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Abstract

How is emotion represented in the brain: is it categorical or along dimensions? In the present 

study, we applied multivariate pattern analysis (MVPA) to magnetoencephalography (MEG) to 

study the brain’s temporally unfolding representations of different emotion constructs. First, 

participants rated 525 images on the dimensions of valence and arousal and by intensity of discrete 

emotion categories (happiness, sadness, fear, disgust, and sadness). Thirteen new participants then 

viewed subsets of these images within an MEG scanner. We used Representational Similarity 

Analysis (RSA) to compare behavioral ratings to the unfolding neural representation of the stimuli 

in the brain. Ratings of valence and arousal explained significant proportions of the MEG data, 

even after corrections for low-level image properties. Additionally, behavioral ratings of the 

discrete emotions fear, disgust, and happiness significantly predicted early neural representations, 

whereas rating models of anger and sadness did not. Different emotion constructs also showed 

unique temporal signatures. Fear and disgust – both highly arousing and negative – were rapidly 

discriminated by the brain, but disgust was represented for an extended period of time relative to 

fear. Overall, our findings suggest that 1) dimensions of valence and arousal are quickly 

represented by the brain, as are some discrete emotions, and 2) different emotion constructs 

exhibit unique temporal dynamics. We discuss implications of these findings for theoretical 

understanding of emotion and for the interplay of discrete and dimensional aspects of emotional 

experience.
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1. Introduction

Emotions are a potent part of our daily lives; the way in which we characterize and 

experience them is the focus of contentious and ongoing debate (see Russell, 2009). Modern 

neuroimaging and statistical techniques allow for new ways to examine how emotions are 

delineated in the brain and the indices provided by such techniques might shed light on the 

most appropriate ways to define or understand them (see Hamann, 2012; Kragel & LaBar, 

2016 for reviews).

Two traditional, polar perspectives in the field suggest that emotions exist either as discrete 

entities or along dimensional space. The discrete emotion perspective suggests that a number 

of nominal, basic, specific emotions exist in categorical space (Ekman, 1992; Izard, 1992). 

In its most strict interpretation, the basic emotion perspective suggests that innate emotions 

comprise the emotional space as separate entities with unique and distinct physiological 

correlates: e.g., fear, sadness, anger, surprise, joy, contempt, disgust (Ekman, 1992). In 

contrast, the traditional dimensional perspective suggests that emotions exist along graded 

dimensions, such as valence (positive vs. negative) and arousal (activated vs. deactivated), 

and that the spectrum of emotional experience can be characterized by where they fall along 

these dimensions (Bradley & Lang, 1994; Rubin & Talarico, 2009; Russell, 1980). For 

example, in this framework, sadness exists within the quadrant of dimensional space where 

negative valence and low arousal intersect, whereas fear and disgust can be characterized by 

the intersection of negative valence with high arousal. More modern versions of the 

dimensional approach have included additional dimensions, such as approach- vs. 

withdrawal-related value (e.g., Harmon-Jones, Gable, & Price, 2013), or potency and 

unpredictability (Fontaine, Scherer, Roesch, & Ellsworth, 2007). Both perspectives have 

been supported through decades of research (Russell, 2009), resulting in little consensus 

about the underlying organizational structure of emotional constructs (Hamann, 2012).

Modern alternatives to these traditional theories of emotion include constructivist, network-

based approaches (Barrett, 2017; Cunningham, Dunfield, & Stillman, 2014; Lindquist, 

Siegel, Quigley, & Barrett, 2013). For example, Barrett’s “theory of constructed emotion” 

suggests that emotions are experienced and learned based on previous, similar experiences, 

and derived from a network-based representation (Barrett, 2009, 2017). In this framework, 

seemingly discrete emotions are experienced by applying conceptual knowledge (often 

derived from previous experience and prediction processes) to interoceptive sensations that 

can often be characterized in terms of (but not limited to) valence and arousal dimensions 

(Barrett, 2017). Previous iterations of this model referred to the dimensional underpinnings 

as “core affect” (Russell & Barrett, 1999). Although constructivist accounts might be 

interpreted as the antithesis of a discrete emotions perspective, in some ways they also serve 

as a vehicle to reconcile discrete emotion- and dimensional-views. We might predict, for 

example, that individual ratings of valence and arousal (to the degree that such ratings have 

face value) account for a large degree of variance in the brain’s response to emotional 

stimuli, and that such dimensions should predict variance early in the temporal unfolding of 

such neural representations. We might also expect ratings of discrete emotions to account for 

some variance, but with the substance of their predictive value observed later in time.
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Note that such a formulation raises additional questions: are there reliable differences in the 

rate at which representations of different discrete emotions are constructed? And, if it is 

correct that much of emotional experience is built on a foundation that includes dimensions 

of valence and arousal, is this necessarily true for all discretely experienced emotions? In the 

case of fear, for example, one influential suggestion has been that the amygdala (heavily 

implicated in fear) connects with other brain regions both via a cortical route and via routes 

that rapidly bypass cortical regions involved in attention and awareness (e.g., LeDoux, 2000; 

