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Abstract

Parental stress exposures are implicated in the risk for offspring neurodevelopmental and 

neuropsychiatric disorders, prompting critical examination of preconception and prenatal periods 

as vulnerable to environmental insults such as stress. Evidence from human studies and animal 

models demonstrates the influence that both maternal and paternal stress exposures have in 

changing the course of offspring brain development. Mechanistic examination of modes of 

intergenerational transmission of exposure during pregnancy has pointed to alterations in placental 

signaling, including changes in inflammatory, nutrient-sensing, and epigenetic pathways. 

Transmission of preconception paternal stress exposure is associated with changes in epigenetic 

marks in sperm, with a primary focus on the reprogramming of DNA methylation, histone post-

translational modifications, and small non-coding RNAs. In this review, we discuss evidence 

supporting the important contribution of intergenerational parental stress in offspring 

neurodevelopment and disease risk, and the currently known epigenetic mechanisms underlying 

this transmission.
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Introduction

Early life stress is a well-established risk factor for neuropsychiatric disorders across the 

lifespan. ‘Stress’ encompasses various environmental challenges that disrupt organismal 
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homeostasis and result in physiological and/or behavioral responses (1). In humans, stressors 

can include metabolic challenges (e.g. famine), immune challenges (e.g. illness), and 

perceived psychological threats (e.g. social/emotional distress). In preclinical animal studies, 

stress can be imparted using psychological and/or physical challenges, including 

immobilization, social defeat, and isolation (2). During pregnancy, maternal stress alters the 

maternal milieu, which can directly or indirectly impact fetal development (3–4). Because 

the impact of stress is transmitted from parent to offspring, the term intergenerational 

transmission has been applied (5). However, preconception stress in either parent can impact 

germ cells, thus influencing development in one or more generations, resulting in 

transgenerational effects (6–7). As the most recent studies focusing on germ cell epigenetic 

transmission have been largely examined in paternal models, we discuss these studies in 

detail regarding stress programming of sperm as causal in offspring phenotypes.

Understanding the mechanisms by which parental stress exposure is ultimately 

communicated to the developing offspring brain is critical for elucidating the etiology of 

mental health disorders. Epigenetic control of gene expression, including DNA methylation, 

histone post-translational modifications (PTMs), and non-coding RNAs, evolved to regulate 

and establish cell- and tissue-specific gene expression programs and to control normal 

cellular functions (8–9). Stress experienced during critical developmental windows when 

these epigenetic patterns are generated can result in reprogramming of cellular epigenomes, 

leading to long-term changes in patterns of gene expression and cellular function. More 

specifically, stress exposure can lead to such epigenetic alterations in sperm and oocytes, 

resulting in transmission of altered marks to the zygote (7). Following conception, stress 

exposure can also directly alter epigenetic programming of the fetus by disrupting the 

function of extra-embryonic tissues, including the placenta, to promote alterations in key 

developmental signals throughout gestation. Thus, parental stress exposures during the 

preconception and prenatal windows can have lasting consequences on offspring 

development and, subsequently, adult outcomes.

In both human studies and animal models, intergenerational transmission of stress exposures 

have been associated with endophenotypes of stress-related neuropsychiatric disease in adult 

offspring, including disruption of the hypothalamus-pituitary-adrenal (HPA) stress axis. The 

HPA stress axis is important for glucocorticoid production in response to physiological and 

psychological challenges, and its dysregulation is an underlying feature of most 

neuropsychiatric disorders (10–11). Thus, many studies have focused on understanding 

developmental programming of the HPA stress axis as a readout of intergenerational 

transmission of stress exposure. In this review, we discuss the impact of maternal and 

paternal stress exposure on offspring neurodevelopmental outcomes, with a focus on 

offspring programming of the HPA stress axis. Moreover, we focus our discussion on the 

epigenetic mechanisms by which intergenerational transmission of stress exposure may be 

signaled to developing offspring.

