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ABSTRACT Pathogenic human immunodeficiency virus (HIV)/simian immunodefi-
ciency virus (SIV) infection of humans and rhesus macaques (RMs) induces persis-
tently high production of type I interferon (IFN-I), which is thought to contribute to
disease progression. To elucidate the specific role of interferon alpha (IFN-�) in SIV
pathogenesis, 12 RMs were treated prior to intravenous (i.v.) SIVmac239 infection with
a high or a low dose of an antibody (AGS-009) that neutralizes most IFN-� subtypes
and were compared with six mock-infused, SIV-infected controls. Plasma viremia was
measured postinfection to assess the effect of IFN-� blockade on virus replication,
and peripheral blood and lymphoid tissue samples were analyzed by immunopheno-
typic staining. Consistent with the known antiviral effect of IFN-I, high-dose AGS-009
treatment induced a modest increase in acute-phase viral loads versus controls. Four
out of 6 RMs receiving a high dose of AGS-009 also experienced an early decline in
CD4� T cell counts that was associated with progression to AIDS. Interestingly, 50%
of the animals treated with AGS-009 (6/12) developed AIDS within 1 year of infec-
tion compared with 17% (1/6) of untreated controls. Finally, blockade of IFN-� de-
creased the levels of activated CD4� and CD8� T cells, as well as B cells, as mea-
sured by PD-1 and/or Ki67 expression. The lower levels of activated lymphocytes in
IFN-�-blockaded animals supports the hypothesis that IFN-� signaling contributes to
lymphocyte activation during SIV infection and suggests that this signaling pathway
is involved in controlling virus replication during acute infection. The potential anti-
inflammatory effect of IFN-� blockade should be explored as a strategy to reduce
immune activation in HIV-infected individuals.

IMPORTANCE Interferon alpha (IFN-�) is a member of a family of molecules (type I
interferons) that prevent or limit virus infections in mammals. However, IFN-� pro-
duction may contribute to the chronic immune activation that is thought to be the
primary cause of immune decline and AIDS in HIV-infected patients. The study pre-
sented here attempts to understand the contribution of IFN-� to the natural history
and progression of SIV infection of rhesus macaques, the primary nonhuman pri-
mate model system for testing hypotheses about HIV infection in humans. Here, we
show that blockade of IFN-� action promotes lower chronic immune activation but
higher early viral loads, with a trend toward faster disease progression. This study
has significant implications for new treatments designed to impact the type I inter-
feron system.
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Simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) is typically
characterized by high levels of virus replication, failure of the host immune re-

sponse to control the virus, chronic high levels of immune activation, and, ultimately,
progression to a severe immune deficiency that is very similar to what is observed in
human immunodeficiency virus (HIV)-infected humans (1). The SIV-associated chronic
immune activation is characterized by uncontrolled lymphocyte proliferation, aberrant
production of proinflammatory cytokines (i.e., tumor necrosis factor [TNF] and inter-
feron gamma [IFN-�]), high levels of lymphocyte apoptosis, and irreparable damage
to the architecture of lymphoid tissues (2). While HIV-associated immune activation
and inflammation are decreased when patients are placed on long-term antiretroviral
therapy (ART), the overall levels of immune activation remain higher than those
observed in non-HIV-infected age-matched individuals (3–6). While the causes of HIV/
SIV-associated immune activation are complex and not fully understood, comparative
studies of pathogenic SIV infection of macaques and nonpathogenic SIV infection of
natural hosts (e.g., sooty mangabeys [7] and African green monkeys [8]) point to
chronic activation of the type I interferon (IFN-I) pathway as a potential major contrib-
utor to the chronic immune activation that leads to AIDS progression.

The IFN-I pathway is a crucial component of the early innate immune response to
many virus infections. The term IFN-I covers an array of several different types of
interferon homologs in primates, all of which bind to the IFN receptor: 13 IFN-�
subtypes, in addition to IFN-�, IFN-�, IFN-�, and IFN-� (9). Many cell types, upon sensing
a conserved viral motif via innate immune receptors (e.g., IFI-16, cGAS, and RIG-I),
upregulate the expression of IFN-I, which in turn induces the expression of a cascade
of interferon-stimulated genes (ISGs), which include a large number of viral restriction
factors that have evolved to specifically target viral functions through binding to
specific molecular motifs (9). Human and rhesus macaque ISGs that can restrict HIV and
SIV replication include TRIM5�, APOBEC-3G, BST-2/tetherin, SAMHD1, and GAS genes
(9, 10). In addition to these well-characterized antiviral restriction factor genes, IFN-I
induces the expression of numerous ISGs whose functions are still unclear. Some of
these genes may be evolutionary relics that helped to limit past virus infections, while
others could potentially be responsible for modulating adaptive immune responses to
intracellular antigens.

