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Translating heterologous proteins places significant burden on host cells, consuming

expression resources leading to slower cell growth and productivity. Yet predicting the cost

of protein production for any given gene is a major challenge, as multiple processes and

factors combine to determine translation efficiency. To enable prediction of the cost of gene

expression in bacteria, we describe here a standard cell-free lysate assay that provides a

relative measure of resource consumption when a protein coding sequence is expressed.

These lysate measurements can then be used with a computational model of translation to

predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different

functions and lengths. Using this approach, we can predict the burden of expressing multi-

gene operons of different designs and differentiate between the fraction of burden related to

gene expression compared to action of a metabolic pathway.
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To be able to build systems with increasingly more genes,
not only is precise gene expression desirable, but it is also
essential to have an understanding of the burden these will

place on the host cell so that designs can be optimised to ensure
robust growth and to prevent the deleterious mutations that arise
in high-burden systems1–3. For any given gene, its burden is in
the first instance the resource cost of expressing the gene4–7 and if
the gene encodes a function, for example an enzyme, the impact
of this can further cause a more specific role-based metabolic
burden that adds to the expression burden, e.g., by consuming
host cell metabolites and co-factors8,9. Research primarily in the
model bacteria E. coli, has demonstrated that a lack of under-
standing of the burden of expressing additional genes affects our
ability to predictively engineer cells10–13.

The burden of expressing synthetic constructs is caused by
competition between construct genes and host cell genes for the
many different resources used in gene expression. As dozens of
interconnected processes and a significant fraction of all cellular
machinery are involved in gene expression, efforts to quantify
burden have focused on measuring its global effects (i.e., its effect
on growth rate) rather than examining availability of individual
resources (e.g., polymerases, ribosomes, tRNAs., etc.)14–18.

Previously, we developed a method to quantify the burden of
synthetic constructs by measuring the competition for global
expression resources when these constructs are expressed in
growing E. coli cells that contain a capacity monitor cassette
integrated into their genome4. The capacity monitor encodes
constitutive expression of the green fluorescent protein (GFP)
and the GFP production rate per cell acts as a measure of the
cell’s capacity for general gene expression. If the cells express a
burdensome synthetic construct, their capacity for gene expres-
sion (inferred from their GFP production rate per cell) decreases
due to increased competition for global expression resources.

By using GFP production rate as a proxy measurement for
the availability of all resources required for general gene
expression we were able to quantify the burden of different
constructs and determine how choices in construct design (e.g.,
the promoter and RBS sequences) can give constructs with the
same levels of expression but with different burdens that cause
their host cells to grow at different rates4. We accompanied this
work with a simplified mathematical model of translation
focused on ribosome flow along mRNAs that captures com-
petition for resources between synthetic constructs and a
capacity monitor19. Simulations with this model were able to
predict the outcomes of altering synthetic construct mRNA
levels (via the promoter) and translation initiation efficiency
(via the RBS) and also the impact of having poor codon
optimization4.

As software tools now exist to define promoter and RBS
sequences of desired strengths20–22 it thus becomes exciting to
consider that the burden of synthetic constructs could be pre-
dicted from DNA sequence. With a ribosome flow model, this
would only require knowledge of four parameters: the mRNA
length, its abundance (i.e., promoter strength), the RBS strength
and the efficiency of elongation steps taken during translation.
Unfortunately, translation efficiency is currently impossible to
predict from DNA sequence due to the highly complex nature of
protein synthesis, which is known to be affected by nucleotide
composition23, mRNA secondary structure24, translational
pausing25, the presence of rare codons, the use of rare amino
acids26,27, or in most cases combinations of all of the above and
more. This inability to predict translation efficiency from
sequence therefore emphasises a critical need for rapid ways to
instead measure it.

To tackle this problem, we set-out here to develop an accessible
method to quickly determine the relative cost of translation of

any given protein coding sequence in E. coli, so that this mea-
surement could be used as a lumped parameter representing
translation efficiency in our predictive model. This would require
comparing the burden imposed by constructs that have different
protein coding sequences but all have the same standard pro-
moter and RBS parts. Although this could be done in vivo using
our previously described capacity monitor assay4, we instead
focused here on establishing this approach in cell-free E. coli
lysates in order to avoid the need for growth-based experiments,
which can generate hard-to-deconvolute results as burden itself
slows growth and promotes mutations1. Instead, cell-free lysates
represent a simpler, non-growing expression system that effec-
tively captures a snapshot of the E. coli gene expression
machinery.

Recent work has shown that cell-free lysates can greatly
accelerate synthetic biology as the expression from many con-
structs can be characterised within hours simply by adding syn-
thetic DNA directly to pre-prepared or purchased lysates28–32.
Furthermore, several studies have shown that the expression of
proteins using cell lysates matches in vivo expression of the same
constructs in E. coli28–30. Therefore, in this work, we investigated
how cell lysate experiments could be setup to replicate the
competition for expression resources seen naturally within
growing E. coli. This led to the development of a cell-free capacity
assay that predicts burden in vivo and provides a lumped measure
of the translation efficiency of a protein coding sequence. This
measure was then used in a modified version of our ribosome
flow model in order to predict the in vivo burden of further
constructs, including those with different RBS strengths, different
promoters and with multigene operons encoding metabolic
pathways. Together these efforts offer a method where rapid
in vitro screening of genes of interest in a standardised plasmid
enables prediction of their expression and burden when they are
implemented in different synthetic constructs in growing E. coli
cells.

Results
Cell lysate conditions for prediction of in vivo burden. Our
previously described in vivo capacity monitor assay measures
burden by quantifying the competition for resources in growing
E. coli constitutively expressing GFP4. The measured capacity was
strongly predictive of the subsequent E. coli growth rate (Fig. 1a).
Equivalent competition for gene expression resources has also
been seen in cell-free experiments when using two different
plasmids in the same cell lysate mix33. Therefore, to measure
burden in cell lysates, we constructed a capacity monitor plasmid
designed for in vitro use by making a low-copy version of our
existing capacity monitor cassette with constitutive superfolder gfp
expression and a strong RBS. As with the in vivo assay, we used
this as a means to characterise resource competition by mea-
suring the capacity for expression in E. coli cell lysates (Fig. 1b).
For this, we define the in vitro capacity as the maximum GFP
production rate calculated from the GFP fluorescence of the
lysate (max dGFP/dt, see Supplementary Fig. 1A).

