), 8.53 (s, 1H, CH), 11.45 (s, 1H, NH). 13C-NMR

(126 MHz, d6-DMSO, ppm): δ 48.0; 48.4; 117.3; 122.5; 123.1; 124.5; 129.1; 134.2; 137.2; 144.2;

149.5; 149.7; 180.1. HRMS (ESI): m/z calculated for C17H20ClN6S: 375.1159, found: 375.1155

[M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(4-methoxyphenyl)piperazine-1-carbothiohydrazide
(L4)

Piperazinyl fragment improves anticancer activity of Triapine

PLOS ONE | https://doi.org/10.1371/journal.pone.0188767 April 13, 2018 16 / 25

https://doi.org/10.1371/journal.pone.0188767


Yellow powder; yield 59%; mp: 195–196; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.11 (s,

4H, CH2), 3.70 (s, 3H, CH3), 4.07 (s, 4H, CH2), 6.85 (m, 2H, CH), 6.96 (m, 2H, CH), 7.09 (m,

2H, CH), 7.17 (s, 2H, NH2), 7.84 (dd, 1H; J1 = 4.1 Hz, J2 = 1.7 Hz), 8.52 (s, 1H, CH), 11.43 (s,

1H, NH). 13C-NMR (101 MHz, d6-DMSO, ppm): δ 48.8; 50.0; 55.7; 114.8; 118.3; 122.4; 124.5;

134.2; 137.1; 144.2; 145.3; 149.4; 153.7; 180.1. HRMS (ESI): m/z calculated for C18H23N6OS:

371.1654, found: 371.1645 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(4-cyanophenyl)piperazine-1-carbothiohydrazid e
(L5)

Light orange powder; yield 74%; mp: 209–210; 1H-NMR (400 MHz, d6-DMSO, ppm): δ
3.53 (s, 4H, CH2), 4.10 (s, 4H, CH2), 7.02 (d, 2H; J = 8.8 Hz), 7.09 (m, 2H, CH), 7.17 (s, 2H,

NH2), 7.62 (d, 2H; J = 8.7 Hz), 7.84 (dd, 1H; J1 = 4.1 Hz, J2 = 1.6 Hz), 8.54 (s, 1H, CH), 11.42 (s,

1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 45.8; 47.9; 98.5; 114.0; 120.6; 122.5; 124.5;

133.8; 134.2; 137.2; 144.2; 149.6; 152.9; 179.9. HRMS (ESI): m/z calculated for C18H20N7S:

366.1501, found: 366.1503 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-[2-nitro-4-(trifluoromethyl)phenyl]piperazine-
1-carbothiohydrazide (L6)

Yellow powder; yield 75%; mp: 179–180; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.38 (m,

4H, CH2), 4.09 (m, 4H, CH2), 7.07 (dd, 1H; J1 = 8.3 Hz, J2 = 4.2 Hz), 7.11 (dd, 1H; J1 = 8.4 Hz,

J2 = 1.6 Hz), 7.13–7.21 (s, 2H, NH2), 7.47 (d, 1H; J = 8.9 Hz), 7.83–7.91 (m, 2H, CH), 8.20 (d,

1H, J = 2.7 Hz), 8.53 (s, 1H, CH), 11.42 (s, 1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ
19.0; 47.9; 49.3; 56.5; 121.1; 122.5; 123.0; 124.4; 130.5; 134.2; 137.2; 138.9; 144.3; 147.5; 149.7;

180.1. HRMS (ESI): m/z calculated for C18H19F3N7O2S: 454.1293, found: 474.1269 [M+H]+.

tert-butyl 4-({2-[(3-aminopyridin-2-yl)methylidene]hydrazinyl}carbonothioyl)piperazine-
1-carboxylate (L7)

Yellow powder; yield 20%; mp: 193–194; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 1.43 (s,

9H, CH3), 3.44 (m, 4H, CH2), 3.93 (m, 4H, CH2), 7.05–7.12 (m, 2H, CH), 7.13–7.19 (s, 2H,

NH2), 7.84 (dd, 1H; J1 = 4.2 Hz, J2 = 1.6 Hz), 8.51 (s, 1H, CH), 11.39 (s, 1H, NH). 13C-NMR

(126 MHz, d6-DMSO, ppm): δ 28.5; 48.4; 79.7; 122.8; 124.5; 133.9; 136.9; 144.3; 149.2; 154.3;

180.2. HRMS (ESI): m/z calculated for C16H25N6O2S: 365.1760, found: 365.1769 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(pyridin-2-yl)piperazine-1-carbothiohydrazide (L8)

Yellow crystals; yield 38%; mp: 210–211; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.64 (m,