Maternal Mechanisms of Intergenerational Stress Transmission

Stress during pregnancy is associated with an increased risk for autism spectrum disorders 

(ASD), schizophrenia, affective disorders, and attention deficit hyperactivity disorder 
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(ADHD) in offspring, largely related to the specific stage of pregnancy in which stress 

experience occurred (4). For instance, epidemiological and clinical studies report that early 

pregnancy, when epigenomic patterning is established, has the greatest impact on offspring 

brain development (12–16). Risk and outcome of stress exposure is also related to fetal sex, 

such that males whose mothers experience psychological stress during the first and second 

trimesters show an increased risk for schizophrenia and ASD (13–15), whereas female 

offspring exposed to high levels of cortisol during early pregnancy are at higher risk for 

affective disorders (16). Moreover, late gestation may be a sensitive period wherein stress 

exposure can lead to long-term alterations in cognitive function and risk for ADHD, 

particularly in females (17–19). Although fetal development differs between species, rodent 

models of maternal stress exposure are valuable for elucidating the proximate mechanisms 

on programming offspring stress sensitivity. Our lab and others have shown that stress 

during early pregnancy has the greatest long-term impact on the offspring HPA stress axis, 

cognitive, and metabolic function, particularly in male offspring (20–25).

Numerous biological mechanisms converge to impart sex-specific alterations on offspring 

neurodevelopment following maternal stress, including effects on the maternal milieu, the 

placenta, and the developing fetus. While these factors have been explored for their 

contributions to offspring brain development, they are so tightly intertwined that alterations 

in one environment typically produce changes in the others. For instance, the placenta is a 

key source of corticotropin-releasing factor (CRF) (26), which feeds back to both the fetal 

and maternal pituitary (27–28). Placental CRF is critical for regulating the fetal HPA axis, 

and for proper production of glucocorticoids and androgens from the fetal adrenal gland (27; 

29). These steroids are necessary for organ maturation (30). Maternal stress enhances 

placental CRF production and signaling, which in turn modifies fetal HPA feedback and 

development (31). Rodent studies using treatment with the synthetic glucocorticoid, 

dexamethasone, during pregnancy demonstrate that potentiation of the maternal HPA axis 

reduces HPA axis sensitivity in adult offspring by attenuating the expression of 

glucocorticoid (GR) and mineralocorticoid receptors (MR) in the hippocampus, and 

enhancing anxiety-like behaviors and stress responsivity (32–33).

Similar to maternal stress, maternal infection during pregnancy is associated with an 

increased risk for ASD and schizophrenia, suggesting that these insults may have 

overlapping mechanisms that promote long-term changes in development (34–39). 

Interestingly, rodent models of maternal immune activation produce offspring phenotypes 

similar to those observed with maternal stress (40). Both maternal stress and infection 

promote an inflammatory state by increasing cytokine production during pregnancy, 

weakening the maternal immune system (41). In mice, signaling of the pro-inflammatory 

cytokine, interleukin-6 (IL-6) is enhanced by both of these maternal insults, and inhibiting 

IL-6 signaling rescues the impact of maternal infection on offspring development (42–43). 

Prenatal stress exposure increases IL-6 specifically within the male placenta, and sensitizes 

the HPA stress axis and metabolic dysfunction in male offspring (44). Treatment of pregnant 

mice with a nonsteroidal anti-inflammatory drug during stress exposure ameliorates the 

programmatic dysfunction observed in male offspring, suggesting that maternal/fetal 

immune signaling mediates the effects of maternal stress exposure on placental and/or fetal 

brain development (44). Activation of the HPA axis is also known to interact with the 
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maternal immune system, with glucocorticoids acting as important immunomodulators (45–

46). For example, thymocytes, monocytes, and neutrophils express GR, which mediates the 

transcriptional effects of glucocorticoids and can alter migration, differentiation, and 

proliferation (46–47). Clinical studies also report that psychosocial stress during pregnancy 

decreases lymphocyte activity (48). Other neuropeptide and neuroendocrine factors resulting 

from activation of the HPA axis can interact with immune cells as well, such as CRF 

regulation of mast cell degranulation (46; 49). For a more comprehensive review on maternal 

immune regulation of fetal development, see (40; 50).

Placental epigenetics and neurodevelopmental programming—At the interface 

of maternal experience and the developing fetus lies the placenta, a tissue that serves as a 

gatekeeper of maternal signals, admitting critical nutrients and gasses from maternal 

circulation while blocking pathogenic intruders including viruses and bacteria (51). Here we 

focus our discussion on the evidence for epigenetic mechanisms in the placenta to promote 

sex-specific offspring responses to prenatal stress. For additional discussion on the 

involvement of the placenta in transmitting maternal signals to the developing fetal brain see 

reviews (51–54).

