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ABSTRACT Viruses often encompass overlapping reading frames and unconven-
tional translation mechanisms in order to maximize the output from a minimum ge-
nome and to orchestrate their timely gene expression. Hepatitis C virus (HCV) pos-
sesses such an unconventional open reading frame (ORF) within the core-coding
region, encoding an additional protein, initially designated ARFP, F, or core+1. Two
predominant isoforms of core+1/ARFP have been reported, core+1/L, initiating from
codon 26, and core+1/S, initiating from codons 85/87 of the polyprotein coding re-
gion. The biological significance of core+1/ARFP expression remains elusive. The
aim of the present study was to gain insight into the functional and pathological
properties of core+1/ARFP through its interaction with the host cell, combining in
vitro and in vivo approaches. Our data provide strong evidence that the core+1/
ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing ei-
ther core+1/S or core+1/L isoforms and in transgenic liver disease mouse models
expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/
ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the
cell cycle. In addition, core+1/S was found to enhance liver regeneration and onco-
genesis in transgenic mice. The induction of the cell cycle together with increased
mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/
ARFP proteins argue for an oncogenic potential of these proteins and an important
role in HCV-associated pathogenesis.

IMPORTANCE This study sheds light on the biological importance of a unique HCV
protein. We show here that core+1/ARFP of HCV-1a interacts with the host machin-
ery, leading to acceleration of the cell cycle and enhancement of liver carcinogene-
sis. This pathological mechanism(s) may complement the action of other viral pro-
teins with oncogenic properties, leading to the development of hepatocellular
carcinoma. In addition, given that immunological responses to core+1/ARFP have
been correlated with liver disease severity in chronic HCV patients, we expect that
the present work will assist in clarifying the pathophysiological relevance of this pro-
tein as a biomarker of disease progression.

KEYWORDS cyclin D1, HCV, Rb, cell cycle, core+1/ARFP, hepatocellular carcinoma,
oncogenes

epatocellular carcinoma (HCC) is one of the most common human cancers, ac-
counting for more than 700,000 deaths per year, while infection with hepatitis B
virus (HBV) or hepatitis C virus (HCV) remains the major cause of HCC worldwide (1, 2).
HCV is associated mostly with chronic hepatitis, which often progresses to severe liver
diseases, including fibrosis, cirrhosis, and HCC (3). Although no prophylactic vaccine
exists to prevent HCV infection, interferon-free antiviral therapies based on direct-
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acting antiviral agents (DAAs) have shown significant effectiveness in all HCV geno-
types (4, 5). However, access to such treatment is limited due to its high cost. Moreover,
the risk of HCC development remains increased after virus elimination for patients who
had liver cirrhosis at the time of treatment (6). Thus, antiviral treatment may not be
sufficient to combat HCV-associated HCC, especially when diagnosed in advanced
stages, suggesting the need for alternative anticancer approaches. In this regard,
understanding the molecular mechanisms underlying HCV-induced HCC remains crit-
ical.

HCV is a member of the Flaviviridae family belonging to the Hepacivirus genus that
replicates exclusively in the cytoplasm (7). It is a small enveloped virus with a 9.6-kb
single-stranded, positive-sense RNA genome which encodes a polyprotein precursor of
approximately 3,000 amino acids. Host and viral proteases process the immature
polyprotein into at least 10 mature structural and nonstructural proteins (C, E1, E2, p7,
NS2, NS3, NS4A, NS4B, NS5A, and NS5B) (8-10). Notably, HCV is the only member of the
Flaviviridae family that is linked to oncogenesis (7, 11).