4H, CH2), 4.07 (m, 4H, CH2), 6.68 (m, 1H, CH), 6.86 (d, 1H; J = 8.6 Hz), 7.09 (m, 2H, CH),

7.18 (s, 2H, NH2), 7.58 (m, 1H, CH), 7.84 (dd, 1H; J1 = 4.1 Hz, J2 = 1.6 Hz), 8.15 (d, 1H, J = 4.9

Hz), 8.54 (s, 1H, CH), 11.41 (s, 1H, NH). 13C-NMR (101 MHz, d6-DMSO, ppm): δ 44.4; 48.3;

107.5; 113.7; 122.5; 124.5; 134.2; 137.1; 138.1; 144.2; 148.0; 149.5; 159.0; 180.1. HRMS (ESI): m/
z calculated for C16H20N7S: 342.1501, found: 342.1514 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-[5-(trifluoromethyl)pyridin-2-yl]piperazine-1-car-
bothiohydrazide (L9)

Yellow crystals; yield 47%; mp: 232–233; 1H-NMR (400 MHz, d6-DMSO, ppm): δ 3.80 (s,

4H, CH2), 4.09 (s, 4H, CH2), 6.97 (d, 1H; J = 9.1 Hz), 7.08 (m, 2H, CH), 7.18 (s, 2H, NH2), 7.85

(m, 2H, CH), 8.46 (d, 1H, J = 2.5 Hz), 8.54 (s, 1H, CH), 11.42 (s, 1H, NH). 13C-NMR (101

MHz, d6-DMSO, ppm): δ 43.8; 47.9; 106.7; 113.8; 122.5; 124.5; 126.4; 134.2; 135.0; 137.1; 144.2;

145.7; 149.6; 160.3; 180.0. HRMS (ESI): m/z calculated for C17H19F3N7S: 410.1374, found:

410.1365 [M+H]+.

4.1.2.10. N’-[(3-aminopyridin-2-yl)methylidene]-4-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]
piperazine-1-carbothiohydraz ide (L10)

Dark yellow powder; yield 64%; mp: 199–200; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.63

(m, 4H, CH2), 4.10 (m, 4H, CH2), 7.05–7.09 (dd, 1H; J1 = 8.3 Hz, J2 = 4.2 Hz), 7.09–7.12 (dd,

1H; J1 = 8.3 Hz, J2 = 1.6 Hz), 7.14–7.21 (s, 2H, NH2), 7.84 (dd, 1H; J1 = 4.1 Hz, J2 = 1.6 Hz),
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8.23 (d, 1H, J = 2.2 Hz), 8.53 (s, 1H, CH), 8.59 (dd, 1H; J1 = 2.3 Hz, J2 = 1.1 Hz), 11.44 (s, 1H,

NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 48.1; 48.3; 119.1; 120.0; 122.5; 124.5; 125.0;

134.2; 136.9; 137.2; 143.6; 144.2; 149.6; 159.5; 180.3. HRMS (ESI): m/z calculated for

C17H18ClF3N7S: 444.0985, found: 464.0988 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(pyrimidin-2-yl)piperazine-1-carbothiohydrazide
(L11)

Light yellow powder; yield 39%; mp: 198–199; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.86

(m, 4H, CH2), 4.05 (m, 4H, CH2), 6.69 (t, 1H, J = 4.7 Hz), 7.07 (dd, 1H; J1 = 8.3 Hz, J2 = 4.2 Hz),

7.11 (dd, 1H; J1 = 8.3 Hz, J2 = 1.6 Hz), 7.13–7.22 (s, 2H, NH2), 7.84 (dd, 1H; J1 = 4.2 Hz, J2 = 1.6

Hz), 8.41 (d, 2H, J = 4.7 Hz), 8.53 (s, 1H, CH), 11.43 (s, 1H, NH). 13C-NMR (126 MHz, d6-
DMSO, ppm): δ 43.2; 48.4; 111.0; 122.5; 124.5; 134.2; 137.1; 144.2; 149.4; 158.5; 161.5; 180.1.

HRMS (ESI): m/z calculated for C15H19N8S: 343.1453, found: 343.1464 [M+H]+.