The fetally-derived trophoblast lineage is the first to differentiate following fertilization, 

forming the outer blastocyst trophectoderm layer and eventually becoming the dominant cell 

type of the placenta (55). Male and female placentas express differences in gene expression, 

largely originating from the X and Y chromosomes (51; 56). Of particular interest are the 

numerous X- and Y-linked genes that encode epigenetic machinery, including genes that 

affect the methylation status of the histone transcriptional repressor, H3K27, such as the 

histone demethylases, UTX and UTY, and the X-linked enzyme, O-linked N-

acetylglucosamine transferase (OGT) (57). Differential expression of these and other broad 

epigenetic mediators are able to establish widespread sex differences in gene expression 

patterns within male and female trophoblast lineages (58). These sex differences may 

contribute to sex-specific susceptibility to prenatal perturbations, such as early prenatal 

stress, where males are more vulnerable (59).

Evidence supporting this hypothesis has been demonstrated in rodents, wherein maternal 

stress significantly modifies placental gene expression and function in a sex-specific manner 

(56; 60–62). We previously identified OGT as a placental mediator of the sex-specific effects 

of prenatal stress on HPA stress axis and metabolic programming (63). OGT is a nutrient-

sensing enzyme that biochemically modifies thousands of proteins to promote widespread 

effects on cellular signaling, cell cycle regulation, proteosomal activity, transcriptional 

regulation and additional critical cellular functions (for review see (64)). Further, OGT is a 

known mediator of epigenetic repression via its structural stabilization of the histone H3K27 

methyltransferase, EZH2 (65–67), as well as epigenetic activation via its association with 

the TET proteins at activational histone marks (68–70).

Female placental tissue (mouse and human) has nearly double the level of OGT as male 

tissue (60). In addition, placental OGT levels are reduced in response to early prenatal stress 

exposure in both male and female tissue. Might low levels of placental OGT be responsible 

for producing altered HPA function and endophenotypes of autism and schizophrenia in 
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males exposed to early prenatal stress? To test this hypothesis, we reduced OGT levels in 

placental trophoblasts in both sexes and found a recapitulation of the stress axis and 

metabolic dysregulation phenotype found previously only in males (63). Thus, placental 

OGT activity appears to be a critical mediator of the sex-specific effects of prenatal stress 

exposure on offspring neurodevelopmental programming. However, as OGT targets myriad 

proteins and cellular processes, the downstream mechanisms involved in OGT’s sex-specific 

programming are still unknown.

Maternal preconception stress—Unlike the effects of paternal preconception stress, 

less is known about the mechanisms by which maternal preconception stress programs 

offspring outcomes. However, epidemiological evidence suggests that traumatic events prior 

to conception, such as childhood abuse and development of PTSD, are associated with poor 

neuropsychiatric outcomes in offspring (71–73). Studies in children whose mothers survived 

the Holocaust suggest one mechanism whereby maternal preconception stress may affect 

future generations via alterations in DNA methylation of stress regulatory genes, FKBP5 and 

GR, associated with enhanced HPA stress axis sensitivity (73–74). Another recent study 

found that maternal childhood abuse correlates with greater placental CRF production 

during pregnancy (75), an intriguing finding that suggests integration of stress experience 

with the female reproductive tract. Further studies are needed to determine how traumatic 

preconception events alter maternal biology to allow for transmission to future generations.

Paternal Mechanisms of Intergenerational Stress Transmission

The number of studies examining the interaction of stress with the paternal germline to 

impact the programming of offspring development has grown in the last decade, with 

fascinating results implicating male life experiences in intergenerational transmission. The 

majority of epigenetic patterning of the male germ cell occurs prenatally, with some de novo 
DNA methylation and histone modifications occurring postnatally, prior to puberty (for 

review, see (76)). During spermatogenesis, sperm histones are actively replaced by 

protamines, highly charged proteins that allow condensation of sperm chromatin to one-

tenth that of somatic cells (77). As a result, mature sperm become transcriptionally inert, and 

are considered resistant to external influences. However, recent studies have now turned the 

dogma upside down, demonstrating that mature sperm are responsive to homeostatic 

challenges, including dietary disruption, stress or trauma, and exposure to drugs of abuse, 

during the sperm maturation stage that occurs in the epididymis (78–82). In the following 

section we discuss the evidence from human studies and relevant animal models of 

intergenerational transmission of environmental perturbations through the paternal germline 

and the potential attributed epigenetic mechanisms. We focus on stress and trauma as these 

have been the most widely studied exposures in paternal transmission.