In addition to its direct antiviral role, IFN-I is involved in the generation and
maintenance of antiviral cellular immune responses, as indicated by a series of mouse
studies in which the IFN-I pathway was knocked out (11–13). In addition, it has been
shown that plasmacytoid dendritic cells (pDCs), which are the main producers of IFN-I
in vivo, accumulate at sites where CD8� T cells are undergoing activation and therefore
help to create a microenvironment conducive to effective antiviral and antitumor
immunity (14). Nevertheless, the specific role of IFN-I in the generation of antiviral CD8
responses remains incompletely understood. Several recent studies employing strate-
gies to block IFN-I signaling in mouse models of chronic viral infection have provided
some clues. Blockade of IFN-I both prior to and during chronic infection with lympho-
cytic choriomeningitis virus (LCMV) clone 13 reduces immune activation and expression
of coinhibitory molecules (e.g., PD-1) (15, 16). These immunomodulatory changes
promoted the more effective clearance of virus-infected cells, thereby allowing the
CD8� T cell-mediated clearance of LCMV from these animals. Further studies have
shown that IFN-� is the primary IFN-I inducing the immune activation and downstream
inhibition of CD8 antiviral responses (17). More recently, two groups have extended
these findings to the model of HIV infection of humanized mice and showed that
blockade of IFN-I signaling reduces immune activation and expression of coinhibitory
markers on CD8� T cells (18, 19). The reinvigorated antiviral cellular immune response
reduced HIV viremia, as well as the levels of both total cell-associated HIV-DNA and
replication-competent virus.

One recent in vivo study of the effects of IFN-I blockade in SIV-infected rhesus
macaques has shown that IFN-I does indeed have a significant impact on the natural
history and replication of SIV (20). In that study, the authors utilized an IFN receptor
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antagonist to block signaling of all IFN-I subtypes just prior to SIV infection. They found
that blockade of IFN-I during the early stages of infection resulted in significantly higher
viral loads and more rapid CD4� T cell decline during the chronic phase of infection,
which was associated with faster progression to AIDS in the IFN-I-blockaded animals
despite a decrease in activation markers on lymphocytes. However, the authors were
unable to determine the contributions of the blockade of the various IFN-I subtypes on
the outcome of SIV infection, since the IFN antagonist blocks all IFN-I subtypes from
interactions with their receptors.

Despite the antiviral activities of IFN-I, several lines of evidence suggest that
persistently high levels of IFN-I production correlate with long-term immune activation
during chronic HIV/SIV infection (9). For example, downmodulation of IFN-I production
and ISG upregulation during the chronic phase of infection are key features of non-
pathogenic SIV infection of the natural hosts, sooty mangabeys and African green
monkeys (7, 8). Additionally, exogenous administration of IFN-� (as in treatment of
hepatitis C virus [HCV] infection) has an antiproliferative effect on lymphocytes (21),
which suggests that IFN-I may have a detrimental effect on T cell homeostasis in the
context of a chronic, persistent virus infection, like that of HIV (22).

In this study, we attempted to characterize the roles of the different IFN-I subtypes
during pathogenic SIV infection of rhesus macaques by blocking the effects of IFN-�
(but not other type I interferons) through administration, just prior to SIVmac239

infection, of an antibody that neutralizes 11 of the 13 subtypes of rhesus macaque
IFN-�. IFN-� blockade resulted in a trend toward higher viral loads in treated animals
at day 7 postinfection. Subsequently, 6 out of 12 IFN-�-blockaded animals developed
AIDS-related complications during the year of follow-up compared to only 1 of 6
control animals. While the treatment had little effect on the numbers of circulating
CD4� and CD8� T cells, treated animals exhibited lower levels of PD-1� Ki67� CD4� T
cells and PD-1� CD8� T cells and significantly lower levels of B cell proliferation during
the chronic phase of infection. Furthermore, plasma cytokine levels were reduced in
treated animals at 3 months postinfection. The lower levels of activated lymphocytes in
IFN-�-blockaded animals supports the hypothesis that IFN-� signaling contributes to
lymphocyte activation during SIV infection. Furthermore, blockade of IFN-� in chroni-
cally HIV-infected, ART-treated humans may help to prevent chronic immune activation
and the resultant inflammation-mediated morbidities associated with long-term treat-
ment of HIV infection.

