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Abstract

Bacterial microcompartments (BMCs) are organelles that encapsulate enzymes involved in CO2 

fixation or carbon catabolism in a selectively permeable protein shell. Here, we highlight recent 

advances in the bioengineering of these protein-based nanoreactors in heterologous systems, 

including transfer and expression of BMC gene clusters, the production of template empty shells, 

and the encapsulation of non-native enzymes.

Introduction

A key goal of synthetic biology is to engineer metabolic pathways to produce bulk 

chemicals for medical, agricultural, and industrial purposes using microbial cell factories. 

Factors that reduce the efficiency of engineered pathways include crosstalk of metabolites, 

toxic intermediates, and inhibitory products. Eukaryotes have evolved compartmentalizing 

organelles to overcome these obstacles. Bacteria also have organelles, known as bacterial 

microcompartments (BMCs) [1–3]. BMCs contain enzymes that catalyze sequential 

reactions and a private pool of cofactors (e.g., NAD+/NADH, coenzyme A, and ATP) within 

a protein shell. The BMC shell serves as a selectively permeable interface between the 

encapsulated pathway and the cellular environment. Because they self-assemble entirely 

from proteins, BMCs are becoming a viable platform for engineering novel nanoreactors.
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Functionally diverse BMCs are bioinformatically predicted to be present in at least 23 

different bacterial phyla [2]. Cyanobacteria and some chemoautotrophs produce BMCs (α- 

or β-carboxysomes) that encapsulate carbonic anhydrase (CA) and ribulose-1,5-

bisphosphate carboxylase/oxygenase (RuBisCO) to enhance CO2 fixation. However, the 

majority of functionally diverse BMCs are catabolic (metabolosomes), utilized by 

heterotrophs to degrade a range of carbon compounds in niche environments. Most 

metabolosomes contain a signature enzyme, such as a propanediol dehydratase (PDH) [4], 

an ethanolamine-ammonia lyase (EAL) [5], or a glycyl-radical enzyme [6, 7], that defines 

the function of the BMC [e.g., propanediol utilization (PDU) or ethanolamine utilization 

(EUT) BMCs, or glycyl-radical enzyme microcompartment (GRM)]. Metabolosome cores 

also include four conserved [1, 2] enzymes: an aldehyde dehydrogenase (AldDH) [8], an 

alcohol dehydrogenase (AlcDH) [9], and a phosphotransacylase (PTAC) [10, 11]. In 

addition, many BMC loci encode ancillary proteins that support organelle function, such as 

the transport of substrates and recycling co-factor (e.g., ATP and vitamin B12) [1, 2].

The core enzymes of carboxysomes and metabolosomes are encapsulated by a shell 

comprised of proteins that form hexamers (BMC-H) [12], pseudohexamers/trimers (BMC-T) 

[13, 14], and pentamers (BMC-P) [15, 16] (Figure 1a). The hexameric shell proteins 

typically contain a pore at the symmetry axis, with a diameter of 4 – 10 Å [17, 18••] and 

electrostatic properties [1, 6, 12, 14, 19] suited to the passage of small charged metabolites 

across the shell [1]. Confinement of sequential enzymatic reactions by the BMC shell 

facilitates substrate channeling, thereby enhancing catalytic efficiency. [1, 20–24]. The shell 

also acts as a barrier, preventing potentially toxic/volatile intermediates from diffusing into 

the cytoplasm [21–23•]. Most BMCs are predicted to form from the inside out, the core 

proteins coalesce into a bolus around which a shell assembles [1, 25] (Figure 1b). A short 

helical extension on a subset of core proteins, the encapsulation peptide (EP), facilitates the 

aggregation of the core enzymes [10, 26, 27] and their subsequent encapsulation by the shell 

[1, 25, 28–32]. The structure and native functions of BMCs have been reviewed elsewhere 

[1, 3, 20, 24, 33, 34]. The aim of this review is to highlight the recent efforts that adapt the 

BMC architectures for the development of novel nanoreactors in heterologous systems.