Morris, Scott, & Dolan, 1999; Tamietto & de Gelder, 2010). Although this suggestion has 

been challenged in recent years (Pessoa & Adolphs, 2010), the notion highlights the 

possibility that the neural representation of fear may unfold more rapidly than that of other 

emotions, perhaps so rapidly as not to be preceded by neural signatures of valence and 

arousal.

Multivariate pattern analysis (MVPA) or “brain decoding” techniques can be used to identify 

patterns of activation that are associated with particular mental states (Carlson, Schrater, & 

He, 2003; Cox & Savoy, 2003; Haxby et al., 2001; Haynes, 2015; Kamitani & Tong, 2005; 

Kriegeskorte, Goebel, & Bandettini, 2006). This approach targets informational content in 

patterns of activity across multiple variables, rather than differences in activity in single 

variables (Kriegeskorte et al., 2006). MVPA is thus a useful tool in the understanding of 

emotional space - particularly as modern emotion theories suggest emotions to exist in 

representational space within network-based frameworks, rather than based on isometric, 

one-to-one relationships between areas of the brain and individual emotions (Hamann, 

2012). The Representational Similarity Analysis (RSA) approach (Kriegeskorte & Kievit, 

2013; Kriegeskorte, Mur, & Bandettini, 2008) extends the MVPA “brain decoding” 

approach by modeling the representational content of information in brain activity patterns. 

RSA allows comparisons of the structure of information in brain activity patterns to 

theoretical models of cognition (Kriegeskorte, Mur, & Bandettini, 2008).

In the context of defining the representational space of emotion constructs, several recent 

studies have applied MVPA to examine spatial regions of the brain associated with specific 

emotions - typically using functional magnetic resonance imaging (fMRI) or positron 

emission tomography (PET) techniques with high spatial resolution (but usually low 

temporal resolution). In a review of recent literature, Kragel and LaBar (2016) suggest that 

MVPA is able to predict neural activity by both emotional dimensions of valence and arousal 

and discrete emotions. Evidence for this comes from recent decoding studies which suggest 

that both emotional dimensions and distinguished emotion categories can be observed using 

MVPA (e.g., Kragel & Labar, 2013; Kragel & LaBar, 2014; Saarimäki et al., 2016).

Far fewer neuroimaging studies have examined temporal signatures of emotional constructs 

as a way to determine how different emotions are classified. This is despite the useful 

information that temporal signatures can provide in understanding the categorization of 

emotions – particularly as a way to possibly separate brain processes involved in 

representing multiple emotional constructs (see Waugh, Shing, & Avery, 2015). Researchers 

who have examined temporal signatures suggest that different, discrete emotions elicit 

unique temporal neural signatures (Costa et al., 2014; Eger, Jedynak, Iwaki, & Skrandies, 

2003; Esslen, Pascual-Marqui, Hell, Kochi, & Lehmann, 2004). For example, in an event-
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related potential (ERP) study (Costa et al., 2014), participants passively viewed a subset of 

images from the International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 

2008). Afterward, participants categorized the images into four emotional categories (fear, 

disgust, happiness, or sadness) and rated the images on the dimensions of valence and 

arousal on a 9-point scale. Costa and colleagues found that emotion-specific time signatures 

differentiated between discrete emotions, with the unique time signature of fear occurring 

fastest, followed by disgust, then happiness, then sadness. Thus, MVPA reveals that 

temporal dynamics also differentiate between discrete emotion categories (Costa et al., 

2014).

Previous studies examining temporal signatures of emotion constructs have mostly used 

stimuli predefined based on discrete emotional categories (e.g., face stimuli exhibiting 

particular discrete expressions, Eger et al., 2003; Esslen et al., 2004; images in 

predetermined categorized and analyzed as separate discrete emotions, Costa et al., 2014). 