Human Studies and Animal Models of Paternal Stress—Retrospective 

epidemiological studies offer compelling evidence linking stress exposures during the male 

lifetime with disease risk in subsequent generations. Studies using birth measures and food 

supply records from the Swedish Famine in 1836 made the first claims for both 

intergenerational and transgenerational effects occurring through the male lineage. These 

studies established associations between food supply during early childhood in males with 
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altered health outcomes, including disease risk and longevity, in their sons and grandsons 

(83–85). Further, studies of a cohort of Holocaust survivors and their adult offspring found 

an increased prevalence of neuropsychiatric disorders, such as depression and PTSD, and 

reduced cortisol levels and GR sensitivity in offspring whose fathers were survivors (74; 86). 

Interestingly, as many of these children were conceived decades following the Holocaust, 

these outcomes support that traumatic stress promotes lasting effects through the paternal 

germline (74). Studies of males exposed to chemicals from smoking, high-fat diets, and 

environmental toxicants also compared germ cell outcomes and reported associated 

epigenetic changes in sperm (87–89). Human studies investigating molecular signatures of 

stress in the male germline have not been completed, but would provide valuable insight into 

novel mechanisms of intergenerational transmission resulting from paternal stress exposures.

Animal models of stress transmission via the paternal lineage provide a unique opportunity 

to identify germ cell epigenetic mechanisms without the major confounding factor of 

paternal behavior to consider. In most rodent models, males do not participate in offspring 

rearing, allowing researchers to isolate the specific contribution of epigenetic changes in 

paternal germ cells. For example, in our studies, male mice breed with females for a 

maximum of three days and are removed from the female’s cage immediately following 

observation of a copulation plug, significantly limiting the impact the stressed male may 

directly have on maternal behavior or investment (79; 90). Such studies have found that male 

mice exposed to chronic variable stress, dietary challenges, social defeat stress, and odor-

paired fear conditioning have a number of altered epigenetic marks in their germ cells, 

including increased specific small noncoding RNA and changes in DNA methylation (78; 

79; 82; 91–93). Further, these altered epigenetic marks are associated with offspring 

behavioral, physiological, and metabolic outcomes characteristic of endophenotypes of 

stress-related neuropsychiatric disorders.

Interestingly, rodent studies have demonstrated germ cell susceptibility to stressful 

environments across the paternal lifespan. For instance, male mice exposed to maternal 

separation stress during the perinatal period sired offspring with depressive-like behaviors 

(94). Our lab has shown that male mice exposed to early prenatal stress present with altered 

stress coping behaviors and a heightened HPA stress response and transmit this phenotype 

only to their male, but not female, offspring in the next generation (95). These were two of 

the first rodent studies demonstrating that male germ cells can be reprogrammed by stress 

experience during early development. Sperm has distinct periods of differentiation, 

development, and maturation, and therefore the timing of stress exposure likely impacts 

distinct mechanisms (7). During the prenatal and perinatal periods, development and 

epigenetic patterning of germ cell precursors and the surrounding reproductive tissues is 

dynamic; therefore, stress exposure during these critical windows may disrupt the 

organization of important processes unique to this period (76).

Other studies examining paternal transmission have demonstrated that stress exposure of 

adolescent and adult animals alters germ cell programming. For example, male mice 

exposed to chronic variable stress sire male and female offspring that exhibit a significantly 

blunted HPA stress response, an endophenotype reflected in subsets of patients with major 

depressive disorder or PTSD (96–97). Interestingly, this paternal effect occurred whether the 
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sires were exposed to stress over the pubertal window or solely during adulthood, suggesting 

that stress exposures post-puberty (i.e. following maturation of the male reproductive 

system) evoke similar mechanisms. In contrast, retrospective studies from Swedish famine 

cohorts associated nutritional challenge during preadolescence with changes in grandson 

longevity, while such challenges later in life produced no transgenerational effects (98). This 

disparity in the timing of germ cell vulnerability between our findings in stress-exposed 

rodents and the findings from the Swedish cohorts may be dependent on species, timing, or 

type of perturbation (e.g. psychosocial vs nutritional). Therefore, further studies are needed 

in order to identify the windows of germ cell vulnerability in humans.