We first measured in vitro expression in 10.5 µl of cell lysate
mix, with no competing plasmid, instead using increasing
concentrations of the capacity monitor plasmid itself to
determine the available capacity of the lysate. This revealed that
the in vitro capacity reaches a plateau at 50 nM of plasmid DNA
and goes on to decrease at higher DNA concentrations (Fig. 1c).
Calculating the in vitro capacity per DNA concentration
(Supplementary Fig. 1B) highlights that there is spare capacity
in the lysate assay below 30 nM total plasmid DNA, saturation at
around 50 nM and decreased capacity per DNA above this, due to
competition for expression within the pool of plasmids.
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In E. coli the main cost of gene expression is attributed to
translation6,17,18,34,35. However, in cell lysates, while NTPs and
amino acids are added in excess, polymerases, ribosomes and
their associated machinery (sigma factor, tRNAs, chaperones,
initiation and release factors) are added at an unknown amount
and thus the relative costs of transcription or translation are not
known. We therefore next set out to determine the contributions
of transcription and translation to resource competition in cell
lysates. We introduced two different plasmids to each compete
with our capacity monitor plasmid. The first contains the mkate
gene, paired with a constitutive promoter (BBa_J23106) and a
strong RBS, and was used to measure the cost of both
transcription and translation. The second plasmid has the same

genetic content but with a very weak RBS that produces no
measurable mKate protein. This, therefore imparts a transcrip-
tional cost but negligible translational cost compared to the first
plasmid. We added different concentrations of each plasmid to
the cell lysate mix along with 30 nM of the capacity monitor
plasmid and measured the corresponding in vitro capacity via the
GFP production. Values were normalised to the in vitro capacity
when the capacity monitor plasmid alone was present (i.e.,
normalised in vitro capacity= 1.0 in a cell lysate with only 30 nM
of the capacity monitor plasmid).

A negligible decrease in in vitro capacity was observed with
addition of up to 20 nM of the weak RBS plasmid, implying no
competition for transcriptional resources at these concentrations
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Fig. 1 A method to measure resource competition using a capacity monitor in cell lysate. a Illustration of resource competition in E. coli between a genome-
integrated GFP capacity monitor gene and a plasmid-based gene of interest (GoI) fused to mkate. Graph shows the correlation between the inferred
expression capacity (measured as max GFP production rate per cell) and the cell growth rate. b Illustration of resource competition in cell lysates
expressing the capacity monitor from a plasmid and the GoI from another plasmid. Graph shows the correlation between the normalized in vitro capacity
(measured as max GFP production rate, Supplementary Fig. 1A) and increasing concentrations of a GoI plasmid. c Measured in vitro capacity with the
capacity monitor plasmid added at different concentrations in cell lysate. d Normalized in vitro capacity measured in cell lysate containing 30 nM of the
capacity monitor plasmid and different concentration plasmids bearing mkate with either a strong (black/orange) or a very weak (black/blue) RBS
sequence. The grey area represents the concentration of plasmid where competition is for translational resources. Values are normalised to the in vitro
capacity obtained with capacity monitor plasmid alone. e Correlation between normalized in vitro capacity measured in cell lysate and normalized in vivo
capacity measured with DH10B cells. The constructs in this experiment all express mkate with different RBS sequences (Supplementary Table 1). f
Correlation between normalized in vitro capacity measured in cell lysate and normalized in vivo capacity measured in DH10B using constructs with various
genes of different sizes paired with RBS BCD264. g Growth rate of strains growing in different conditions and containing only the capacity monitor. Strains/
conditions: DH10B in M9 pyruvate (a, red); DH10B in M9 fructose (b, black); MG1655 in M9 fructose (c, orange); DH10B in M9 glucose (d, purple); DH10B
in LB (e, blue). h Correlation between normalized in vitro capacity (from f) and normalized in vivo capacity when constructs with various genes of different
sizes paired with RBS BCD2 are expressed in the strains and conditions described in g. Error bars show standard error of three independent repeats
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(black/blue dots, Fig. 1d). In contrast, addition of the strong RBS
plasmid at 20 nM gives a significant decrease in normalised
in vitro capacity (black/orange dots, Fig. 1d) revealing competi-
tion for translational resources. Taken together, these results
demonstrate that when our cell lysate assays are run with 20 nM
of test plasmid plus 30 nM of capacity monitor plasmid,

expression is close to saturation (50 nM total DNA) and
translational resources are the major limitation, as seen in vivo.

Correlation of protein cost between cell lysate and in vivo
measurements. Using the conditions determined above, we next

a

GOI mKate

a+

a–

a–M

a+M

Free ribosomes

Capacity
monitor

Circuit:
3 parameters RBS strength (a+,a– and b0 depends on RBS strength)

b0

Protein

Size,�

mRNA size

GFP

�-value

mRNA size
SizeM,�M

BCD2
Monitor
output

RBS strength
= 2.6

�-values
�-values (s

–1)

1.0

0.8

0.6

0.4

0.2

0.0

2.0
1.6
1.4
1.2
1.0
0.6
0.4
0.0

500 2500 5000

b0M

b
Normalised

in vitro capacity (Figure 1f)

c

d e

Established �-values Monitor
output

Monitor
output

1.0 1.0

0.5 0.5

0.0 0.0
1.0

0.5

0.0
0 10 20 30

DNA concentration [nM]
40 50

Monitor
output

M
on

ito
r 

ou
tp

ut

BCD21
RBS strength

= 2.1

RBS strength
= 0.5

RBS strength
= 1.0

RBS strength
= 2.0 RBS strength = 2.6

RBS strength = 2.4

(Figure 2b)

� = 2.0
� = 1.0

� = 2.0
� = 1.0

� = 2.0

� = 1.4 s–1

� = 0.6 s–1

� = 1.0
� = 0.01

� = 0.01 � = 0.01

1.0 R2 = 0.74

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8 0.