However, as expressed in several emotion theories, it may not always be so easy to isolate a 

given emotion in any given stimulus. Some disgusting images, for example, can also induce 

fear. Some pleasant images elicit more happiness than others. And if dimensional properties 

determine later emotional categorization, the timeline of such dimensional properties should 

be tracked separately from the discrete emotional properties. Rather than separating images 

into a priori, categories, we used scaled emotional ratings to define all images with 

emotional categorical weights along all emotional constructs of interest. By doing so, we 

could better ensure that differences in neural signature were due to differences in emotional 

ratings per se, rather than reflecting predetermined categories of discrete emotions.

We sought to understand how the brain quickly characterizes emotional constructs in 

representational space. We applied RSA to high temporal resolution 

magnetoencephalography (MEG) data to examine time varying neural activity. Compared to 

EEG, MEG signal is less smeared over sensors and is less distorted by ocular or muscular 

artefacts (Baillet, 2017), and it therefore requires fewer trials per condition which is 

perfectly suited for a condition-rich approach such as RSA (Grootswagers, Wardle, & 

Carlson, 2017; Kriegeskorte, Mur, & Bandettini, 2008). We measured evoked responses with 

MEG while participants viewed images and engaged in a one-back task. We employed a 

one-back task in order to encourage participants to attend to the visual properties of the 

image rather than the emotional construct per se. The images represented scenes of varying 

emotional content, and were each previously rated on the constructs of valence, arousal, 

anger, sadness, disgust, fear, and happiness. Using RSA, we examined how reliably image 

ratings represented neural patterns across emotional constructs, as a way to better determine 

how the brain represents them.

2. Methods

The current study consisted of two parts. In the first part, we obtained behavioral ratings of 

emotional responses to our stimulus set. The second part involved presenting the images to a 

new group of participants while their brain responses were recorded using magneto-

encephalography (MEG). The MEG recordings were then analyzed using representational 

similarity analysis framework (RSA; Kriegeskorte, 2011; Kriegeskorte & Kievit, 2013), 
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where we assessed how much information in the MEG recordings of participants’ brain 

activity could be explained by the behavioral ratings of emotional responses.

2.1. Stimuli

Stimuli consisted of 525 visual images. Some images were chosen from the International 

Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2008), some images were 

chosen from the Nencki Affective Picture System (NAPS; Marchewka, Żurawski, Jednoróg, 

& Grabowska, 2014), and all other images were chosen from publicly available internet 

sources. Images were colored, depicted natural scenes, and were chosen to represent 

different emotional categories: fear (e.g., threatening animals, gunmen, attackers), sadness 

(e.g., individuals crying, malnourished children, scenes of injustice), erotica, extreme sports, 

disgust (e.g., medical injuries, rotten food, roadkill), pleasantness (e.g., laughing babies, 

fuzzy baby animals), and neutral images (e.g., portraits with neutral expressions, individuals 

playing chess). These categories were only used as a way to ensure a variety of different 

emotional images – participant ratings were used to determine the emotionality of individual 

images.

2.2. Behavioral ratings

399 participants were recruited on Amazons Mechanical Turk for a ~30-minute task.1 Age 

and sex of participants were not recorded, but Mechanical Turk participants have been found 

to be representative of the general US population (Berinsky, Huber, & Lenz, 2012). The 

ratings task was programmed and run on Qualtrics, and participants were randomly assigned 

to one of eleven picture set conditions. Picture sets contained either 49 or 42 images, and 

each set contained an equal amount of exemplars (6 or 7) for the categories of fear, sadness, 

erotica, extreme sports, disgust, pleasantness, and neutral images. An individual picture set 

always contained the same images, but the images were presented in a different, random 

order for every participant in that condition. Across all sets, all 525 images were rated. For 

each image, participants gave their response on a scale of 1–9 for the following seven 

questions:

1. How HAPPY/UNHAPPY does this picture make you feel (on a scale from / 1-

very unhappy, to 9-very happy)? (Valence)

2. How CALM/EXCITED does this picture make you feel (on a scale from / 1-not 

at all arousing to 9-very arousing)? (Arousal)

3. How much does this image make you feel Anger (on a scale from 1-not at / all to 

9-very much)?

4. How much does this image make you feel Sadness (on a scale from 1-not at / all 

to 9-very much)?

5. How much does this image make you feel Fear (on a scale from 1-not at / all to 

9-very much)?

1Most but not all participants completed the entire ratings task (302 out of 399 participants completed the whole task). To compute 
average emotion scores for each image, we included ratings regardless of the number of trials participants completed.
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6. How much does this image make you feel Disgust (on a scale from 1-not at / all 

to 9-very much)?