Several studies from independent laboratories, including our own, have shown that
an alternative open reading frame (ORF) overlapping the core coding region in the +1
frame of genotype 1a synthesizes another viral protein, named ARFP (12), F (13), or
core+1 (14) protein. In HCV isolates that contain 10 consecutive adenosine residues at
codons 8 to 11 of the core coding region, the core+1/ARFP protein was shown to be
synthesized by a ribosomal frameshift mechanism within the A-rich area (13, 14).
However, in the absence of this repetitive sequence (as it applies for the majority of
HCV isolates of genotype 1), no frameshift is detected and the prevailing isoforms of
core+1/ARFP in transfected cells are generated by internal translation initiation at
codons 85/87 (core+1/S) (15) or codon 26 (core+I/L) (16). Importantly, recent work
from our laboratory verified the expression of the two core+1/ARFP isoforms in the
context of replicons derived from the genotype 2a HCV isolate JFH1 and revealed
differences in the expression kinetics of the core+1/ARFP isoforms during infection
(17). Importantly, the detection of core+ 1/ARFP-specific antibodies (18-25) and T-cell
responses in HCV-infected patients (26-29) reported by several laboratories worldwide
suggest that this protein is also expressed in vivo. However, core+1/ARFP is not
required for JFH1 HCV (genotype 2a) replication in cultured cells (30) and for HCV
genotype 1a replication in vivo in chimpanzees (31). To date, the biological significance
of this protein remains elusive.

In the present report, we provide evidence that the core+1/ARFP protein promotes
cell proliferation both in the context of Huh7-based cell lines expressing either
core+1/S or core+1/L isoforms of HCV-Ta and in transgenic mice expressing core+1/S
protein in the liver. Our data indicate that both isoforms of core+1/ARFP enhance cell
proliferation, increase the levels of cyclin D1 and Rb phosphorylation, and induce the
expression of several oncogenes. These results lend support to the participation of
core+1/ARFP in the oncogenic potential of HCV.

RESULTS

core+1/ARFP induces cell proliferation. Previous studies using the HCV genotype
2a JFH1/Huh7.5 infectious system or JFH1-infected mice with humanized livers have
shown that nonsense mutations in core+1/ARFP do not affect JFH1 replication (30, 31).
In order to gain insight into the biological function of HCV core+1/ARFP, we estab-
lished Huh7.5 cell lines that constitutively express core+1/L or core+1/S isoforms of
HCV genotype 1a. A myc tag was added for the efficient detection of the proteins.
Stable expression of core+1/L or core+1/S was achieved using the pWPI-GUN lentiviral
vector (Fig. 1A and B). The expression of core+1/L and core+1/S proteins in the newly
generated cell lines was confirmed by immunofluorescence using anti-myc antibody
(Fig. 1C and D). Detection by Western blotting using myc tag and a homemade
core+1/ARFP antibody verified the expression of core+1/L, while core+1/S was de-
tected only at the mRNA level, possibly due to increased instability of the protein (32).
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FIG 1 Construction of Huh-7-based cell lines stably expressing core+1/S or core+1/L protein. (A) A schematic representation
of the parental HCV-1a genome is shown at the top. The 5 and 3’ nontranslated regions (NTRs) are indicated with thick black
lines. The region encoding core protein and core+1/L and core+1/S constructs are drawn below. (B) A schematic represen-
tation of the myc-tagged core+1/L and core+1/S constructs and transcription features that are present in Huh7-based cell
lines. Control construct was the empty pWPI-GUN vector. (C) Detection of core+1/L protein by Western blotting using myc tag
and a homemade core+1 antibody (HCV-1a strain). (D) Detection of core+1/L and core+1/S protein by immunofluorescence
using myc tag antibody. TO-PRO3 is used to stain nucleic acid.

Passaging the newly established cell lines as either individual colonies or the initial
pool, we observed that Huh7.5c¢+1/L and Huh7.5c+1/S cells proliferated more rapidly
than control cells. To confirm our observation, we initially performed MTT [3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] and colony-forming assays
(Fig. 2A and B). Cell lines that expressed core+1/L or core+1/S protein demonstrated
enhanced proliferation compared to the control. In addition, both Huh7.5¢c+1/L and
Huh7.5¢+1/S cells generated more colonies than control cells that differed in size and
shape.