Stress Programming of Epigenetic Marks in Sperm—The observation that stress 

exposures across the male lifespan can lead to programming of offspring phenotypes has 

brought mounting attention to examination of epigenetic marks in sperm (99). Epigenetic 

marks have been described in mature sperm in both humans and rodents, including DNA 

methylation, histone PTMs, and small noncoding RNAs, and have been implicated in 

transmitting environmental information to the next generation (7; 100). In this section, we 

discuss the evidence supporting the role of sperm epigenetic marks in the transmission and 

programming of offspring development following paternal stress exposures.

Sperm DNA methylation patterns are well described in normal germ cell development, and 

specific changes to these patterns have been reported in response to paternal stress exposure, 

such as maternal separation stress and odor-paired fear conditioning (91; 94). During 

embryogenesis, the developing germ cell undergoes global erasure of DNA methylation 

marks. Following this process, de novo DNA methyltransferases specify germ cell 

methylation patterns that are distinct from those in somatic cells (76). An additional wave of 

active DNA demethylation of the paternal gamete occurs immediately post-fertilization in 

the zygote (101). Importantly, some genomic loci are resistant to demethylation, a process of 

genomic imprinting critical for normal development, as mistakes at imprinted loci can result 

in neurodevelopmental disorders, including Angelmans and Prader-Willi syndromes (102–

103). Changes to sperm DNA methylation have been reported in rodent models of chronic 

stress experience (91–92; 94). For example, males that experienced odor-paired fear 

conditioning as adults had decreased DNA methylation at the specific genomic locus of the 

corresponding odor receptor in their sperm, suggesting a mechanism by which stress 

experience may produce offspring with specific behavioral changes (91). Intriguingly, in the 

same study, these sperm DNA methylation changes corresponded to increased offspring 

behavioral sensitivity to the associated odor. However, DNA methylation changes at this 

odor receptor were not present in the brains of these offspring, suggesting sperm DNA 

methylation changes may influence other epigenetic mechanisms, such as histone PTMs, to 

program the offspring brain. In another study, males exposed to maternal separation stress 

early in life sired offspring with depressive-like behaviors (94). These altered behaviors were 

also associated with changes in DNA methylation patterns at loci related to stress regulatory 

genes and epigenetic pathways in both the paternal germ cell and in the offspring brain. 

However, how stress induces such site-specific sperm methylation changes and how these 

changes influence the programming of adult offspring tissues to produce behavioral 

phenotypes are not known.
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Despite the central dogma that mature sperm are transcriptionally inert, populations of small 

noncoding RNAs (~22–34 bp) have been well described in the mature sperm of humans and 

animals, including microRNA (miRs), PIWI-associating RNAs, and transfer RNA-derived 

fragments (tRFs) (104–107). Specifically, sperm miRs are critical for normal 

embryogenesis, where inhibition of sperm-borne miR-34c in the zygote resulted in zygotic 

arrest (108). In our studies, male mouse chronic stress experience significantly increased 9 

miRs in sire sperm (79). Remarkably, microinjection of these same 9 miRs into fertilized 

zygotes completely recapitulated the blunted HPA stress axis phenotype reported in our 

model of paternal stress, providing causal evidence for the role of stress-altered miRs in 

sperm (109). Other labs have corroborated the crucial role of stress-sensitive sperm RNAs in 

programming offspring phenotypes via microinjection of total sperm RNA and tRF 

populations, a class of small non-coding RNAs derived from tRNAs (80; 110–111). The 

mechanisms by which sperm small noncoding RNAs influence offspring neurodevelopment 

are not clear. Following zygote miR microinjection, we found a significant reduction of 

specific stored maternal mRNA populations at the 2-cell stage, supporting sperm miR 

canonical function in the embryo (109). Intriguingly, in this study, the two most repressed 

genes were Sirt1 and Ube3a, epigenetic regulators that have been associated with 

neurodevelopmental and metabolic disorders in humans (112–113). In another study, zygote 

microinjection of tRFs altered by paternal dietary challenge resulted in changes in zygote 

gene expression, in particular the repression of endogenous retro-elements (111). Therefore, 

sperm small noncoding RNAs may alter critical genes during the pre-implantation stages of 

embryogenesis, resulting in a cascade of cellular events that ultimately reprograms the 

offspring. Due to the relative instability of RNA molecules compared to more long-lasting 

epigenetic marks, such as DNA methylation, it is unlikely sperm-derived RNAs are 

maintained past early stages of embryogenesis, but rather produce a dynamic change in the 

developmental landscape, possibly additional epigenetic changes, that shapes the embryo 

trajectory.