7. How much does this image make you feel Happiness (on a scale from 1-not at / 

all to 9-very much)?

At the end of the task, participants were debriefed about the purpose of the ratings task, and 

were compensated $1.50 through MTurk. Participants gave informed consent through 

instructions at the beginning of the study, and the experiment was approved by the UNSW 

Sydney Human Research Ethics Approval Panel. Mean responses for each question of every 

image were computed over participants, and used as inputs for RSA. These means are 

available for download at OSF: https://osf.io/5zqfa/.

2.3. MEG data acquisition

13 healthy volunteers (9 female, mean age=24.7 years (SD=4 years), all right handed, with 

normal or corrected-to-normal vision) participated in the MEG part of the study. All 

participants were recruited from the Macquarie University Student Participant pool, and 

gave written consent prior to the study. Participants were financially compensated for their 

time. The study was conducted with the approval of the Macquarie University Human 

Research Ethics Committee.

For each participant, we used a unique combination of 99 stimuli, of which 49 were seen by 

all participants. The set of stimuli seen by all participants was included to quantify the 

between subject variance in the responses, by computing the noise ceiling (described below). 

The sets of unique stimuli were selected to cover stimuli from all stimulus categories (e.g., 

happy, sad, neutral, etc.) and to have approximately similar behavioral rating distributions. A 

table with individual participant image set rating means, and a scatterplot of stimuli-wise 

intensity values of emotional constructs related to every other emotional construct, are 

available on OSF: https://osf.io/5zqfa/. Before starting the MEG session, to familiarize the 

participant with the stimuli, they were shown their individual subset of stimuli while rating 

them on valence, using a 1–9 key response to the question “how happy does this picture 

make you feel?”. This gave participants an opportunity to look at each image for a lengthy 

amount of time and identify their emotional content, to allow participants to better identify 

each image in the scanner and know their emotional content while doing a visually-based 

task. Next, participants lay supine inside a magnetically shielded room (Fujihara Co. Ltd., 

Tokyo, Japan) while the MEG signal was sampled at 1000 Hz from 160 axial gradiometers 

(Model PQ1160R-N2, KIT, Kanazawa, Japan). Recordings were filtered online between 

0.03 Hz and 200 Hz. Stimuli were presented in random order for 200 ms each, with an inter-

stimulus interval that varied randomly between 850–950ms. Each stimulus was presented 32 

times throughout the experiment. Participants were instructed to press a button when a 

stimulus repeated during the inter-stimulus interval. The repeating stimuli were 

counterbalanced throughout the experiment. The relatively long temporal distance between 

images allowed participants to respond to repeated images, and also prevented possible 

emotion-induced blindness - such that with this delay, emotional images would likely not 

interfere with the processing of subsequent images (Most, Chun, Widders, & Zald, 2005). 

Using the Yokogawa MEG Reader Toolbox for MATLAB (Yokogawa Electric Corporation, 
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2011), we extracted −100 to 600 msec of MEG data relative to the onset of the stimulus in 

each trial. Next, the data were downsampled to 200Hz, and four trials of each stimulus were 

averaged to create 8 pseudotrials per stimulus (Grootswagers et al., 2017; Isik, Meyers, 

Leibo, & Poggio, 2014). Note that no other preprocessing steps were performed on the data 

(e.g., no channel selection, baseline correction, artefact removal, etc.).

2.4. Representational similarity analysis

The data were analyzed using RSA (Kriegeskorte, 2011; Kriegeskorte, Mur, Ruff, et al., 

2008; Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008). This approach 

works by first creating representational dissimilarity matrices (RDMs) for each subject that 

describe the difference in the neural response between pairs of stimuli from the recorded 

brain activity (described below). These neural RDMs can then be compared to ‘candidate’ 

RDMs, such as behavioral rating RDMs (Redcay & Carlson, 2015; Wardle, Kriegeskorte, 

Grootswagers, Khaligh-Razavi, & Carlson, 2016), or can be compared to other modalities 

(Cichy, Pantazis, & Oliva, 2014) and other species (Kriegeskorte, Mur, Ruff, et al., 2008).

We constructed time-varying RDMs for each subject. A 25 msec sliding window approach 

was used where at each time point (Figure 1A), we included data from the four preceding 

time points (to avoid artificially moving the onset of information in the data). The channel 

activations at these five time points were concatenated into a feature vector for each trial. A 

linear discriminant t-value (LD-t) between the feature vectors of the trials belonging to two 

stimuli was computed and stored in a N×N matrix (Figure 1B), where N is the number of 

stimuli. The LD-t is a cross-validated measure of dissimilarity, similar to a cross-validated 

Mahalanobis distance (Nili et al., 2014; Walther et al., 2015). LD-t values for all possible 

pairwise combinations of subject-specific stimuli were computed, yielding an N×N 

representational dissimilarity matrix (RDM, Figure 1C). Repeating the process at each time 

point resulted in a set of time-varying RDMs for each subject (Figure 1D).