RESULTS
Study design. The role of IFN-I in pathogenic HIV and SIV infections of humans and

RMs is not completely understood. While IFN-I is a primary mediator of innate antiviral
immunity, it is unclear to what extent the IFN-� subtypes versus IFN-� contribute to this
antiviral activity early during SIV infection. In order to characterize the balance between
IFN-� and IFN-� in both limiting viral replication and inducing chronic immune
activation, we used an antibody that neutralizes 11 of the 13 IFN-� subtypes (AGS-009;
Argos Therapeutics). Eighteen RMs were split into three treatment groups of six animals
each and administered AGS-009 at different concentrations (group A, 100 mg/kg of
body weight; group B, 10 mg/kg; group C, 0 mg/kg) the day prior to intravenous (i.v.)
infection with 3,000 50% tissue culture infective doses (TCID50) of SIVmac239 (Fig. 1).
During the year-long follow-up observation, blood, rectal biopsy specimens (RB), lymph
nodes (LN), and PAXGene tubes (Preanalytix) were taken at regular intervals for
immunophenotyping, viral load determination, and gene expression analysis. A second
dose of AGS-009 was administered to 3 animals from the treated groups (group A, 50
mg/kg; group B, 10 mg/kg) at day 182 postinfection.

IFN-� blockade was associated with a nonsignificant trend toward higher viral
loads in SIV-infected RMs. To assess the effect of IFN-� blockade on viral replication,
the viral load in the plasma of infected animals was measured at regular intervals after
treatment with AGS-009 and high-dose i.v. infection with SIVmac239 (Fig. 2A and B).
While differences in plasma viral loads between study groups were not statistically
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significant, we observed that plasma viremia at day 7 postinfection was on average 0.5
log unit higher in group A (i.e., receiving a high dose of AGS-009) than in controls (Fig.
2A). Setpoint viral loads were similar between groups for the duration of the study.
Interestingly, one animal (RYh13) controlled SIVmac239 infection to below 1,000 copies
per milliliter despite having been treated with 100 mg/kg AGS-009, suggesting that, in
some cases, IFN-� is not required to achieve early viral control (Fig. 2B).

In order to assess the impact of IFN-� blockade on the level of SIV-infected
circulating CD4� T cells, we longitudinally assessed (i.e., days 14, 28, 42, and 70
postinfection) the number of cell-associated SIV DNA copies relative to albumin in
CD4� T cells purified by magnetic bead separation from peripheral blood mononuclear
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FIG 1 IFN-� blockade study design. Three groups of six animals were given either a high dose (group A; 100 mg/kg), low dose (group B; 10 mg/kg), or
mock infusion (group C) of AGS-009 1 day prior to SIVmac239 i.v. infection. The animals were monitored for approximately 1 year. Peripheral blood, lymph
nodes, and rectal biopsy specimens were collected for virological and immunological analyses.
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cells. As shown in Fig. 2C, the level of cell-associated viral DNA declined between days
14 and 70 with similar rates in all three experimental groups. Taken together, these data
indicate that blockade of IFN-� with AGS-009 resulted in only a modest increase of virus
replication in SIV-infected RMs.

IFN-� blockade induced a trend toward decreased survival in SIV-infected RMs.
We next assessed in our cohort of RMs the effect of IFN-� blockade with AGS-009 on
the mortality associated with SIVmac239. We found that, in this study, AGS-009 treatment
of RMs resulted in a trend toward decreased survival after i.v. SIVmac239 infection. Three
out of six animals treated with 100 mg/kg AGS-009, three out of six RMs receiving 10
mg/kg AGS-009, and only one out of six control RMs were sacrificed prior to the study
endpoint due to signs of simian AIDS (sAIDS) (Fig. 2D), which included but were not
limited to extreme weight loss, intractable diarrhea, and lymphomas. In all, 50% of the
RMs that received the anti-IFN-� antibody developed sAIDS compared to 17% of
control animals (Fig. 2E). While this study was not sufficiently powerful to detect
statistical differences in survival between AGS-009-treated and untreated RMs, we
concluded that IFN-� blockade was associated with a trend toward decreased survival
in SIVmac239-infected RMs. Interestingly, survival was not associated with plasma viral
loads in any of the treatment groups (Fig. 2B, dashed lines).