N’-[(3-aminopyridin-2-yl)methylidene]-4-(pyrazin-2-yl)piperazine-1-carbothiohydraz ide
(L12)

Yellow crystals; yield 70%; mp: 217–218; 1H-NMR (500 MHz, d6-DMSO, ppm): δ 3.72 (m,

4H, CH2), 4.09 (m, 4H, CH2), 7.05–7.12 (m, 2H, CH), 7.14–7.22 (s, 2H, NH2), 7.84 (dd, 1H; J1 =

4.2 Hz, J2 = 1.6 Hz), 7.88 (d, 1H; J = 2.6 Hz), 8.12 (dd, 1H; J1 = 2.7 Hz, J2 = 1.5 Hz), 8.35 (d, 1H,

J = 1.6 Hz), 8.54 (s, 1H, CH), 11.44 (s, 1H, NH). 13C-NMR (126 MHz, d6-DMSO, ppm): δ 43.8;

48.0; 122.5; 124.5; 131.7; 133.1; 134.2; 137.2; 141.9; 144.2; 149.6; 154.7; 180.0. HRMS (ESI): m/z
calculated for C15H19N8S: 343.1453, found: 343.1454 [M+H]+.

Materials and physico-chemical measurements

Starting Materials and Solvents. The solution studies were carried out in bidistilled water. All

the chemicals were commercial products of reagent grade and were used without further

purification.

The Iron(III) stock solution was prepared from FeCl3�6H2O (Aldrich) in 1.01 × 10−2 M

HCl (Chempur 38%) immediately before use. The Copper(II) solution was prepared from

CuCl2 �2H2O (Aldrich). All metal stock solutions were standardized using ICP-AES. The HCl

solution was titrated using standardized NaOH (0.1 M Fluka standard solution).

pH-dependent UV-visible titrations. To determine the acid-base properties of the stud-

ied ligands, UV-visible spectrophotometric experiments as a function of p[H] were carried out

in the pH range 2–11.

The isosbestic curves were used to determine the ability of a binding event of the ligand

with Fe(III) and Cu(II). A series of six samples were prepared for each ligand. The ligand was

dissolved in 0.1 M KCl in MeOH/H2O (80/20 w/w) ionic strength and mixed with a freshly

prepared FeCl3�6H2O or CuCl2�2H2O solution at various ratio concentrations of the metal

ions. The complex that was formed for each reaction mixture was allowed to stand for 30 min

before the analysis. Absorption spectra were recorded in a Hellma quartz optical cell (1 cm) on

a Jasco V630 spectrophotometer.

All the titrations were carried out on 3.2 mL samples. The metal-ligand system titrations

were performed on solutions of ligand concentrations of 5x10-5 M and metal-to-ligand molar

ratios of 1:1, 1:2, 1:3, 1:4 and 1:5.

UV-Visible titrations were also carried out. The absorption spectra (200–800 nm) were

recorded using a Jasco V630 spectrophotometer. The initial pH of 3.2 mL ligand samples was

adjusted to be acidic or basic and the titration of the solution was then carried out by adding

known volumes of NaOH or HCl, respectively. The spectrophotometric data were fitted using

the HypSpec [83] program. Distribution diagrams of the species were calculated using Hyper-

quad Simulation and Speciation (HySS) software [84].
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Antitumor activity

Cell lines. The human colon carcinoma cell line HCT116 wild type (p53+/+), human

breast carcinoma cell line MCF-7 and glioblastoma cell line Hs683 were obtained from ATCC.

The glioma cell line U-251 was purchased from Sigma Aldrich and the normal human fibro-

blast cell lines NHDF from PromoCell. The human colon cancer cell line HCT116 with a p53

deletion (p53-/-) was kindly provided by Prof. M. Rusin from the Maria Sklodowska-Curie

Memorial Cancer Centre and Institute of Oncology in Gliwice, Poland. Cells were grown as

monolayer cultures in Dulbecco’s modified Eagle’s medium with an antibiotic gentamicin

(200 μL/100 mL medium) in 75 cm2 flasks (Nunc). DMEM for HCT116, MCF-7, U-251,

Hs683 were supplemented with 12% heat-inactivated fetal bovine serum (Sigma) and for

NHDF with 15% non-inactivated fetal bovine serum (Sigma). All the cell lines were cultured

under standard conditions at 37˚C in a humidified atmosphere at 5% CO2.

Cytotoxicity studies. The cells were seeded in 96-well plates (Nunc) at a density of 5,000

cells/well (HCT116, MCF-7, U-251, Hs683) and 4,000 cells/well (NHDF) and incubated at

37˚C for 24 h. The assay was performed following a 72 h incubation with varying concentra-

tions of the compounds that were tested. Then, 20 μL of The CellTiter 961AQueous One

Solution-MTS (Promega) solution was added to each well (with 100 μL DMEM without phe-

nol red) and incubated for 1 h at 37˚C. The optical densities of the samples were analyzed at

490 nm using a multi-plate reader (Synergy 4, Bio Tek). Results were expressed as a percentage

of the control and calculated as the inhibitory concentration (IC50) values using GraphPad

Prism 5. The IC50 parameter was defined as the compound concentration that was necessary

to reduce the proliferation of cells to 50% of the untreated control. Each individual compound

was tested in triplicate in a single experiment with each experiment being repeated four to five

times.