Candidate model RDMs were created using the behavioral rating data (e.g., Figure 1E). For 

each of the rating questions, an RDM was constructed by taking the difference in the mean 

ratings for all pairs of stimuli. This resulted in seven behavioral rating RDMs. In addition, 

HMAX (Riesenhuber & Poggio, 2002; Serre, Wolf, & Poggio, 2005) was used as a control 

model to approximate the visual responses to the images. The first two layers (S1 and C1) of 

HMAX represent V1 simple and complex cells. The higher layers (S2 and C2) represent 

complex and invariant features that pool from the lower two layers, in a similar manner to 

the ventral temporal cortex. The responses to our stimuli of the units in each layer were 

concatenated into vectors. We then computed pairwise dissimilarities on these vectors to 

create four RDMs (one per HMAX layer). To assess the overlap of information amongst our 

candidate RDMs, we computed similarity values (Spearman’s rho) for all pairwise 

combinations of the RDMs. These were then visualized using multidimensional scaling, 

which represents the multidimensional RDMs as points in a lower dimensional 2D space, 

and arranging them so that distance between points approximate the similarity between 

exemplars in the RDMs.

The 11 candidate model RDMs (4 HMAX RDMs and 7 behavioral RDMs) were compared 

against the time-varying neural RDMs by computing the correlation (Spearman’s rho) 
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between the candidate model RDMs (Figure 1E) and the neural RDMs at each time point 

(Figure 1D), yielding a time-varying correlation for each candidate RDM for each subject 

(Figure 1F). For each subject, the candidate models were restricted to the 99 stimuli in that 

subject’s stimulus set (see Figure 1C,D). The correlations for the behavioral rating models 

were computed using partial correlations, to control for the correlations with the HMAX C2 

RDM (which had the highest correlation with the neural data). In addition, we used partial 

correlations for assessing to what extent the correlations with the discrete rating models 

could be explained by the valence and arousal models. Wilcoxon signed rank tests (with 

subject as random effect) were then used at each time point for statistical inference on the 

correlations at the group level. False Discovery Rate (FDR) was used to correct for multiple 

comparisons by determining the FDR-threshold (q = 0.05) and subsequently using this to 

threshold the p-values.

To estimate the range of correlations to be expected given the between-subject variance, we 

computed the noise ceilings for our data (as described in Nili et al., 2014). The noise ceiling 

was computed using only the stimuli that were shared across participants. This means that 

the true noise ceiling is likely to be lower that our estimate, as including more stimuli (with 

fewer participants per stimulus) will increase the noise in the data.

3. Results

The aim of this study was to study the brain’s time varying representation of different 

emotional constructs. We used RSA to compare the brain’s time varying representation of 

the stimuli to candidate models that were created using behavioral ratings on emotional 

dimensions and intensity of discrete emotions. HMAX was used to create control models of 

low-level image properties.

To assess the similarities amongst the candidate RDMs, we correlated the pairwise 

combinations of the RDMs (Figure 2A), and visualized the relations between the RDMs 

using multidimensional scaling (Figure 2B). These results show that HMAX RDMs cluster 

together, with the exception of layer C2, which is different from the other layers. The 

behavioral rating RDMs are different from the HMAX RDMs. Fear and arousal are the most 

different from the other rating RDMs. We computed the noise ceiling for the MEG RDMs 

based on the stimuli that were seen by all subjects (Figure 2C). The noise ceiling estimates 

the range of the maximum possible correlation between the data and any model, given the 

between-subject variance in the data. For comparison, the correlation between candidate 

models and the MEG data are displayed with the noise ceiling. The HMAX RDM 

correlations (blue lines) in the early response reach about 25% of the noise ceiling, and the 

candidate models (red and yellow lines) in the later response are approximately half as 

strong as the lower bound on the noise ceiling. Note that the noise ceiling is an estimate of 

the correlation of the “true model”. The emotional dynamics are likely to be covered using a 

combination of several candidate models. Therefore, the correlations of the individual 

models are not expected reach the noise ceiling.