Overview of BMC engineering

Efforts to engineer BMCs have involved both the transfer and expression of BMC operons in 

heterologous systems, the production of empty shells (Figure 1c), and the encapsulation of 

heterologous cargo using encapsulation peptides (Figure 1d). Subsequent efforts have 

focused on building a core based on protein domain interactions and tuning shell 

permeability to support encapsulated metabolism.

Heterologous expression of BMC gene clusters in E. coli

BMCs are encoded by gene clusters, providing a ready genetic module for heterologous 

expression. The 21-gene PDU operon of Citrobacter freundii was the first demonstration of 

the potential for “transplanting” a metabolic module in E. coli [37]. Electron microscopy of 

thin sections of strains expressing the operon revealed polyhedral bodies (Figure 2a) and 

recombinant metabolosome demonstrated diol dehydratase activity. Follow-up work showed 
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that the recombinant PDU BMCs have similar morphology and mechanical properties as 

wildtype (WT) PDU BMCs [38]. Similarly, the α-carboxysome operon of a chemoautotroph 

was expressed in E. coli (Figure 2b), generating carboxysome-like particles and active 

RuBisCO [39].

Heterologous expression of BMC shells

A variety of BMC shells from both carboxysomes [42] and metabolosomes have been shown 

to assemble in E. coli [37, 40, 43–45]. Compared to fully packaged native counterparts, 

recombinant empty shells tend to be smaller; only recombinant EUT shells, formed from all 

of the or a single EUT shell protein, were observed to be similar to WT EUT BMCs in size 

[45]. The number of these recombinant EUT shells were shown to increase when co-

expressed with a putative cupin domain [46]. When the shell protein genes of a 

metabolosome of unknown function (from Haliangium ochraceum ) were expressed in E. 
coli, homogeneous, robust shells were formed and readily purified (Figure 2c) [40], enabling 

crystallization [41••]. The atomic resolutions structure of the 6.5 MDa empty shell is 

estimated to be able to accommodate threehundred 30 kDa proteins (Figure 2d). 

Interestingly, the structure revealed that the interactions between the shell proteins are 

largely governed by shape complementarity rather than salt bridges and hydrogen bonds 

between conserved residues. The structure provides scalable shell assembly principles that 

likely apply to all BMCs, and provides a blueprint for shell engineering.

Encapsulation of non-native proteins using EPs

EPs on BMC core enzymes have been shown to interact with shell proteins [28, 29, 47•, 

48•], facilitating their encapsulation. EPs are typically short amphipathic helical extensions 

connected by a poorly conserved linker to a subset of core proteins [1, 30, 31]. They have 

been identified on the essential β-carboxysome protein CcmN [28], and on the signature 

(e.g., PDH [31, 32], EAL [30, 31, 45], and aldolase [2, 31, 49]) and conserved core (e.g., 

AldDH [29, 30, 40, 50], AlcDH [30, 31], and PTAC [10, 11, 31]) enzymes of 

metabolosomes. Recently, designed EPs were developed for the PDU shell using both 

rational and library-based strategies [47•].

EPs have been employed to target non-native proteins to the interior of BMC shells. For 

example, fluorescent proteins (FPs) can be encapsulated inside native and recombinant 

carboxysome and metabolosome shells by full length core enzymes or by EPs alone [40, 42–

45, 48•, 51, 52]. Green fluorescent protein fused to the EP of AldDH was used to develop an 

assay for the rapid quantification of encapsulated protein (Figure 3a) [51]. Likewise, various 

enzymes have been targeted to the interior of recombinant PDU shells, producing prototypes 

for the engineering of nanoreactors based on BMC architectures. For example, the EPs from 

the native enzymes of the PDU BMC were used to encapsulate exogenous pyruvate 

decarboxylase and AlcDH (Figure 3b) into synthetic shells made from PDU shell proteins to 

generate ethanolproducing BMCs in E. coli [50]. Recently, the EP of AldDH was used to 

separately encapsulate three different enzymes, one of which remained active in varying pH 

conditions in vitro [53•]. The EP of AldDH was also used to generate a polyphosphate-

synthesizing BMC in E. coli (Figure 3c) [54••]. Because ATP is the substrate of the 
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encapsulated enzyme, this study also shows that the shell of the engineered BMC is 

permeable to ATP (as is native PDU BMCs [1]), but the specific shell protein that allows 

ATP transit is unknown. Beyond the encapsulation of enzymes for biosynthesis, the EP of 

the AldDH was used to sequester a cytotoxic enzyme inside recombinant PDU shells, to 

restrict its toxic effects [55••].