9
1.

0

1.0

0.8

0.6

0.4

0.2

0.0

�-
va

lu
es

 (
s–

1 )

�-
va

lu
es

 (
s–

1 )

2.0

2.0

1.6
1.4
1.2
1.0
0.6
0.4

0.0

0.0

1.0

0.6

0.4

0.0

1.5

mRNA size

mRNA concentration [nM]

500 2500 5000

50 1000 1500 50 1000 1500 50 1000 1500

Predicted normalised
in vitro capacity

in cell lysate

Predicted capacity
(predicted

normalised in vivo capacity) P
re

di
ct

ed
 c

ap
ac

ityRelationship between
cell lysate/ in vivo in Figure 1f

N
or

m
al

is
ed

 in
 v

itr
o 

ca
pa

ci
ty

Normalised in vivo capacity
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standard error of three independent repeats. Values are normalised to the capacity obtained with capacity monitor plasmid alone
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measured the burden of a collection of plasmids expressing
mKate at different levels in our cell lysate assay. We constructed a
library of plasmids (see Supplementary Table 1) with mkate
under control of the same promoter but with different RBS
sequences in order to alter translation initiation efficiency. These
plasmids were first assessed by our previous in vivo capacity
monitor approach (GFP production rate per cell) and shown to
cause more burden as increased mKate is expressed (Supple-
mentary Fig. 2A) with the decreased in vivo capacity correlating
strongly with decreased E. coli growth rates (R2= 0.88, Supple-
mentary Fig. 2B). We then measured these plasmids in our cell
lysate assay to obtain their in vitro capacity measurements and
compared these to the equivalent in vivo data. This revealed a
well-correlated linear relationship between the in vitro and
in vivo capacity measurements (R2= 0.74, Fig. 1e) that suggests
that the resource competition seen in vitro is broadly predictive of
that seen in vivo for most cases.

Having demonstrated predictability in cases where translation
initiation rate is altered, we next looked to see if cell lysate assays
can predict the burden of producing different proteins. First, we
constructed a standard entry vector to enable the protein coding
sequence of any gene of interest (GoI) to be rapidly cloned by
Golden Gate DNA assembly into a standard format for use in the
cell lysate assay (see Supplementary Table 2, Supplementary
Fig. 1C). This design leads to the GoI protein coding sequence
being constitutively expressed as a fusion protein with C-terminal
mKate (in order to allow expression to be verified). We
constructed 3 different entry vectors, each with different RBS
sequences in order to give a choice of expression levels. We
selected the well-characterised B0034 RBS along with two
Bicistronic Design (BCD2 and BCD21) sequences that ensure
context-free, defined levels of translation initiation36.

The protein coding sequences of 7 arbitrarily chosen genes of
different lengths, functions and amino acid composition and 3
truncated versions of viob of different lengths were all cloned
into the same entry vector with the BCD2 (Supplementary
Table 2). When assayed both in cell lysate and then in E. coli, a
wide range of burden was observed for this collection. The
capacity monitor measurements from both cell lysate and
in vivo experiments once again showed a good linear fit, with a
R2= 0.76 (Fig. 1f), demonstrating that the resource limitations
in cell lysates for translating different proteins (and transcrib-
ing their different mRNAs) are similar to the resource
limitations seen in E. coli. This linear relationship between
the data offers a route to using cell lysate measurements to

predict the burden of expressing any protein of interest in vivo
in growing cells.

To complete the verification of our approach, different
strains and growth conditions were next chosen to investigate
whether our standard in vitro lysate assay can predict burden in
different in vivo environments. As translation and transcription
machinery concentrations are known to be condition-
dependent in vivo, we anticipated that the competition for
resources would vary when experiments were done with E. coli
growing at different rates37–40. To achieve this, we first
determined different growth media and strain combinations
that yield a range of growth rates of unburdened cells
containing the in vivo capacity monitor (Fig. 1g). The 10
GoI-expressing constructs used above (Fig. 1f) were then re-
assayed by the in vivo capacity monitor assay in these different
conditions and compared to previously taken in vitro capacity
measurements (Supplementary Fig. 3). Once again, well-
correlated linear fits were seen in all conditions, but notably
the slopes of these fits are different. When superimposed
together, a clear trend can be seen where the slope of the
relationship between in vitro and in vivo measurements
increases with increasing growth rate (Fig. 1h). The burden
in vivo thus appears to be less important in richer media and
faster growing cells.

Predicting in vivo burden from cell lysate measurements.
Having established a standard cell lysate assay, we next integrated
this into existing efforts to mathematically model the relationship
between gene expression and burden. We used a simplified ver-
sion of the model of translation developed by Algar et al., that was
previously experimentally tested4,19 (Fig. 2a). This model (out-
lined in Supplementary Note 1) describes the three main steps of
translation: initial binding of ribosomes, protein synthesis and
ribosome release. The total number of ribosomes—a global
parameter meant to account for all the translation resources being
competed for—is fixed in this model and is also expected to be
fixed in cell lysate experiments. The binding (a+), unbinding (a−)
and synthesis initiation (b0) rates of ribosomes on an mRNA all
depend on the RBS strength (see Supplementary Note 1 and
Supplementary Fig. 10). The amount of resources needed to
produce a protein is captured by a lumped parameter γ, which
represents the translational cost of synthesising the protein. The
value of γ will vary for each GoI depending on the protein being
made and how efficiently it is translated.
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Our lysate assay measurements showed that when mRNA
levels and RBS strengths are kept the same, capacity can still vary
considerably due to changes in the protein coding sequence of the
GoI (Fig. 1f). In the model used here, these changes only alter two
parameters, the mRNA size and γ. Given that the mRNA size is
known for any GoI, this means that γ can be readily estimated
from in vitro capacity measurements. To demonstrate this, we

modelled the competitive expression of the 10 GoI test constructs
from Fig. 1f. As these constructs all have a standardised strong
RBS (BCD2), the RBS strength in the model was set to a value of
2.6 (see Supplementary Fig. 4). Other parameters in the model
were then set so that the simulated monitor output from the
model matched the normalised in vitro capacities we observed in
the cell lysate data. The γ-value for each GoI could then be
determined from these parameter settings once the known
mRNA size is taken into account (Fig. 2b). In other words, via
this method γ is immediately deduced from cell lysate measure-
ments when mRNA size and RBS strength are known.