The time-varying neural RDMs were correlated at each time point with the HMAX RDMs 

that capture low level visual responses to the images. The correlations for the earliest 
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HMAX layers become significant around 70 msec, which roughly corresponds to visual 

information entering the striate cortex (Thorpe, Fize, & Marlot, 1996). The correlations with 

the most complex HMAX layer (C2), which emulates processing areas further along the 

ventral stream, reach significance later (100 msec), and peaks later (165 msec) compared to 

the early layers. The C2 layer correlations were significant for the longest time period. The 

time-varying correlations are shown in Figure 3, where for each HMAX layer, the complete 

RDM is depicted in the left column. The right column shows their respective time-varying 

correlations with the neural data. In sum, these results show that the early MEG response to 

the stimuli is explained well by low-level visual information.

Next, we correlated the behavioral rating RDMs with the time-varying neural RDMs, while 

controlling for the information that is captured by the best performing visual control model, 

the HMAX C2 RDM (using a partial correlation). We found that valence and arousal are 

significantly represented in the neural data starting at 145 msec and 175 msec and peaking at 

285 msec and 300 msec. Figure 4 shows these correlations, with the rating RDMs in the left 

column, and their respective correlation with the neural data in the right column. Discrete 

emotion categories were represented early as well (Figure 5). Correlations with anger ratings 

started relatively late (300 msec) in the time series (Figure 5A). The correlations for sadness 

did not reach significance, but were consistently above zero from after around 240 msec 

onward (Figure 5B). The onset for fear was the earliest of all, starting at 140 msec, and had 

an early (175 msec) peak (Figure 5C). Disgust showed the largest and most sustained 

significant correlation over time, starting at 170 msec and peaking at 285 msec (Figure 5D). 

Happiness showed a lower, but fast (145 msec) and sustained significant correlation over 

time (Figure 5E).

We then asked whether the correlations of the discrete emotion categories explain different 

aspects of the representation than the correlations for valence and arousal. We correlated the 

discrete emotion rating models while controlling for the effects of HMAX, valence, and 

arousal. The fear and disgust rating models still correlated significantly with the data (Figure 

6), and thus explain variance that is not captured by the valence and arousal models. 

However, correlations with all other rating models were not significant after correcting for 

valence and arousal.

4. Discussion

We examined early neural signatures associated with different emotional constructs, as a 

way to explore how the brain characterizes the representational space of emotion. To model 

the early neural correlates of emotional constructs, participants viewed behaviorally rated 

images inside a MEG scanner, and we applied RSA to examine the time course of 

representation along emotional dimensions of valence and arousal, and along discrete 

emotional categories of sadness, fear, disgust, sadness, and happiness. Our data suggest that 

both arousal and valence were represented relatively early in the brain. This was despite the 

range of image types that we had in our study of varying arousal and valence levels. The 

discrete emotions of fear, disgust, and happiness also had reliable, early signatures, anger 

was reliably represented at a later processing stage, and sadness was not reliably represented 

during our measurement window. Moreover, despite early representations in both disgust 
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and fear (both classified as negatively valenced and highly arousing emotions), the neural 

signature of disgust lasted for a longer amount of time than that to fear. Disgust also had a 

distinct signature, such that its temporal signature showed a higher correlation than most 

other emotion properties at its maximum peak. While speculative, this result may suggest 

that disgust in particular elicits a strong response, and that there may be more similarity in 

people’s disgust response than their response to other emotional categories.

In the context of traditional emotion classification theories – which suggest emotional space 

exists either along dimensions (e.g., Russell, 1980) or discrete emotional constructs with 

distinct qualities (e.g., Ekman, 1992) – these data suggest differences in neural temporal 

representational signature across at least some discrete emotion constructs in addition to the 

basic dimensional qualities of valence and arousal. Thus, in early neural processing, 

emotions are differentiable by RSA. In particular, distinct fear and disgust representations 

were observed when correcting for valence and arousal ratings, suggesting that these discrete 

emotions can be observed above and beyond valence and arousal.