IFN-� blockade had a mild impact on CD4� T cell counts but was associated
with significantly decreased levels of Ki67 and PD-1 on CD4� and CD8� T cells. In
order to assess the effect of IFN-� blockade on the size and phenotype of the T cell
compartment peripheral blood, LN, and RB, CD4� and CD8� T cells and their naive and
memory subsets were quantified by multiparametric flow cytometry. According to the
current classification (23), naive T cells were defined as CD95neg and CD28int, while T
cell memory subsets were characterized by expression of CCR7 and CD62L within the
CD95pos population, where central memory (TCM) cells expressed both CCR7 and
CD62L, transitional memory (TTM) cells expressed either CCR7 or CD62L, and effector
memory (TEM) cells expressed neither CCR7 nor CD62L.

While mean CD4 T cell counts were not statistically distinguishable among the three
groups of RMs included in this study, four out of six animals treated with a high dose
of AGS-009 experienced an early and irreversible decline in peripheral CD4� T cell
numbers that was associated with disease progression (Fig. 3A). This early decline in
CD4� T cell counts distinguished group A and to some extent group B from the control
group (group C), which experienced more variable and gradual declines in CD4 T cell
counts (Fig. 3A to C). These differences in the tempo of CD4� T cell decline did not
accompany significant differences in the CD8 T cell compartment or differences in any
CD4� or CD8� naive or memory T cell populations (data not shown).

To characterize the effect of IFN-� blockade on the levels of lymphocyte activation,
we used multiparametric flow cytometric analysis to measure longitudinally the ex-
pression of markers of T cell activation and proliferation, and changes in the levels of
these markers were assessed with mixed-effects regression analysis (Table 1). We found
that the levels of circulating Ki67� PD-1� CD4� T cells (Fig. 3D), Ki67� CD4� TEM (Fig.
3E), and Ki67� PD-1� CD4� TEM (Fig. 3F) declined more rapidly in group A than in
control animals in group C (see Table 1 for summary statistics). In addition, we found
that the CD8� T cell compartment of IFN-�-blockaded RMs exhibited a significant
decline in Ki67� and/or PD-1� CD8� T cells in all nonnaive memory compartments
compared to control animals (Fig. 3G to K). Specifically, Ki67� PD-1� cells among CD8�

T cells (Fig. 3G), CD8 TTM cells (Fig. 3H), and CD8� TEM cells (Fig. 3I), as well as PD-1�

cells among CD8� TCM cells (Fig. 3J) and CD8� TTM cells (Fig. 3K), declined more rapidly
in group A than in group C (Table 1 shows summary statistics). We did not observe
differences in CD4� or CD8� T cell levels or phenotypes in LN or RB (data not shown).
Taken together, these data suggest that IFN-� blockade induced a significant decline in
the level of T cell activation in SIV-infected RMs.

IFN-� blockade results in increased numbers of circulating NK cells and re-
duced proliferation of B cells. To assess the impact of IFN-� blockade on the levels of
circulating B cell and NK cells, we next measured the levels and activation states of
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CD20� B cells and CD8� CD16� NK cells by multiparametric flow cytometry at various
time points during the study. Perhaps surprisingly, given that NK cells are known to
become activated upon stimulation with IFN-I during viral infections, we found that the
numbers of NK cells in the RMs belonging to group A (i.e., IFN-� blockade with
high-dose AGS-009) increased significantly compared to the levels of NK cells in control
animals (Fig. 4A and Table 1). This difference in NK cell kinetics was not associated with
differences in NK cell activation, and no significant differences in NK cell dynamics or
activation were observed in LN and RB (data not shown). In contrast to NK cells, the
levels of circulating CD20� B cells in group A declined relative to the same cells in
control animals (Fig. 4B). The higher level of circulating B cells observed in control RMs
accompanied significantly higher levels of Ki67� B cells (Fig. 4C). Taken together, these
results suggest that IFN-I blockade has an antiproliferative effect on B cells. These
differences are unlikely to be due to redistribution of B cells to lymphoid tissues, as we
found no differences in the percentages of CD20� B cells in LN among the three groups
of RMs (data not shown).