To investigate further the hypothesis that core+1/ARFP expression induces the
proliferation of hepatocytes, we studied the effect of core+1/ARFP isoforms on the
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FIG 2 core+1/ARFP induces cell proliferation. (A) MTT assay. Huh7.5c+1/L, Huh7.5c+1/S, and control
cells were seeded in triplicates into 96-well plates the previous day, and 0, 12, 24, 36, 48 h later cell
proliferation was evaluated by MTT assay. Cell pools were used. The results are presented as the
means =+ standard deviations (SD) from three separate experiments and are expressed as fold difference
relative to the 0-h value for each cell line. (B) Colony formation assay of Huh7.5c+1/L, Huh7.5c+1/S, and
control cells. Both Huh7.5c+1/L and Huh7.5/S cells generated more colonies than control cells that
differed in size and shape (left and right, respectively). (C) Cell cycle analysis of Huh7.5c+1/L,

Huh7.5¢+1/S, and control cells. Propidium iodide staining was performed and samples were analyzed by
flow cytometry at 0, 8, 12, and 16 h postsynchronization with hydroxyurea.
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progression of the cell cycle by flow cytometry. Huh7.5c+1/L, Huh7.5¢+1/S, and
control cells were synchronized to the same extent with hydroxyurea (HU) at G,/S
phase, and the cell cycle was analyzed using propidium iodide (Pl) at 0, 8, 16, and 24
h after release.

At 8 h postsynchronization, Huh7.5¢+1/S cells showed increased S-phase activity
compared to the control, while Huh7.5¢c+1/L cells showed a less marked increase of the
S phase (Fig. 2Q). At 16 h after release, almost all Huh7.5c+1/S and Huh7.5¢+1/L cells
had entered the G,/M phase, while control cells were still accumulating in the S phase
(Fig. 2C). These results suggest that the expression of core+1/L or core+1/S affects cell
cycle progression. The results were also recapitulated in Huh-7-based cell lines stably
expressing separately the core+1 isoforms (data not shown).
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FIG 3 core+1/ARFP induces the expression of cyclin D1 and pRB. (A) Expression of cell cycle regulatory
proteins was determined by Western blotting. Cells were synchronized with hydroxyurea, and cell lysates
were generated at 0 h and 16 h after the synchronization. (B) Expression of pRB was determined by
Western blotting. Vp, V1, and V2 lanes are independent single colonies of Huh7.5 vector cells. Lp, L1, and
L2 lanes are independent colonies of Huh7.5c+1/L cells, and Sp, S1, and S2 lanes are independent
colonies of Huh7.5c+1/S cells. (C) mRNAs from Huh7.5 vector, Huh7.5 c+1/L, and Huh7.5 c+1/S cells
were analyzed by qPCR for ccnd1, hras, vavi, c-jun, c-fos, msh3, pten, and xiap. The results are presented
as fold difference relative to control cells and as the means * SD from three independent experiments.

core+1/ARFP enhances cyclin D1 expression and induces phosphorylation of
Rb protein. In order to elucidate the role of core+1/ARFP expression on cell cycle
progression, we examined the expression levels of G,/S cell cycle checkpoint key
proteins, such as cyclin D1, cyclin E, CDK2, CDK4, p21, p18, and pRb. Huh7.5c+1/L and
Huh7.5c+1/S cells were synchronized at G,/S phase with 2 mM HU for 24 h and then
were lysed at 0 h and 16 h after the treatment. Immediately after release (0 h) the levels
of cyclin D1 were substantially increased in Huh7.5c+1/S cells compared to those in
control cells, indicating an advantage in G,/S transition (Fig. 3A). On the contrary, cyclin
D1 levels were only slightly increased in the Huh7.5¢+1/L cells (Fig. 3A). Cyclin E, which
is also associated with G,/S transition, did not present significant alterations in the
presence of core+1/ARFP proteins. In terms of the respective kinases, CDK4 levels
remained constant, whereas CDK2 expression was slightly affected in both Huh7.5c+1/L
and Huh7.5c+1/S cells. Notably, p21, the regulatory protein of cyclin D1, demonstrated
a concomitant cyclin D1 increase in the Huh7.5c+1/S cell line, whereas p18 expression
was similar in all cell lines (Fig. 3A). At 16 h after release, cyclin D1 expression was
remarkably induced in core+1/L cells, while its levels returned to basal levels in
core+1/S cells. Cyclin E remained relatively constant, as previously found, while CDK2
expression was augmented in Huh7.5c+1/S cells. At this time point p18, p21, and CDK4
remain stable (Fig. 3A). These results indicate a role for core+1/ARFP in modulating the
cyclin D1 pathway of the G,/S transition. To further investigate the effect of core+1/
ARFP on cyclin D1, we performed quantitative PCR (qPCR) analysis of ccnd? mRNA that
demonstrated increased abundance in Huh7.5¢+1/L and Huh7.5¢+1/S cell lines (Fig.
3B). It should be mentioned that the results were consistent in both the initial pool and
the selected colonies.