In the framework of constructivist theories of emotion (Barrett, 2017; Cunningham et al., 

2014; Lindquist et al., 2013), our finding that valence and arousal dimensions predict early 

temporal patterns of activation supports the notion that dimensional affect plays a role in 

how we assign emotional meaning. Additionally, the different time courses linked with 

discrete emotion categories may be suggestive of the relative rapidity with which we may 

categorize and construct our experience of different discrete emotions. Constructivist 

theories suggest that “core affect” (based on dimensional constructs like valence and 

arousal) is the basis with which we extract the experience of discrete emotions (Barrett, 

2017). Mostly consistent with this account, the predictiveness of valence and arousal had 

rapid onset, with ratings of discrete emotions occurring later - with one exception. Ratings 

of fear had predictive value as early than ratings of valence and arousal. It may be that fear 

(due to its biological importance) is fast-tracked in processing unlike other dimensional 

emotions (e.g., LeDoux, 2000; Morris et al., 1999; Tamietto & de Gelder, 2010). Moreover, 

representations of fear and disgust were observed when we corrected for valence and arousal 

correlations, to suggest that these emotions in particular may recruit from different 

processes. Altogether, these results suggest distinct neural temporal signatures of different 

emotion categories, and while speculative, may represent the constructive nature of 

emotional experience. Future work can examine the different processes for fear and disgust 

more directly, by using image sets with varying levels of fear and disgust, while matching 

their distributions of valence and arousal.

To our knowledge, only one other study used MVPA on temporal neural signatures in 

response to natural scene images of different emotional constructs (Costa et al., 2014). Costa 

et al. (2014) reported different time signatures for fear and disgust, but found that the onsets 

of neural responses distinguished them, whereas we found similar onsets but prolonged 

representation for disgust. Additionally, while Costa et al. reported a slow onset time for 

happiness and sadness, we found a relatively fast response to happiness, and no significant 

unique response to sadness at all. The differences in results could be due to the nature of 

task-demands – participants in our study were actively engaged in a one-back task, whereas 

participants in Costa et al.’s task were passively viewing the images. Differences could also 
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stem from the way in which emotional stimuli were categorized – Costa et al. defined 

images into discrete categories, whereas we used scaled ratings to define their categorical 

weights. Altogether, we similarly conclude that at least some discrete emotions demonstrate 

unique neural signatures, and that valence and arousal cannot fully explain differences 

between emotional responses (particularly in fear and disgust).The use of emotional images 

is common practice in emotion research. Large datasets with hundreds of previously rated 

images (e.g., IAPS, Lang, Bradley, & Cuthbert, 2008; NAPS, Marchewka, Żurawski, 

Jednoróg, & Grabowska, 2014) are commonly used to elicit emotional responses in many 

varied and diverse emotional paradigms. The time signatures of different emotional 

constructs should be considered in these tasks and the interpretation of results. For example, 

images depicting anger may take a greater amount of time to be represented compared to 

fear images. The intensity of emotions to those images may therefore vary depending on 

when the response is measured.

The type of emotional processing elicited by emotional images should also be considered. In 

this study, participants viewed images that were themselves emotional, rather than 

participants inducing emotions organically through imagery, narratives, etc. It is therefore 

worth noting that emotional constructs in our study were based on the categorical ratings of 

emotional stimuli rather than the subjective experience of emotion per se. We also only used 

the dimensions of valence and arousal to represent the traditional dimensional space of 

emotions, whereas future work may want to incorporate additional dimensions to represent 

the space with higher dimensionality (see Fontaine et al., 2007). Moreover, previous 

research indicates specific, modality-dependent activation to represent valence across the 

modalities of vision and taste (in ventral temporal cortex and anterior insular cortex), as well 

as modality-independent activation to represent valence (in the lateral orbitofrontal cortices; 

OFC) (Chikazoe, Lee, Kriegeskorte, & Anderson, 2014). These results indicate there may be 

modality-specific lower-level representations of valence, but higher-level representations of 

valence that extend across modalities. Future research should continue to examine how the 

representation of different types of subjective emotional experience and emotion from 

different modalities compare with those when viewing intrinsically emotionally powerful 

stimuli. Another consideration is that we used a one-back task, which involves working 

memory processes. While the working memory demands were the same across all emotional 

constructs, it is unclear if the results may differ if images are presented under passive 

viewing rather than in a one-back task.

Modern imaging and statistical techniques allow us to explore long-debated questions with a 

new lens. MVPA has particular strengths in the debate of emotional representation, since 

evidence seems to suggest network organization of emotions, rather than simple isomorphic 

activity in unique brain structures. Our data suggest that many emotions are distinguishable 

early in the evoked response, and that at least some emotional constructs carry unique 

signatures–perhaps reflecting the timeline of the constructive nature of discrete emotions. 