IFN-� blockade is associated with a decline in plasma cytokine expression
during the early chronic phase of SIVmac239 infection. Since AGS-009 administration
had a profound impact on lymphocyte activation and proliferation by flow cytometry,
we hypothesized that the levels of proinflammatory cytokines would be significantly
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impacted, as well. We measured plasma cytokine levels using a multiplex cytometric
bead array (Fig. 5). We found a significant reduction between the high-dose group and
controls at day 91 in both interleukin 12 (IL-12)/23(p40) (Fig. 5A) and soluble CD40L
(Fig. 5B) (Kruskal-Wallis; P � 0.05). Additionally, there were similar nonsignificant trends
in a number of other cytokines, including IL-4 (Fig. 5C), TNF-� (Fig. 5D), IL-17A (Fig. 5G),
IL-1� (Fig. 5H), MIP-1� (Fig. 5I), MIP-1� (Fig. 5J), IL-10 (Fig. 5K), and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (Fig. 5L). Thus, IFN-� blockade resulted
in the impairment of downstream proinflammatory cytokine production despite the
lack of a measurable effect on peripheral blood mononuclear cell (PBMC) ISG levels.

In order to more directly ascertain the consequences of the declines in lymphocyte
activation and proliferation due to IFN-� blockade, we assessed the levels of down-
stream antiviral effector molecules in the first month of SIVmac239 infection. First, we
assessed ISG expression via gene expression analysis of whole-blood total RNA hybrid-
ized to human Illumina gene chips. We chose to assess the expression levels of a panel
of ISGs shown by Sandler et al. to be downregulated by IFN-I blockade (20). Despite a
clear effect of AGS-009 administration on lymphocyte levels in our experiment, we did
not see downregulation of this panel of ISGs during the first 4 weeks after AGS-009
administration and SIVmac239 infection (Fig. 6).

DISCUSSION

The effects of IFN-I on the pathogenesis of HIV and SIV infections have long been
debated (9). The inability of IFN-I to uniformly prevent HIV infection combined with the
observation that HIV pathogenesis is associated with chronic high levels of IFN-I and

TABLE 1 Mixed-model regression analysis of longitudinal trajectories of multiple
lymphocyte populations reveals IFN-� blockade-induced changes

Cell population

Treatment (mg/kg
AGS-009 by day
postinfection)

Slope relative
to control P value Significancea

% Ki67�PD-1� CD4� T cells 10 �0.002971 0.638
100 �0.015282 0.0204 *

% Ki67� CD4� TEM cells 10 0.026 0.2298
100 �0.06343 0.005 **

% Ki67�PD-1� CD4� TEM cells 10 0.02494 0.1446
100 �0.041388 0.0201 *

% Ki67�PD-1� CD8� T cells 10 0.004006 0.6932
100 �0.027423 0.0097 **

% PD-1� CD8� TCM cells 10 �0.026061 �0.0001 ****
100 �0.034942 �0.0001 ****

% PD-1� CD8� TTM cells 10 �0.02862 0.0046 **
100 �0.04376 �0.0001 ****

% Ki67�PD-1� CD8� TTM cells 10 0.001089 0.9005
100 �0.020232 0.0256 *

% Ki67�PD-1� CD8� TEM cells 10 0.016039 0.2045
100 �0.029861 0.0232 *

No. of NK cells per cubic
milliliter blood

10 �0.33248 0.1589
100 0.8025 0.0012 **

No. of B cells per cubic
milliliter blood

10 �1.0963 0.2307
100 �2.3118 0.0155 *

% Ki67� B cells 10 �0.020671 0.0217 *
100 �0.022517 0.0162 *

a*, P � 0.05; **, P � 0.005; ****, P � 0.0001.
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ISG expression helped fuel the idea that the antiviral effect of IFN-I was of less
importance than the long-term proinflammatory effects of IFN-I that may contribute to
the HIV-associated generalized immune activation and related immune decline (24).
Recently, however, several studies have shown that IFN-I and downstream ISG expres-
sion may also have a beneficial role in preventing virus acquisition (20, 25). Of critical
importance to the study presented here is the observation that complete IFN-I block-
ade via a reagent that acts as an IFN-I receptor antagonist and thus blocks all IFN-I
signaling in rhesus macaques at the time of SIV infection results in significantly more
rapid progression to AIDS during the early chronic phase of infection (20). IFN-I
blockade was also associated with higher chronic-phase viral loads and an inability of
the CD4� T cell compartment to at least partially recover its numbers from the effects
of the acute-phase virus-mediated CD4� T cell depletion (20).