Developing new methods for core assembly

In addition to targeting proteins for encapsulation, EPs cause their cognate enzyme to 

oligomerize [8, 10, 26, 27]. Taking advantage of this property, four enzymes tagged with the 

EP of PDH or AldDH resulted in a shell-free enzyme aggregate that was able to convert 

glycerol to 1,2-propanediol [36••]. Disadvantages of the EP-based approach include the loss 

of precise control of internal organization and stoichiometry. Control over core assembly 

may be obtained by visualizing the core components as an array of interacting protein 

domains. For example, utilizing the knowledge of core protein domain structures and their 

interactions in β-carboxysome formation [25], a chimeric protein (CcmC) was designed that 

could replace four gene products required for carboxysome assembly [35••]. CcmC is a 

synthetic protein consisting of domains to aggregate RuBisCO, a CA, and an EP for 

adherance to the carboxysome shell.

Domain-based engineering can be expanded to build chimeric cores that may improve the 

organization of the encapsulated enzymes. In addition, it has recently been observed that 

some core protein domains interact with the shell [42]. For instance, a chimeric core could 

be formed by the fusion of enzymatic domains from a specific metabolic reaction sequence; 

association with the shell could be mediated by one of these domains, or via an EP extension 

(Figure 4a, upper). The EP would facilitate the oligomerization of the fused domains and 

their subsequent encapsulation within the BMC shells. Alternatively, the stoichiometry of 

the enzymes may be controlled by utilizing a linear protein scaffold [56] fused to an EP 

(Figure 4a, lower). Enzymes are recruited to the core via specific protein-protein interactions 

with the scaffold domains.

Modifying the BMC shell to tune permeability

Fundamental to the engineering of pathways within BMCs is the ability to tailor the 

permeability of the shell as the interface with metabolism to conduct the requisite substrates 

and products. The pores in BMC shells selectively control the passage of metabolites; 

accordingly, shell permeability can be tuned by modifying residues that surround the pores. 

Mutation of residues surrounding the pores have been shown to cause permeability defects 

[57], or enhance BMC function, due to alteration of small molecule diffusion rates [58•]. 

Shell permeability has also been modified by creating shell chimeras (Figure 4b). Chimeric 

β-carboxysome shells were generated by incorporating an α-carboxysome BMC-H protein, 

which structurally rescued a carboxysome-minus strain [59]. PDU BMCs incorporating shell 

proteins from the EUT BMC or β-carboxysome also have been produced, albeit with 

impaired function [60]. Recently, chimeric PDU shells were formed by substituting a EUT 

shell protein that has a smaller and more charged pore than its PDU counterpart [58•]. 
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Strains expressing the chimeric BMCs showed improved growth over WT, demonstrating 

enhanced permeability to the substrate.

The prevailing model of the BMC shell as merely a passive semipermeable barrier is being 

reconsidered through engineering. PduT, a BMC-T protein from the PDU BMC, is the sole 

natural example of shell protein that binds a redox-active [4Fe-4S] cluster [61, 62]. The pore 

of a BMC-T protein, naturally devoid of a cofactor, was engineered to conduct electrons by 

incorporating a stable and redox-active [4Fe-4S] cluster, providing an example of generating 

a shell protein with a non-native function [18••]. This work provides a major step forward in 

the development of a synthetic shell permeable to electrons. This approach could be 

extended to the engineering of catalytic metal centers in the pores of shells, generating 

metabolites consumed by the encapsulated enzymes (Figure 4b).