To test the predictive power of our approach, we then used the
model-inferred γ-value for each of these 10 GoIs in simulations of
equivalents constructs that have BCD21, a weaker RBS that we
experimentally measured to correspond to RBS strength 2.1
(Supplementary Fig. 4). Using this simulation (Fig. 2c), we first
predicted the cell lysate normalised in vitro capacity for these new
constructs, and then using the known linear relationship between
lysate and in vivo measurements (y= 0.7x+ 0.19 from Fig. 1f),
we extended this to predict the in vivo performance (Fig. 2c). We
then built and measured the burden of this BCD21 library in
E. coli and compared predicted in vivo performance with the
in vivo capacity data, again seeing a good correlation (R2= 0.74,
Fig. 2c). Thus, with only the cell lysate data and knowledge of the
mRNA length and RBS strength, we are able to predict the burden
of different genes of interest expressed at different levels in E. coli.

Further investigation of our model revealed that modification
of our parameters (RBS strength, γ-values) lead to different
capacity monitor outputs profiles. In Fig. 2d, the mRNA
concentration varies to simulate an increase in the copy number
of a GoI and what impact this has on the monitor output. The
mRNA amount and the monitor output (capacity) exhibit a linear
relationship at very low-RBS strength (e.g., 0.5) and γ-value
higher than 0.02 s−1 (note that the γ-value for the monitor gfp
gene is 1 s−1). In this context the impact of the translation of
several genes is additive (i.e., the decrease in monitor output will
be the sum of the decreases in monitor output values for each
gene measured individually).

However, at high-RBS strengths a decrease of the γ-value leads
to a faster-than-linear decrease in the monitor output as mRNA
amount increases (e.g., RBS strength 2 in Fig. 2d). Using cell
lysate measurements, we experimentally demonstrated this effect
by comparing the normalised in vitro capacity from the monitor
construct when it competes against expression of a gene with a
high γ-value (mkate, γ= 1.4 s−1) and with a strong RBS (RBS
strength 2.6) vs. competing against expression of a gene with a
low-γ-value (viob-mkate, γ= 0.6 s−1) and a strong RBS (RBS
strength 2.4). To mimic increased mRNA levels, we simply added
more DNA to the cell lysate assay for these two plasmid
constructs. As predicted by our model, we saw a linear
relationship for the high-γ-GoI (Fig. 2e, upper graph), and a
nonlinear relationship for the low-γ-GoI (Fig. 2e, lower graph).

Predicting the burden of a two-gene operon. To demonstrate
that the cell lysate plus model approach can be used to predict the
in vivo burden for a multigene system, we characterised and
simulated a two-gene luciferase operon used for generating bio-
luminescence in E. coli. This operon consists of two genes from
the firefly Luciola cruciate (Fig. 3a). Using our cell lysate assay we
first measured the in vitro capacity when each gene is expressed
individually and used this to determine their γ-values (Fig. 3a).
This was done with both the standard GoI-testing vector (with
BCD2 RBS) and further confirmed with a second vector with
B0034 RBS (Supplementary Fig. 5). We then took an existing
plasmid construct where these two genes are in an operon
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Fig. 4 Predicting the burden of operon designs for the beta-carotene
biosynthesis pathway. a Diagram of the beta-carotene pathway and the γ-
values for the four enzyme-encoding sequences as measured by the cell
lysate capacity assay (see Supplementary Fig. 7). The operon is designed
with partially randomised RBS sequences and one of three promoters:
BBa_J23113 (weak), BBa_J23106 (medium), or BBa_J23100 (strong). b
Model-predicted burden of each operon design compared to the measured
in vivo capacity of E. coli expressing the operons with or without an
inactivating mutation in the crtE gene (prediction method described in
Supplementary Fig. 8). The orange intensity in each circle represents the
measured beta-carotene level for each strain (see Supplementary Fig. 9).
Error bars show standard error of three independent repeats. c Model-
predicted burden of each operon design compared to the measured in vivo
capacity of E. coli expressing the active pathway (same data as b, non-
mutated pathway on left). The diagonal dot line represents equality
between predicted and measured normalised in vivo capacity. Grey bars
indicate the difference between the predicted and measured normalised
in vivo capacity of the 17 operons. Right plot compares the relative
differences between predicted and measured normalised capacity for the 17
operons and the strain-only control. Operons are ranked from low to high-in
vivo capacity values. Values are normalised to the capacity obtained with
capacity monitor plasmid alone
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expressed from a constitutive promoter, and randomly modified
the two RBS sequences in this to obtain a collection of 14 operons
where expression of the two enzymes is at a variety of levels. We
then estimated RBS strengths via the RBS Calculator20,21 using
this to guide the RBS parameterisation in our model (see Sup-
plementary Fig. 6). As the promoter used in the construct has
been previously characterised, an estimate for mRNA con-
centration is also known for all members of the library (see
Methods section, Model simulations).

Expression of all 14 library members was then simulated in the
capacity monitor model using the cell lysate-determined γ-values,
the known mRNA lengths, and the sequence-estimated mRNA
levels and RBS strengths. We then compared the model-predicted
impact on capacity with subsequent capacity monitor assay
measurements taken in E. coli expressing all 14 bioluminescence
constructs (Fig. 3b). We observed a strong correlation (R2=
0.79), this time demonstrating that a multigene system can be
predicted from sequence information and standard cell lysate
measurements.