In the current study, we attempted to identify the effects of IFN-� on SIV patho-
genesis by selectively blocking the interaction of IFN-� with the IFN-I receptor using
an antibody (AGS-009) that binds to 11 of the 13 rhesus macaque IFN-� subtypes.
Although this study was not powerful enough to see differences in survival following
IFN-� blockade, we saw a trend toward faster progression to AIDS in the RMs that
underwent IFN-�-blockade (6/12) than in the control animals (1/6). This higher rate of
disease progression was accompanied by an average of 0.5-log-unit higher viral load at
day 7 postinfection in IFN-�-blockaded animals than in control animals (Fig. 2A), and an
earlier and more rapid decline of CD4� T cells in 4/6 animals receiving the high dose
of AGS-009 (Fig. 2F). While these observations were not statistically significant, they
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collectively suggest that blockade of IFN-� at the time of infection somewhat enhanced
the ability of SIV to replicate and kill CD4� T cells during the early stages of infection.
In contrast to the results of Sandler et al. (20), we did not observe long-term differences
in viral loads or CD4� T cell counts between treated and control groups.

While this experiment did not show as dramatic an effect of IFN-� blockade as that
observed by Sandler et al. (20), our study is unique in that we observed a significant
reduction of the levels of PD-1� and/or Ki67� CD4� and CD8� T cell subsets, a
significant reduction of proliferating peripheral CD20� B cells, and a significant reduc-
tion in some proinflammatory cytokines. Taken together, these observations suggest
that IFN-� blockade lowers the prevailing levels of lymphocyte activation and prolif-
eration. Two non-mutually exclusive explanations could account for the IFN-�
blockade-induced reduction in Ki67� PD-1� CD4� T cells. One possibility is that IFN-�
blockade had a relatively minor impact on virus proliferation and infection of target
cells (a subset that preferentially includes Ki67� PD-1� CD4� T cells), and the resultant
increased virus-mediated killing of these cells could be responsible for the observed
lower levels of the cells during the chronic phase of infection. On the other hand, the
observed decrease in proliferating PD-1� CD4� T cells could be due to the impact of
reduced IFN-�-mediated signaling in SIV-infected RMs undergoing IFN-� blockade. The
latter possibility is supported by the concomitant observation that a number of CD8�

T cell subsets, which are not susceptible to virus-mediated killing, exhibit the same
reduction in Ki67 and PD-1 levels. Similarly, the IFN-� blockade-associated increase of
NK cells and decrease in proliferating peripheral CD20� B cells may also support this
hypothesis. Taking the data together, it is possible that both immunomodulatory and
viral cytopathic effects have a significant impact on the dynamics of lymphocyte
populations in rhesus macaques undergoing IFN-� blockade during acute SIV infection.
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The difference in the magnitudes of virological effects between IFN-� blockade
(as performed in this study) and complete IFN-I blockade (20) can be instructive.
One possible explanation for this difference is that IFN-� is only one component of
a larger interferon response following SIV infection and that other interferons, like
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IFN-�, IFN-�, and IFN-�, may play important roles in inducing antiviral gene
expression in vivo. Indeed, it has been shown that the IFN-� subtypes induced by
HIV infection (�1, �2, and �5) in vitro do not significantly inhibit virus replication
(26). Furthermore, a recent in vitro study of IFN-mediated effects on HIV replication
has shown that IFN-� is a more potent inhibitor of HIV replication than IFN-�2 (27),
the subtype of IFN used to treat HCV infection. Although rhesus macaque studies
assessing the abilities of IFN-�2 (20) and IFN-� (25) to prevent SIV mucosal infection
suggest that IFN-� provides more potent protection, it is difficult to compare these
studies due to the confounding effects of differing IFN administration regimens and
SIV infection routes and the lack of understanding of the antiviral contributions of
nonclassical IFNs in these experiments. Nevertheless, we are unable to rule out the
more trivial possibility that the AGS-009 reagent we used is not as effective at
mediating a full IFN-� blockade as the receptor-targeted molecule used by Sandler
et al. (20). However, we should note that AGS-009 was shown in humans diagnosed
with systemic lupus erythematosus to broadly reduce aberrant ISG expression in a
dose-dependent fashion with a maximum dose of 30 mg/kg (data not shown). In
our study, we used a dose almost three times higher than that in 6 RMS and were
able to observe modest changes in virus replication and survival, as well as
significant decreases in the levels of Ki67 and PD-1 on CD8� and CD4� T cells.
However, we did not observe differences in ISG expression in PBMCs, possibly due
to the large and robust ISG induction associated with the contemporaneous SIV
infection (Fig. 6).