Considering the exciting new evidence that sperm noncoding RNAs are changed by paternal 

perturbations and reprogram offspring development, mechanistic studies to determine how 

the male reproductive tract senses changes in the environment and alters sperm content are 

necessary before interventions can be considered. The source of RNA in mature sperm was 

previously assumed to be residual from spermatogenic processes (114). However, in the 

epididymis, the site of important post-testicular sperm maturation, a novel role of epithelial 

cell extracellular vesicles has recently been proposed in the delivery of small non-coding 

RNA to maturing sperm (115). For instance, the content of these ‘epididymosomes’ was 

shown to alter sperm tRFs in response to paternal dietary challenge, supporting that 

epididymal epithelial cells may be the dynamic mediators between paternal environmental 

exposures and sperm RNA changes (111).

Lastly, histone PTMs are also potential epigenetic signals in sperm. Roughly 1% of histones 

in mice and 10% of histones in humans are retained in sperm chromatin following the active 

exchange of histones with protamines (77; 116). Importantly, retained histones have been 

mapped to regions of important developmental genes, suggesting they designate those that 

are critical for post-fertilization function in the zygote (117). As evidence to this point, 

disruption of the specific histone mark, H3K4me2, in sperm altered gene expression in the 

Chan et al. Page 8

Biol Psychiatry. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two-cell zygote and severely impaired offspring development (118). In addition, sperm from 

male rats that were administered chronic cocaine showed increased H3 acetylation 

specifically at the Bdnf promoter in both paternal sperm and in the offspring brain, 

supporting the hypothesis that retained histone PTMs may denote genes important to 

offspring development (81; 119). In addition to histone PTMs, protamine biochemical 

modifications have also been reported, supporting a potential protamine code in sperm that 

may impart transcriptional effects on embryo development (120). However, as protamines 

are rapidly replaced with maternal histones post-fertilization (121), how such protamine 

modifications could influence embryogenesis requires further investigation.

Conclusions

The focus of stress as a risk factor for neuropsychiatric and neurodevelopmental disorders 

and the mounting evidence for the intergenerational transmission of parental stress exposure 

brings to light exciting new mechanisms involved in transmission of sex-specific stress 

signals. Many affected tissues are extra-embryonic and easily accessible (e.g., placenta, 

semen), and thus the translational potential from animal models to prospective human 

studies may facilitate development of necessary predictive disease biomarkers. The potential 

to identify at-risk individuals may then inform clinical decisions, including altering prenatal 

care and earlier interventions for children. However, the discussion here only begins to 

appreciate the incredibly complex and multifaceted etiology that contributes to disease risk 

or resilience. Despite the growing evidence supporting intergenerational inheritance, there 

remains skepticism as to whether the transmission of parental experience is truly mediated 

by epigenetic mechanisms in the germ cell. For example, stress exposure may also impact 

offspring development via changes to parental care (e.g. maternal investment). Further, in 

paternal inheritance studies, the “sick sperm” hypothesis suggests stress exposure can alter 

sperm maturation or motility and that offspring development may be affected by the integrity 

of fertilization or pre-implantation events (122). Therefore, more studies with careful 

examination of these potentially complex factors are needed to determine the mechanism by 

which parental stress programs offspring development. Moreover, large prospective cohort 

studies in which gene x environment influences are considered, such as the NIH-launched 

initiative Environmental Influences on Child Health Outcomes (ECHO) and the Avon 

Longitudinal Study of Parents and Children (123–125), will be invaluable to our ability to 

identify causal mechanisms, who may be at-risk, and in designing prevention and 

therapeutic measures.
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Figure 1. Intergenerational transmission of maternal and paternal stress can impact offspring 
neurodevelopment
Paternal stress exposures influence offspring outcomes (left table), potentially through 

changes in sperm epigenetic marks. Maternal stress during pregnancy alters placental 

signaling to reprogram offspring neurodevelopment (right table). Few studies to date have 

examined maternal preconception stress effects on the oocyte, likely due to current technical 

barriers.
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