Predicting the burden of metabolic pathway operon. To further
verify our approach, we attempted to predict the in vivo burden
of a library of designs of a more complex operon encoding the
four gene metabolic pathway for the biosynthesis of beta-car-
otene, a metabolite of interest for medicine and used industrially
in nutritional supplements, cosmetics and animal feed41,42. We
took genes from Erwinia uredovora43,44 codon optimised these
for E. coli and characterised the individual burden of each gene’s
expression in our standard cell lysate. This gave us the γ-value for
each enzyme (Fig. 4a, Supplementary Fig. 7). We then used
Golden Gate DNA assembly45 to construct a collection of 17
operons expressing all four enzymes at a variety of levels with one
of three different constitutive promoters and with partially ran-
domised RBS sequences for each enzyme-encoding GoI (Fig. 4a,
Supplementary Fig. 8A). For model-based predictions, RBS
strengths were estimated from sequence information as before
and mRNA levels were estimated from the known relative
strengths of the promoters used. The 17 operons were then
assessed in vivo by E. coli capacity monitor assay and also
assessed for beta-carotene production by colour imaging of cell
pellets (Supplementary Fig. 9A).

For the first round of predictions, we made the initial
assumption that the total burden of expressing the operons
in vivo would entirely be due to the cost of expressing the genes,
i.e., we assumed no significant impact on metabolism via
conversion of host metabolites into beta-carotene. However,
when we compared the predicted effect on capacity from our
model with subsequent measurements taken in E. coli (Fig. 4b) we
only saw a weak correlation (R2= 0.44) while also observing a
wide diversity in beta-carotene production from the different
designs (Supplementary Fig. 9, Supplementary Note 2). Thus, it
became evident that the in vivo burden of each operon must also
relate to the metabolic cost of running the pathway in the host
cell.

Expression of the pathway enzymes depletes the cell of key
metabolites, which presumably affects cell growth, such as the
precursors farnesyl pyrophosphate (FPP) and isopentenyl pyr-
ophosphate (IPP) both involved in terpenoid backbone synth-
esis46. To investigate this, we targeted a mutation to the active site
of the first enzyme of the pathway, CrtE, in order to inactivate it
and effectively cease metabolic conversion for the whole pathway.
The mutation was designed to have no effect on the expression of
the enzymes and so gene expression burden was still seen when
the 17 operons, each with this mutation, were re-characterised
in vivo for their effect on E. coli capacity. With no observable

beta-carotene production, our in vivo data now showed a much-
closer match to our initial predictions for the burden of each
design (R2= 0.78, Fig. 4b). Our cell lysate assay-based model is
thus able to predict the impact on the host of expressing multiple
genes but gives the most accurate predictions when burden is
only the result of competition for gene expression resources.
Interestingly, this means that the burden caused by the roles of
enzymes can also be estimated by subtracting the predicted
in vivo capacity from the subsequent capacity of cells measured
in vivo. The resulting difference calculated from this gives a value
of burden that is not predicted to be caused from gene expression
alone (Fig. 4c, Supplementary Fig. 9, discussed in Supplementary
Note 2). Excitingly, this finding means that our approach offers
potential further use for separating expression burden from
metabolic burden.

Discussion
This work demonstrates that a standard cell lysate-based assay
can be used to quantify the burden of expressing a protein coding
sequence and provides an otherwise missing parameter for pre-
dicting the burden synthetic gene expression places on E. coli. We
demonstrated here that competition for translational resources in
cell lysates serves as a good predictor for in vivo behaviour in E.
coli. Furthermore, we provide a standard entry vector to enable
quick, standardised characterisation of a GoI with cell lysates.
When combined with promoters of known strengths and esti-
mates of RBS strength from the RBS Calculator20,21 the lysate
measurements and model can predict the burden of different
single-gene constructs and of multigene contructs. Given the
broad biotechnological importance of engineered protein
expression from E. coli, we anticipate that this approach will have
wide interest, enabling those focused on genetically engineering
cells to design expression constructs that take into account how
these will impact on host cell growth.

In particular, measurement using cell lysates offers several
advantages. While all constructs assessed in this study were
plasmids cloned via E. coli, others have demonstrated that reliable
cell lysate measurements are possible from directly synthesised
DNA or PCR amplicons, avoiding the need for any in vivo
steps28. Cell lysate assays are also quick and more readily min-
iaturized, having been shown to work in microfluidic systems and
in 384-well microplate format29,32,47. However, since they are
only a snapshot of expression resources of growing E. coli they
cannot show the same dynamic behaviours of growing cells that
can regulate gene expression in the face of burden. Yet for
measurement, this lack of dynamic adaptation is actually of
benefit, enabling resource competition to be determined in a
standard assay without the confounding factors of growth rate
changes or changes in gene regulation coming into play. Parallel
work by our group examining how E. coli adapts to burden has
recently shown that host stress responses that change global gene
expression are activated within minutes of synthetic gene
expression induction48.

While the cell lysate measurements showed good predictive
power (R2 > 0.7) for the equivalent in vivo behaviour in our work,
the correlations were not perfect. The variance observed when
comparing cell lysate and in vivo data (Fig. 1e) will likely stem
from two things; the variance of experimental measurement, and
the fact that some protein coding sequences will be affected
in vivo by rapid, dynamic processes (e.g., stringent response) that
may not operate in the same way in vitro. A further interesting
observation was that when lysate is saturated with DNA (>50 nM
plasmid) we see an unexplained decrease in expression per
plasmid (Fig. 1c). While further work would be required to
understand this phenomenon, one possibility is that saturating
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transcription can inhibit translation (or vice versa) by consuming
a limited resource required by both (e.g., GTP).

Notably, our model focuses on translation and so does not
capture every effect related to burden, such as cases where tran-
scriptional resource competition comes into play. The model also
cannot predict the effects of burden in stationary phase or if the
constructs being simulated contain sequences that specifically
change behaviour in response to burden or growth changes (e.g.,
stress-response promoters). Yet despite this, our approach still
offers good predictability (R2 > 0.7), even for libraries of multi-
gene constructs. While stronger correlations would be more
desirable it is notable that these values are already on par with the
best accuracy achieved so far with RBS Calculator models20,21,49.
Indeed, RBS strength prediction is likely to be the bottleneck for
accuracy in our approach given the importance this sequence
plays in determining gene expression levels and translational
burden.