Finally, we studied the phosphorylation status of retinoblastoma protein (Rb), a key
molecule of cell cycle progression that is initially phosphorylated by cyclin D1/CDK4/
CDK6 complex. Western blot data from pooled Huh7.5¢+1/L and Huh7.5¢c+1/S and
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FIG 4 core+1/Short affects liver homeostasis and enhances chemically induced oncogenesis. (A) Liver-specific expression of core+1/Short
in TTRc+1 mice is validated through qPCR analysis of mRNAs from various animal tissues and Western blot analysis of liver tissue lysate
(left and right, respectively). (B) TNF-dependent acute liver failure model using lipopolysaccharide (LPS)-b-galactosamine (DGAL). n = 15
TTRc+1/S mice and n = 9 control mice. (C) Bromodeoxyuridine (BrdU) staining after partial hepatectomy. Hepatocyte proliferation was
determined by BrdU staining 40 h posthepatectomy. n = 4 TTRc+1/S mice and n = 4 control mice. (D) Model of DEN-TCPOBOP-induced
carcinogenesis. Eight months after DEN administration, cancer foci had developed in both TTRcore+1/S and littermate control mice. n =
10 TTRc+1/S mice and n = 8 control mice. *, P < 0.05 versus control.

respective isolated clones show that pRb levels are remarkably increased in the
presence of core+1/ARFP isoforms, in accordance with the cell cycle progression that
we described above (Fig. 3C).

core+1/ARFP induces the expression of oncogenes hras, vav1, c-jun, and c-fos.
As cell cycle acceleration is tightly associated with oncogenesis and cancer progression,
we aimed to analyze the expression of selected oncogenes associated with cell
proliferation and HCC, such as hras (33, 34), vav1 (35, 36), c-jun, c-fos, msh3 (37), pten
(38), and xiap (39). In order to investigate possible alterations in the expression of the
above-described genes by core+1, we performed gPCR analysis on total mRNA from
Huh7.5¢+1/L and Huh7.5c+1/S cells in either the initial pool or the individual clones
(Fig. 3B). Both core+1/ARFP isoforms induced the mRNA expression of hras, vavi, c-jun,
and c-fos (Fig. 3C). The mRNA levels of msh3, pten, and xiap remained unaffected.

core+1/S affects liver homeostasis. In order to assess the function of core+1/
ARFP in the context of liver physiology, we generated transgenic mice that express
core+1/S under the control of the transthyretin (TTR) promoter. The TTR promoter
drives expression in a liver-specific manner. A myc tag was used for the detection of
protein synthesis. Transgenic mice were examined by Western blotting and gPCR for
the liver-specific expression of the transgene (Fig. 4A). As core+1/ARFP was reported to
be an intrinsically disordered protein (40), which may result in cell stress, we assessed
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FIG 5 ccnd1 and c-fos expression is induced in core+1/S hepatectomized mice. mRNAs from core+1/S
hepatectomized mice were analyzed by qPCR for hras, vavi1, and c-fos. The results are presented as fold
difference relative to control cells and represent the means * SD from three independent experiments.
n = 11 TTRc+1/S mice and n = 10 control mice. *, P < 0.05 versus control.