Summary and Outlook

BMCs are proteinaceous organelles that encapsulate enzymes involved in anabolic or 

catabolic reactions. BMCs are genetic, structural, and functional modules. Future efforts in 

bioengineering of BMCs could lead to nanoreactors applicable for use in agriculture and 

energy sectors. For instance, the first steps toward installing carboxysomes into chloroplasts 

has been taken, including the heterologous expression of cyanobacterial RuBisCO and shell 

proteins [63, 64]. Likewise, the development of microbial cell factories that harbor 

engineered BMCs encapsulating a pathway that produces renewable alternatives to 

petroleum-based commodities is now in reach. The capacity to engineer BMCs as 

nanoreactors will be of significant value for synthetic biology and beyond.
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• BMCs are natural metabolic modules found in diverse bacterial phyla.

• BMCs are proteinaceous organelles that encapsulate enzymes for CO2 

fixation or carbon catabolism.

• Bioengineering of BMCs has led to the production of empty synthetic shells.

• Encapsulation of enzymes led to BMC-based nanoreactors.

• BMC-based nanoreactors will be of significant value for synthetic biology.
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Figure 1. 
Shell proteins (a) and assembly of BMCs (b–d). (a) Representatives of a BMC-H protein 

(PDB 5DJB) (left), a BMC-T protein (PDB 5DIH) (middle), and a BMC-P protein (PDB 

2QW7) (right). Pf indicates Pfam identification. Individual polypeptide chains are colored 

differently. (b) Cartoon representation of BMC assembly from the inside out, where the 

primary role of the EP is in shell recruitment [25, 35••] (c) of empty BMC shell assembly, 

and (d) of targeting enzymes to the lumen of BMC shells using EPs [36••].
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Figure 2. 
Physical characterization of engineered BMCs. (a) Thin section electron micrograph of E. 
coli expressing the complete PDU BMC operon (arrows) (scale bar 300 nm). Asterisks mark 

unknown granular dense matter. Inset is an enlarged view of the polyhedral bodies (scale bar 

96 nm) that show regular substructures (arrows) [37]. (b) Thin sections electron micrograph 

of E. coli expressing the carboxysome genes of Halothiobacillus neapolitanus viewed by 

TEM (scale bar 500 nm) showing polyhedral bodies (magnified in inset) [39]. (c) Negatively 

stained electron micrograph of purified HO BMC shells (scale bar 50 nm). Reproduced with 

permission from [40]. Copyright Elsevier 2014. (d) Surface representation of the HO shell 

crystal structure. Shell proteins are colored blue (BMC-H), green (BMC-T), and yellow 

(BMC-P). Reproduced with permission from [41••]. Copyright The Association for the 

Advancement of Science 2017.
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Figure 3. 
Heterologous expression of BMC shell proteins and cargo. (a) Fluorescent microscopy 

image of S. enterica expressing PDU BMC shell proteins and EPAldH-GFP. Reproduced with 

permission from [51]. Copyright John Wiley and Sons 2017. (b) Negatively stained electron 

micrograph of purified PDU BMC ethanol bioreactors from E. coli [50] (scale bar 100 nm). 

(c) Light microscopy of Neisser stained fixed E. coli cells expressing a polyphosphate kinase 

and PDU shell proteins, polyphosphate appears purple-black. Reproduced with permission 

from [54••]. Copyright John Wiley and Sons 2017.
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Figure 4. 
Cartoon representation of domain-based cores (a) and of shells with selective permeability 

(b). (a) Top panel: a chimeric protein tagged with an EP comprised of protein domains for a 

metabolic reaction. Lower panel: a linear scaffold tagged with an EP that is able to form 

protein-protein interaction with enzymes of a metabolic pathway. (b). Top panel: 

introduction of a foreign or a modified shell protein to tune permeability for specific 

metabolites. Lower panel: engineering of catalytic sites in the pore of shell proteins that will 

convert metabolites to the form required by the encapsulated pathway.
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