Another interesting outcome from this work is the possibility
that our approach can separate expression burden from metabolic
burden, something that cannot easily be done in vivo due to the
combined effects that all types of burden have on host cell growth
rate. Our characterisation of beta-carotene pathway operons
demonstrates that these two types of burden are jointly respon-
sible for decreased growth rates of hosts expressing heterologous
genes to produce metabolites. Most methods for metabolic
pathway optimisation seek to produce the most product while
doing so with the minimal cost of expression of the enzymes50–52.
Therefore, quantifying the individual contributions to burden of
both gene expression and pathway productivity offers an addi-
tional tool for designing the most productive pathways. Further
research into this could aid a future study to optimise pro-
ductivity and growth trade-offs for a metabolic pathway known to
require the expression of difficult-to-translate enzymes, such as
polyketide synthases and non-ribosomal peptide synthetases.

Ideally, our lysate measurement approach will only need to be a
temporary method that will one day be superseded by an ability
to predict translation efficiency directly from sequence. Several
major efforts have now assessed the effects of combinatorial
sequence changes on the expression of GFP in E. coli in order to
determine which factors have the greatest effect on expression
efficiency. Initially this research concentrated on features at the 5′
end of GFP-encoding mRNA53,54, but the most recent study of
over 240,000 designs extends analysis of sequence space into the
protein coding sequence and now combines growth assays and
ribosome profiling data to further our understanding of how
translation efficiency and burden are related55. While providing
considerable new information, this latest research further
underlines that multiple different factors and process combine
and even act upon each other to determine translation efficiency.
Indeed, this study concludes that it is currently impossible to
predict the cost of protein production from the DNA or protein
amino acid sequence alone55.

Future iterations of our cell lysate approach could also aid in
further understanding the mechanisms of expression burden and
resource competition at a molecular level. Using defined in vitro
expression systems such as PURE Express (NEB), which contain
known quantities of purified components, such as polymerases
and ribosomes56, would allow full control of the make-up of cell
lysates and provide a route towards determining the main com-
ponents that are required for efficient gene expression. This could
help investigate which factors are limiting for different genes. For
example, charged tRNAs may be limiting for genes with rare
codons, while chaperones may be limiting for genes requiring
complex folding. Such an approach would likely reveal hidden
mechanisms and constraints in gene expression, highlighting
basic components to increase in cells when needing to efficiently

overexpress certain genes, while also providing a more complete
list of the components needed for the construction of minimal
cells.

Methods
Strains and growth media. Plasmids were transformed using standard proce-
dures57 in chemically competent E. coli DH10B-GFP or MG1655-GFP. DH10B-
GFP is the DH10B strain with genome integrated capacity monitor that consists
of a strong constitutive promoter (BBa_J23100), strong synthetic RBS (tacta-
gagaaatcaaattaaggaggtaagata), a codon-optimized superfolder GFP58

coding sequence, and a synthetic unnatural bidirectional terminator, integrated in
the λ loci of E. coli genomes4 (the same design is used for MG1655-GFP). Bacterial
growth was performed at 37 °C in minimal media M9 supplemented with 0.5%
fructose (or 0.5% glucose or pyruvate or LB media, see Fig. 1g and Supplementary
Fig. 3) and chloramphenicol (35 μg/ml).

Construction of the GoI-mKate library. The chloramphenicol-selectable, high-
copy plasmid pSB1C3 (BioBricks Foundation) was used as a backbone to construct
the standard entry vector for GoI insertion (Supplementary Fig. 1C). To construct
this vector we first PCR amplified pSB1C3 (Forward: taagccagccccga-
cacccg, Reverse: tgaaccacagagtgattaat) and lacZ under control of pLac
promoter flanked by BsaI restriction sites (Forward: gcagctggcacgacaggttt,
Reverse: ttatgcggcatcagagcaga). Second, the linker-mKate sequence was
codon optimised and ordered for synthesis by GeneArt with the RBS sequences
BCD2 and B0034. The different parts were then assembled and cloned using the
Gibson Assembly method59 to obtain the standard entry vector described in
Supplementary Fig. 1C.

The selected GoI (Supplementary Table 2) were all obtained from BioBrick
format DNA from the iGEM Parts Registry. This was used as template and PCR
amplified to be flanked by appropriate BsaI restriction sites (ggtctcannnn).
Golden Gate assemblies were setup by pipetting 40 fmol of backbone and insert,
0.5 µl of BsaI (NEB UK), 0.5 µl of T7 DNA ligase (NEB UK), 1 µl T4 buffer (NEB
UK) and completed with water for final volume of 10 µl. Then the mix was put in a
thermocycler for 30 following cycles: 42 °C for 2 min/6 °C for 5 min/55 °C for 1 h/
80 °C for 10 min.

Construction of the luciferase operon library. The luciferase operons were
constructed by modifying the arabinose-inducible luciferase operon of Luciola
cruciatae (http://parts.igem.org/Part:BBa_K325219). First, the BBa_J23100 pro-
moter was inserted upstream of the luciferase to replace of pBAD by whole-
plasmid inverse PCR amplification with primers:

Forward: cctaggtacagtgctagctactagagttaaggaggtaa, Reverse:
actgagctagccgtcaactctagaagcggccgcgaat. The resulting PCR
amplicon was ligated using T4 DNA ligase and transformed in DH10B cells. Next,
2 rounds of PCR amplification were used to obtain a collection of constitutively
expressed operons with a wide variety of RBS sequences. The first round used the
following primers: Forward: rrrrrrnnnnnnatggccccgaccgtggaaca,
Reverse: taactctagtactctagaag. The resulting PCR fragments were ligated
using T4 DNA ligase and transformed in DH10B. The colonies obtained were
pooled and grown in LB media overnight at 37 °C. Plasmids were then extracted
using Miniprep kit (QIAGEN Plasmid Minipreps Kit) and used as template for the
second whole-plasmid inverse PCR amplification using primers: Forward:
rrrrrrnnnnnnatggagaacatggagaacga, Reverse:
taaggatccttattacagct. The resulting PCR fragments were ligated using T4
DNA ligase and transformed in DH10B to obtain the final library.