Immunoblotting. The HCT116 (p53+/+), U-251 and MCF-7 cells were seeded in 3 cm

Petri dishes (Nunc) at a density of 0.5�106 cells/well and incubated overnight. The next day, a

solution of L9 at a four-fold IC50 concentration for each cell line was added and incubated for

24 h. Cells were harvested by trypsinization, washed with cold PBS and cell pellets were

obtained by centrifugation at 2,000 rpm. Total cell lysates were obtained by dissolving the cell

pellets in 150 μL of a RIPA buffer (Thermo Scientific) containing a Halt Protease Inhibitor

Cocktail (Thermo Scientific) or Halt Phosphatase Inhibitor Cocktail (Thermo Scientific) along

with 0.5 M EDTA and lysed for 20 min on ice on a rocking plate. The lysates were then soni-

cated, centrifuged at 10,000 rpm for 10 min at 4˚C and the supernatants were collected for fur-

ther analysis. The protein concentration was determined using a Micro BCA™ Protein Assay

Kit (Thermo Scientific) according to the manufacturer’s instructions. Equal amounts of pro-

teins (15 μg) were electrophoresed on SDS-Page gels and transferred onto a nitrocellulose

membranes. The membranes were blocked in 5% non-fat milk prepared in PBS containing

0.1% Tween-20 (TPBS) for 1 h. After blocking, the membranes were incubated with specific

primary antibodies: PARP, p53, p21Waf1/Cip1, cdc2, cyclin E, cytochrome c, caspase-3,8,9 and

GAPPH overnight at 4˚C, then washed and incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies for 1 h at room temperature. All the antibodies were pur-

chased from Cell Signaling and were diluted 1:1000 in 5% milk in TPBS. Finally, the mem-

branes were washed and incubated with a SuperSignal™ West Pico Chemiluminescent

Substrate (Thermo Scientific). The chemiluminescence signals were captured using a Chemi-

Doc™ XRS+ System (BioRad). The experiments were performed at least three times.

Cell cycle assay. The HCT116 (p53+/+), U-251 and MCF-7 cells were seeded in 3 cm Petri

dishes (Nunc) at a density of 0.25�106 cells/well and incubated at 37˚C for 24 h. Then, the

medium was removed and a freshly prepared solution of the tested compound–L9 at a 0.5 μM
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concentration was added. After 48 h of treatment, assays were performed using a Muse Cell-

Cycle Kit (Millipore) according to the manufacturer’s instructions. Briefly, the cells were col-

lected, washed with cold PBS and were centrifuged at 300 g. Then, the cells were fixed in ice

cold 70% ethanol and stored at -20˚C overnight. Afterwards, the cells were centrifuged and

resuspended in 200 μL of Muse™ Cell Cycle Reagent and incubated for 30 min at room temper-

ature in the dark. After staining, the cells were processed for cell cycle analysis using a Muse

Cell Analyzer (Millipore). The experiments were performed at least three times.

Annexin V binding assay. The HCT116 (p53+/+), U-251 and MCF-7 cells were seeded in

3 cm Petri dishes (Nunc) at a density of 0.25�106 cells/dish and incubated at 37˚C for 24 h.

After treatment with 0.5 μM of L9 for 48 h, the assays were performed using an Annexin V &

Dead Cell Kit (Millipore) according to the manufacturer’s instructions. Briefly, detached and

adherent cells were collected and centrifuged at 500 g for 5 min. Next, the resuspended cells

were incubated with 100 μL of Muse™ Annexin V & Dead Cell Reagent for 20 min at room

temperature in the dark. After staining, the events for live, early and late apoptotic cells were

counted using a Muse Cell Analyzer (Millipore). The experiments were performed at least

three times.

Statistical analysis. All of data were expressed as the mean ± standard deviation (SD) of

the results obtained from at least three independent experiments. Statistical differences was

performed using one-way ANOVA with a Bonferroni post-hoc test (comparison to control). A

p-value of 0.05 or less was considered to be statistically significant. GraphPad Prism v.5.0 soft-

ware (GraphPad Software, USA) was used for analysis.
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45. Enyedy ÉA, Nagy N V., Zsigó É, Kowol CR, Arion VB, Keppler BK, et al. Comparative Solution Equilib-

rium Study of the Interactions of Copper(II), Iron(II) and Zinc(II) with Triapine (3-Aminopyridine-2-carbal-

dehyde Thiosemicarbazone) and Related Ligands. Eur J Inorg Chem. 2010; 2010: 1717–1728.
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