the potential contribution of core+1/S to hepatocyte death. We applied an established
tumor necrosis factor (TNF)-dependent acute liver failure model using lipopolysaccha-
ride (LPS)-p-galactosamine (DGAL) in 15 TTRc+1/S and 9 wild-type littermate mice (41).
Kaplan-Meier survival curves after administration of LPS-DGAL showed that core+1/S
did not affect death from acute liver failure (Fig. 4B). In order to assess the effect of
core+1/ARFP on liver regeneration, we applied a 2/3 partial hepatectomy (PH) model
in 4 TTRc+1/S and 4 wild-type mice. During partial hepatectomy, hepatocytes are
forced to enter G, phase from steady-state G,. Incorporation of bromodeoxyuridine
(BrdU) during recovery in cycling nuclei showed that the liver of TTRcore+1/S mice had
31% (P < 0.05) more BrDU™ nuclei than their wild-type littermates (Fig. 4C). In order to
investigate the possible alterations in mRNA expression of hras, vavi, c-fos, and ccdnl
after liver hepatectomy, we performed gPCR analysis. Hepatectomized mice expressing
core+1/S have accelerated expression of ccndl and c-fos genes (Fig. 5). These data
support our in vitro findings that strongly suggest that core+1/ARFP enhances cell
proliferation.

core+1/S enhances chemically induced oncogenesis. While cell culture-based
assays provide a mechanistic insight into the function of core+1/ARFP, assessment of
its role in the physiology of the liver required an in vivo model. To assess core+1/S
protein’s effect on oncogenesis, TTRcore+1/S mice up to the age of 1.5 years were
examined for spontaneous carcinogenesis (10 TTRc+1/S and 8 wild-type mice were
used). No cancerous foci were observed either macroscopically or histologically. In
order to assess the potential additive effect of core+1/S in the development of
hepatocellular carcinoma, we applied the inducible model of diethyl nitrosamine
(DEN)-3,3’,5,5'-tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP)-induced carcinogen-
esis. The model involves a single dose of the DEN mutagen and bimonthly continuous
administration of TCPOBOP. Eight months after DEN administration, cancer foci had
developed in both TTRcore+1/S and littermate control mice (Fig. 4D). TTRcore+1/S
mice developed nearly twice as many tumor foci, while mean focus diameter or tumor
grade did not vary between the groups. Thus, core+1/S expression enhanced onco-
genesis in the presence of a de facto carcinogen.

DISCUSSION

Many mammalian positive-sense RNA viruses share distinct ORF features in their
genomes. The presence of such ORFs raises a number of intriguing questions regarding
their functional significance during infection, as often they are not directly involved in
virus replication but may contribute to virus-cell-organism interaction (42-44).

The HCV core+1/ARF protein is encoded by an unconventional small ORF overlap-
ping the core coding region, and it is conserved among the different HCV genotypes
(18). Although core+1/ARFP expression and anti-core+1/ARFP humoral or cellular
immune responses in HCV-infected individuals have been well characterized, the
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biological role of the protein has not been established yet. core+1/ARFP expression is
dispensable for virus infection in the established JFH-1/Huh7.5 infectious system and
for HCV genotype 1a replication in vivo in chimpanzees (31), a finding that has hindered
studies related to core+1/ARFP (30, 31). However, the JFH1 strain is a unique HCV-2a
clinical isolate with robust replication capacity in Huh7.5 cells and low pathogenicity in
chimpanzees, and it demonstrates high sequence divergence from other 2a genotypes
(31, 45).

In the present study, we assessed the effect of core+1/ARFP from HCV genotype 1a
in hepatocyte homeostasis using stable cell lines and a transgenic mouse model.
Huh-7.5 cell lines expressing either core+1/L or core+1/S showed increased prolifer-
ation activity. Huh7.5¢+1/S and Huh7.5c+1/L showed enhanced cell cycle progression
but with different kinetics, as the progression in Huh7.5c+1/S was much faster. The
enhancement of cell cycle progression was associated with induction of cyclin D1
expression and Rb phosphorylation. Cyclin D1 promotes inactivation of tumor suppres-
sor protein Rb through phosphorylation, which allows dissociation of the transcription
factor E2F from the Rb-E2F complex, and the transcription of several target genes
responsible for cycle progression through the G,/S phase (46). On the other hand, cyclin
E, which also functions during the G,/S transition by activating CDK2, is not significantly
affected by core+1/ARFP. However, it is known that while activation of cyclin D1 is
required for G,/S transition, cyclin E participation may be dispensable (47). Intriguingly,
p21 CDK inhibitor is enhanced in the presence of both core+1/ARPF isoforms. It is well
known that p21 inhibits progression of the cell cycle by blocking the formation of
cyclin-CDK complexes. However, under certain conditions, p21 appears to enhance
assembly and activity of cyclin D1/CDK4/CDK6 complexes, suggesting a dual role for
p21 (48). It is possible that core+1/ARFP promotes the oncogenic form of p21.