Construction of the beta-carotene operon library. The beta-carotene operons
were build using MoClo toolkit45. The Level 0 library is composed of constitutive
promoters of the Anderson collection (BBa_J23114, BBa_J23113, BBa_J23100,
BBa_J23106 and BBa_J23115), a random collection of RBS sequences, the 4
enzymes of the beta-carotene pathway and the terminator T145. The level 1 con-
structs were designed to put each enzyme under the control of a random RBS and
to place the genes of the beta-carotene operons in the following order at the final
level: crtE, crtB, crtI and crtY. Cloning was done using Golden Gate assembly
methods with transformation into DH10B-GFP.

Two constructs (B3-1 str and B10-2 str, both containing promoter BBa_J23100)
were obtained by PCR amplification designed to introduce mutations in the weak
promoter sequence BBa_J23113. This was done by using whole-plasmid inverse
PCR amplification with the primer pair Forward:
tacggctagctcagtcctaggtatagtgctagcgcaagggcccaag and
Reverse: ttcacagagtggcctcgtga using previously obtained constructs (B3-1
and B10-2) as templates. The resulting PCR fragments were ligated using T4 DNA
ligase and transformed in DH10B-GFP.

All the mutated crtE constructs were obtained by whole-plasmid inverse PCR
amplification (Forward: gccgctatgccctgcatggacg, Reverse:
cgcggcttcgctgatcctt) followed by T4 DNA ligation in order to introduce
mutations in crtE leading to an inactivated CrtE enzyme. The mutation of crtE
(from gacgat to gccgct, amino acids DD to AA) was chosen in order to
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modified the active site of crtE deduced by sequence homology of crtE sequences
from Erwinia uredovora60, Erwinia herbicola60, Rhodobacter capsulatus60,
Arabidopsis thaliana 61,62 and Euglena gracilis62.

Cell lysate mix preparation and reactions. The cell lysate preparation is based on
the protocol of Sun et al.32. Briefly, the protocol of Sun et al.32 is a 5 day protocol in
three phases: harvest cells (colonies grow on plate over night at 37°C, 50 ml
preculture at 37°C during 8 h, 4 liters of cultures at 37°C until OD600= 1.5-2.0),
extract preparation (multiple pellet washing followed by beads-beating to obtain an
extract and dialysis) and cell-free reaction optimisation (optimisation by varying
the Mg-glutamate, K-glutamate and PEG-8000 concentrations). The protocol was
modified by using sonication63 instead of use of a bead beater to obtain DH5 alpha
cell extracts. After washing the cells as following the Sun et al.32 protocol (Day
3 step 18) with S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM
Tris, 2 mM DTT, pH 7.7), the cells were centrifuged 2000×g for 8 min at 4 °C. The
pellet was re-suspended in S30A (pellet mass (g) × 0.9 ml). The solution was split in
1 ml aliquots in 1.5 ml Eppendorf tubes. Eppendorf tubes were placed in a cold
block and sonicated using a Vibra-Cell™ Ultrasonic Liquid Processors VCX 130
using the followings procedure:

40 s ON—1 min OFF—40 s On—1 min OFF—40 s ON. Output frequency 20
kHz, amplitude 50%.

The remaining protocol followed the procedure of the Sun et al.32 protocol for
day 3, step 37. mRNA and protein synthesis are performed by the molecular
machineries present in the extract, with no addition of external enzymes. The
amino acid solution and energy solution mixes are kept as in the Sun et al.32

protocol and are added to the cell extract. Reactions take place in 10.5 μL volumes
at 29 °C in 384-well plate. The final cell lysate contains 3 mM Mg-glutamate, 8 mM
K-glutamate, 1.5 mM of each amino acid (except leucine), 1.25 mM leucine, 50 mM
HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26
mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM
spermidine, 30 mM 3-PGA, 2% PEG-8000. Note that there is likely to be some
genomic DNA present in this final mix, even though lysate production contains a
step to digest remaining nucleic acids with endogenous exonucleases. However, this
amount will be constant between samples.

Capacity monitor assay in vivo and data analysis. For in vivo capacity mea-
surements in DH10B-GFP, cells were grown at 37 °C overnight with aeration in a
shaking incubator in 5 ml of defined supplemented fructose M9 media with
chloramphenicol (35 μg/ml). In the morning, 20 μl of each sample was diluted into
1 ml of fresh medium and grown at 37 °C with shaking for another hour. We then
transferred 200 μL into a 96-well plate (Costar), placed samples in a Synergy HT
Microplate Reader (BioTek) and incubated at 37 °C with orbital shaking at medium
setting, performing measurements of GFP (excitation (ex.), 485 nm; emission
(em.), 528 nm), RFP (ex., 590 nm; em., 645 nm), OD (600 nm) and OD (700 nm)
every 10 min.

Growth were calculated using OD700 with:
Growth rate at t2 ¼ ln OD t3ð Þð Þ � ln OD t1ð Þð Þ½ �= t3� t1ð Þ, with t2= time of

the mid exponential phase, t3= t2+ 0.5 h and t1= t2–0.5 h.
Protein production rates per hour were calculated with:
GFP production rate at

t2 ¼ total GFP t3ð Þ � total GFP t1ð Þð Þ= t3� t1ð Þ½ �=OD t2ð Þ, and RFP production
rate at t2 ¼ total RFP t3ð Þ � total RFP t1ð Þð Þ= t3� t1ð Þ½ �=OD t2ð Þ.

The normalised in vivo capacity is the GFP production rate measured in strains
with the DH10B-GFP containing the test construct plasmid, divided by the GFP
production rate measured in DH10B-GFP without any test plasmid.