Two other considerations that are pertinent to this study suggest future avenues
of inquiry for type I IFN blockade experiments. First, we did not consider the effects
of IFN-� blockade in the context of ART-mediated suppression of virus replication.
Given that long-term IFN-I production has been hypothesized to contribute to the
chronic immune activation that characterizes HIV/SIV-induced AIDS progression,
even in HIV-infected individuals with ART-suppressed viremia, it will be important
to elucidate the impact of IFN-� blockade on activation and virus latency in the
context of ART-mediated virologic suppression. Second, it will be important to
understand the impact of long-term IFN-� blockade on SIV infection-mediated
immune activation and viral latency. Here, we gave only a single dose of AGS-009
just prior to SIV infection and observed modest effects on the distribution of
activated lymphocyte subsets. It is unknown whether a long-term IFN-� blockade
strategy would more effectively decrease lymphocyte activation without inducing
SIV resistance to the antiviral effects of the ISG program. Furthermore, how IFN-�
blockade affects the balance between the immune-activating effects of IFN and the
antiviral effects of this critical innate immune molecule remains unclear.

The goal of this study was to determine the contribution of the early IFN-� response
to the outcome of SIV infection. The results presented here support the idea that IFN-�
only partially contributes to the early control of SIV infection and that other IFN-Is may
be important to control acute SIV replication and thus reduce the tempo of disease
progression to AIDS. However, our study suggests that IFN-� mediates significant
increases in the levels of lymphocyte proliferation and activation and that blockade of
IFN-� early during SIV infection significantly reduces these levels. The relative balance
between these two conflicting effects of IFN-I on the outcome of HIV/SIV infection
remains an open question. Future experiments directly comparing the in vivo effects of
IFN-� and IFN-� (and other IFN-I) blockades during different stages (acute versus
chronic) and under different conditions (e.g., under full ART suppression) of SIV
infection of rhesus macaques may elucidate the innate pathways that either are most
critical for control of virus replication or mediate its anti-inflammatory effect. Under-
standing these dual roles of IFN in HIV/SIV infection could provide clues for the
development of strategies to reduce inflammation in chronically HIV-infected humans
on long-term ART.
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MATERIALS AND METHODS
Ethics statement. These studies were carried out in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were
approved by the Emory University Institutional Animal Care and Use Committee (IACUC) (AWA no.
A3180-01). All animals were anesthetized before the performance of any procedure, and proper steps
were taken to ensure the welfare and to minimize the suffering of all the animals in the studies.

Animals, AGS-009, and study design. Eighteen MamuB*08- and MamuB*17-negative rhesus ma-
caques of Indian origin were selected for this study. Baseline immunophenotyping was performed
approximately 35 days prior to intravenous infection with 3,000 TCID50 SIVmac239 (kindly provided by
Francois Villinger). One day prior to infection, two groups of six animals were administered either 100
mg/kg or 10 mg/kg AGS-009 via saline infusion. Three animals from each treated group were then
subjected to another dose of AGS-009 6 months after SIV infection. During the year-long follow-up
period, PBMCs, LN biopsy specimens, and RB were collected longitudinally at various times before and
after SIV infection for virologic and immunologic analysis.

AGS-009 is a humanized IgG4 monoclonal antibody (MAb) developed by Argos Therapeutics to block
IFN signaling for the treatment of systemic lupus erythematosus. In preclinical studies, Argos demon-
strated through surface plasmon resonance that AGS-009 has an affinity comparable to those of human
and macaque IFN-�s (data not shown). Furthermore, AGS-009 neutralized 11 of 13 cynomolgus macaque
IFN-�s (cyIFNA2, cyIFNA6, cyIFNA14, cyIFNA16, cyIFNA17, cyIFNA21, cyIFNA41, cyIFNA42, cyIFNA43,
cyIFNA44, and cyIFNA45, but not cyIFNA1 and cyIFNA8) subtypes in a reporter gene assay (data not
shown).