While these data utilize and represent information that we are able to extract and measure, it 

still remains unknown what information the brain uses to interpret emotions (cf. De-Wit, 

Alexander, Ekroll, & Wagemans, 2016). Another open question is which brain areas are 

involved in the temporal representation of emotion categories. Here, whole-brain MEG was 

used in the analysis, which does not allow differentiating between the contributions of 
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different brain areas. Future studies could investigate the spatio-temporal dynamics of 

emotion categories by using our approach on reconstructed activity from different brain 

areas (using e.g., beamformer techniques (Van Veen, Drongelen, Yuchtman, & Suzuki, 

1997)). Nevertheless, since we are able to differentiate signal from both valence and arousal 

ratings and several distinct emotional categories, in a timeline that might represent the 

constructive nature of discrete emotion experience, these findings not only inform how the 

brain may represent emotional constructs, but also shed light on the way that we should 

discuss, explore, theorize, and ultimately define them.
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Highlights

- MEG was recorded while participants performed a 1-back task with 

emotional images

- Temporal neural signatures of emotional constructs were analyzed using 

MVPA

- Valence, arousal and discrete emotions were differentiable from the MEG 

response

- Findings suggest several emotional constructs are represented early and 

distinctly

- Different time courses may represent the way emotions are constructed
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Figure 1. Methods overview
A. A 25msec sliding window approach was used. At one time window (blue area), MEG 

responses to two stimuli were extracted. B. A dissimilarity value between MEG responses 

was computed and stored in an N×N matrix. C. Repeating the process over all stimuli 

yielded a subject-specific representational dissimilarity matrix (RDM). Note that each 

subject saw a subset of the stimuli, resulting in only a partially filled RDM. D. A time-

varying RDM was created for each subject by repeating the process over all time points. E. 
One example candidate model RDM. Multiple candidate models were constructed from the 

behavioral ratings and HMAX model. F. For each subject, their time-varying RDM was 

correlated to the candidate model (restricted to their respective stimulus subset) resulting in 
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a time-varying correlation with the candidate model. The time-varying correlations were 

assessed for significance at the group level.
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Figure 2. Similarity between candidate RDMs
A. Correlation between candidate RDMs. To assess overlap of information between the 

RDMs, the candidate RDMs were correlated with each other. Higher values mean the RDMs 

are similar. B. Visualization of the similarities between candidate RDMs. Points represent 

RDMs and distances between these points represents the dissimilarities (1-correlation) 

between the RDMs. This shows that HMAX RDMs cluster together and are different from 

the behavioral rating RDMs. C. RDM correlations with the MEG time-series RDM 

compared to noise ceiling estimates. The noise ceiling estimates the range of the maximum 

correlation that the true model can have with the data, given the between-subject variance. 

The emotional dynamics are likely to be covered using a multifaceted model. Therefore, the 

correlations of the individual candidate models are not expected reach the noise ceiling.
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Figure 3. Performance of the low level visual models over time (HMAX layers)
The rank-transformed RDMs are shown on the left, and their respective correlations with the 

time-varying neural RDMs are shown on the right. Marks above the x-axis show significant 

above-zero correlations (p<0.05 fdr-corrected). Shaded areas represent standard error over 

participants. Peak correlation and the onset of a sustained significant correlation are 

annotated in each trace.
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Figure 4. Performance of the valence and arousal rating scale models over time after correcting 
for HMAX correlations
The rank-transformed RDMs are shown on the left, and their respective correlations with the 

time-varying neural RDMs are shown on the right. Correlations were computed using partial 

correlations to control for the correlations with the HMAX C2 model. Marks above the x-

axis show significant above-zero correlations (p<0.05 fdr-corrected). Shaded areas represent 

standard error over participants. Peak correlation and the onset of a sustained significant 

correlation are annotated in each trace.
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Figure 5. Performance of the discrete emotion rating scale models over time after correcting for 
HMAX correlations
The rank-transformed RDMs are shown on the left, and their respective correlations with the 

time-varying neural RDMs are shown on the right. Correlations were computed using partial 

correlations to control for the correlations with the HMAX C2 model. Marks above the x-

axis show significant above-zero correlations (p<0.05 fdr-corrected). Shaded areas represent 

standard error over participants. Peak correlation and the onset of a sustained significant 

correlation are annotated in each trace.
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Figure 6. Performance of the fear and disgust rating scale models over time after correcting for 
HMAX and valence/arousal correlations
The rank-transformed RDMs are shown on the left, and their respective correlations with the 

time-varying neural RDMs are shown on the right. Correlations were computed using partial 

correlations to control for the correlations with the HMAX C2 model, and with the valence 

and arousal models. Marks above the x-axis show significant above-zero correlations 

(p<0.05 fdr-corrected). Shaded areas represent standard error over participants. Peak 

correlation and the onset of a sustained significant correlation are annotated in each trace.
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