Resource competition assay in cell lysate and data analysis. For resources
competition in cell lysate, reactions took place in 10.5 μL volumes at 29 °C in 384-
well plate (Nunc™ 384-Well). Each reaction is a mix of 7.88 μL cell lysate (cell
extract+ amino acid+ energy solution+Mg-glutamate buffer+ K-glutamate
buffer+ PEG, see ref. 32), plasmid DNA and complete with sterile water to get 10
μL. Plates were centrifuged 5 min, 563×g at 4 °C (Eppendorf, centrifuge 5810R).
Samples were placed in a Synergy HT Microplate Reader (BioTek) and incubated
them at 37 °C with orbital shaking at low setting, performing measurements of GFP
(excitation (ex.), 485 nm; emission (em.), 528 nm), RFP (ex., 590 nm; em., 645 nm)
every 5 min.

Protein expression rates per hour were calculated with:
GFP production rate at t2 ¼ total GFP t3ð Þ � total GFP t1ð Þð Þ= t3� t1ð Þ, and

RFP production rate at t2 ¼ total RFP t3ð Þ � total RFP t1ð Þð Þ= t3� t1ð Þ.
The maximal expression rate value was selected as described in Fig. 1c. The

normalised in vitro capacity is the in vitro capacity rate measured in a cell lysate
mix containing the capacity monitor plasmid and the test construct plasmid
divided by the in vitro capacity measured in a cell lysate mix with only the capacity
monitor plasmid.

Bioluminescence measurements. DH10B-GFP with the different operons, were
grown at 37 °C overnight with aeration in a shaking incubator in 5 ml of defined
supplemented fructose M9 media with chloramphenicol (35 μg/ml). In the
morning, 20 μl of each sample was diluted into 1 ml of fresh medium and grown at

37 °C with shaking for another hour. We then transferred 200 μL of this into a 96-
well plate (Costar), placed samples in a Synergy HT Microplate Reader (BioTek)
and incubated at 37 °C with orbital shaking at medium setting, performing mea-
surements of Bioluminescence (emission (em) 645 nm) OD (600 nm) and OD (700
nm) every 10 min.

Beta-carotene measurements. E. coli were incubated with aeration in a shaking
incubator in 5 ml of minimum media M9 supplemented with 0.5% fructose at
37 °C during 24 h. Cells were collected using centrifugation at 2256×g for 10 min
(Eppendorf, centrifuge 5810R). Pellet was re-suspended in 300 μL acetone,
homogenised by vortexing and incubated at 55 °C for 15 min. Supernatant was
collected after 1 min centrifugation at 18407×g (Eppendorf, centrifuge 5424).
A volume of 100 μL of water was added to 100 μL of samples and OD (450 nm) was
measured in a Synergy HT Microplate Reader (BioTek).

Model simulations. We used the competitive model of translation developed by
Algar et al.19. Simulations were done using key parameters obtained from Bio-
numbers.org and calculated by previous work37 along parameters determined from
the relative strengths of the RBS sequences used, as determined from our experi-
mental characterization. The parameters used for the capacity monitor construct in
the model have been previously described19 and are the same in all our simulations
(ribosome binding rate, a+M= 0.0001 rib−1 RBS−1 s−1; ribosome unbinding rate,
a−M= 200 rib-RBS−1 s−1; synthesis initiation rate, b0M= 1 s−1; mRNA con-
centration= 900 nM, sizeM= 720 bp; and synthesis rate, γM= 1 s−1). As pro-
moters BBa_J23100, BBa_J23106 and BBa_J23113 are known to be strong, medium
and weak promoters, we assumed each copy of the promoter would produce about
30, 10 and 3 copies of mRNA per DNA molecules, respectively (estimated from
Bionumbers I.D. 107667). We added 20 nM of each plasmid in our mix leading to
600, 200 and 40 nM of mRNA in the cell lysate mix. Parameters for simulation of
construct expression and capacity monitor expression were as follows: total
available ribosomes, 2500 nM (25,000 ribosomes per cell37 extracted from 1.6 ×
1012 cells, stocked in a final cell extract volume of 9600 µl and diluted three time in
the final cell lysate mix); capacity monitor length, 24 (720 bp/30); capacity monitor
mRNAs, 900 nM (30 nM × 30 mRNA per DNA as BBa_J23100 is a strong pro-
moter); capacity monitor b0M= 1 s−1; capacity monitor γ= 1 s−1. The RBS
strength of each construct is a relative value compare to the monitor RBS strength
(RBS strength of monitor= 1). For each construct the binding (a+), unbinding
(a−) and elongation initiation (b0) rates are function of the RBS strength and of
a+M, a−M, and b0M, respectively. More specifically, in our model we define a+=
a+M × RBS strength, a−= a−M/RBS strength, and b0= b0M × RBS strength19. For
the sake of clarity b0 and γ units are noted in s−1 in the manuscript but are more
precisely in (10 codons) s−1. The b0 and γ units are (10 codons) s−1 because 10
codons is approximately the footprint of each ribosome on an mRNA and thus for
our model it better represents how many ribosomes can be queued on a transcript.

List of primers. pSB1C3_fw
taagccagccccgacacccg
pSB1C3_rv
tgaaccacagagtgattaat
lacZ_fw
gcagctggcacgacaggttt
lacZ_rv
ttatgcggcatcagagcaga
J231008_luci_fw
cctaggtacagtgctagctactagagttaaggaggtaa
J231008_luci_rv
actgagctagccgtcaactctagaagcggccgcgaat
RandRBS1_luci_fw
rrrrrrnnnnnnatggccccgaccgtggaaca
RandRBS1_luci_rv
Taactctagtactctagaag
RandRBS2_luci_fw
Rrrrrrnnnnnnatggagaacatggagaacga
RandRBS2_luci_rv
Taaggatccttattacagct
J23113_carotene_fw
Tacggctagctcagtcctaggtatagtgctagcgcaagggcccaag
J23113_carotene_rv
Ttcacagagtggcctcgtga
crtE_mut_fw
gccgctatgccctgcatggacg
crtE_mut_rv
cgcggcttcgctgatcctt

Code availability. Code used in this study for model simulations was provided as
Supplementary Material in Ceroni et al.4
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Data availability. All data generated and analyzed during this study are provided
with the published article as Supplementary Data 1. All other data are available
from the authors upon reasonable request.
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