Plasma RNA and cell-associated DNA viral quantification. Plasma viral quantification was per-
formed as described previously (28). For the quantification of cell-associated viral DNA in CD4�

peripheral blood cells, frozen PBMCs were thawed in a 37°C water bath and immediately washed in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS),
L-glutamine, and penicillin-streptomycin. CD4� peripheral blood cells were then separated by positive
selection using CD4 microbeads for nonhuman primates (Miltenyi Biotec) on a Miltenyi Biotec LD column
according to the manufacturer’s specifications. The CD4� peripheral blood cells were counted and
extracted using a blood DNA minikit (Qiagen). Quantitative real-time PCR (qPCR) was then performed on
the extracted cell-associated DNA, as previously described (29). Viral genome copy numbers were
normalized to the number of copies of albumin.

Immunophenotyping by flow cytometry. Blood was collected in EDTA tubes. Plasma was obtained
by centrifugation. PBMCs were separated by density gradient centrifugation using 90% lymphocyte
separation medium from Lonza. LN biopsy specimens were cut in half, and one half was put in 4%
paraformaldehyde and then embedded in paraffin. LN-derived cells were obtained by grinding the other
half over a 70-	m cell strainer. RB were digested in 0.75 mg/ml collagenase (Sigma-Aldrich) and 0.15 	l
DNase in 10% fetal calf serum (FCS), 1% penicillin-streptomycin, and 1% L-glutamine at 37°C with gentle
shaking. After 2 h, tissues were mechanically separated using a plastic cannula and run over a 70-	m
filter. Multicolor flow cytometric analysis was performed using predetermined optimal concentrations of
the following fluorescently conjugated MAbs: anti-Ki67-fluorescein isothiocyanate (FITC) (B56), anti-
CD62L-phycoerythrin (PE) (SK11), anti-CD123-PE (7G3), anti-CD95-PE-Cy5 (DX2), anti-HLA-DR-PE-Cy5
(L243), anti-CCR7-PE-Cy7 (3D12), anti-CD14-PE-Cy7 (M5E2), anti-CD11c-allophycocyanin (APC) (S-HCL-3),
anti-CD3-Alexa 700 (SP34-2), anti-CD69-APC-Cy7 (FN50), and anti-CD20-APC-H7 (L27) from BD Biosci-
ences; anti-CD28-ECD (CD28.2) and anti-CD16-ECD (3G8) from Beckman Coulter; anti-CD4-Pacific Blue
(OKT4) from Biolegend; anti-CD8-QDot705 (3B5) and the Aqua Blue LIVE/DEAD Discriminator from
Invitrogen; and anti-PD-1–APC (J105) from eBioscience. Flow cytometric acquisition was performed on an
LSRII flow cytometer driven by the FACSDiva software package (BD Biosciences). Analysis of the acquired
data was performed using FlowJo version 7.6.5 software (TreeStar). Any subpopulation whose parent
population contained less than 100 events was excluded from analysis.

Interferon-stimulated-gene expression analyses by oligonucleotide microarray. Whole blood
for RNA gene expression analysis was collected into PAXgene tubes (Preanalytix) and frozen at �80°C
until further processing, as previously described (30, 31). Total RNA was extracted using PAXgene blood
RNA kits (Qiagen) according to the manufacturer’s instructions. Globin was removed using a Globinclear
kit (Ambion), and the quantity and quality of the RNA were confirmed using a NanoDrop 2000c (Thermo
Fisher Scientific) and a Bioanalyzer 2100 (Agilent). Samples (50 ng) were amplified using Illumina
TotalPrep RNA amplification kits (Ambion). The microarray analysis was conducted using 750 ng of
biotinylated cRNA hybridized to HumanHT-12_V4 BeadChips (Illumina) at 58°C for 20 h. The arrays were
scanned using Illumina’s iScan system. Transcript expression values were estimated using quantile
normalization. Log2-transformed data were used for subsequent analyses. Normalization of sample batch
effects was achieved using ComBat with the default settings (32). Nineteen ISGs were selected for
expression analyses based on significantly downregulated genes from other IFN blockade experiments
(20).

Plasma cytokine measurement by cytometric bead array. Plasma cytokine levels were measured
on a Bioplex 200 system (Bio-Rad) using the 23-plex Milliplex nonhuman primate cytokine magnetic bead
kit (Millipore) following the manufacturer’s instructions.

Statistical analysis. Most statistical analyses were performed in GraphPad Prism 6. Mixed-effects
regression analysis of immunophenotype time series data were performed in R. The slopes of each IFN-�
blockade group were compared with that of the sham blockade group to determine the statistical
significance of the impact of treatment on the immunophenotype.
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Accession number(s). Expression data are available through the National Center for Biotechnology
Information and the Gene Expression Omnibus (GEO) database under accession number GSE110617.
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