Cell cultures may not reflect directly the effect of core+1/ARFP in hepatocytes
within the tissue, where most of the cells are in G, phase and under liver-specific
signals. In order to evaluate core+1/ARFP function in vivo, we developed transgenic
mice that express HCV-Ta core+1/S under a liver-specific promoter. Two-thirds partial
hepatectomy, which is an established model of liver regeneration, was applied as a
trigger of hepatocyte transition from G, to cycling. core+1/ARFP-expressing mice
showed increased proliferation of hepatocytes that correlated with increased cyclin D1
expression. A previous study using transgenic mice expressing F protein of HCV-1b that
may correspond to core+1/L showed an increase in liver size following administration
of phenobarbital (49). This increase in liver size was postulated to be dependent on Wnt
signaling enhancement by F protein, as shown in cell culture. In our study, B-catenin,
the main effector of Wnt signaling, showed no alteration in either Ser552 or Ser675
phosphorylation.

Cell cycle perturbation is one of the hallmarks of carcinogenesis, and oncogenic
viruses often target proteins that are central regulators of these processes, such as Rb,
p53, cyclins, and their respective kinases (50). Remarkably, HCV modulates the cell cycle
in multiple ways, enhancing cycling in the early phases and inhibiting transition to
G,/M later (51) using several of its proteins, including core, NS3, NS5A, and NS5B. HCV
core protein has a pro-proliferative role through increase of c-myc stability, activation
of the Wnt/B-catenin pathway, targeting of the Rb/E2F pathway, modulating p21
expression, and decreasing the p16 CDK inhibitor (52-54). NS3 and NS5A proteins
appear to promote cell proliferation through repression of p21 expression, downregu-
lation of abnormal spindle-like microcephaly-associated protein (ASPM), and upregu-
lation of proliferating cell nuclear antigen (PCNA) (55-58). Interestingly, NS5B was
shown to induce pRB ubiquitination and subsequent proteasome-mediated degrada-
tion in HCV-infected Huh7.5 cells (57).

Furthermore, we showed that both core+1/ARFP isoforms induced the transcription
of several cancer-related genes, including hras, vav1, c-jun, ccndl, and c-fos in Huh7.5
cells expressing core+1/ARFP. ccnd1 and c-fos were also shown to be overexpressed in
core+1-expressing hepatectomized mice. Induction of c-fos in the model of partial
hepatectomy has been well documented (59). An increase in c-fos ccnd1 transcription
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in the context of the liver further supports an increased liver regeneration activity and
signifies an increased oncogenic potential (59).

The oncogenic potential of core+1/ARFP that can be hypothesized by the tran-
scriptional output of cancer related genes was further evaluated in vivo. Spontaneous
carcinogenesis, as reported before for HCV core protein (60), was not observed,
suggesting that core+1/ARFP does not act as a carcinogenesis trigger. However, when
the role of core+1/ARFP in carcinogenesis was assessed within an established chem-
ically induced mouse model of HCC, enhancement of the oncogenic potential was
observed. After administration of DEN-TCPOBOP, core+1/S-expressing mice developed
87% more tumor foci than littermate mice, although the size of the tumors and the
grade were similar. The fact that core+1/ARFP did not induce the formation of
spontaneous cancer foci, similar to core transgenic mice (61, 62), signifies it is not a
cause of genomic instability but rather an enhancing agent that possibly acts in
conjunction with a bona fide oncogenic protein, such as core (61). Future crossing of
core+1/ARFP- and core-expressing mice would elaborate on such a possibility.

It should be mentioned that several clinical studies have suggested a role of
core+1/ARFP in advanced stages of disease. Results of sequence analysis of clinical viral
isolates derived from a microdissection of tumor and nontumor hepatocytes collected
from the same subjects showed that mutations in the core-core+1/ARFP region exhibit
a stronger selective pressure on the putative core+ 1/ARFP protein than on core protein
(63). Phylogenetic analysis has shown a clustering of core+1/ARFP variants in HCC for
most of the samples studied, suggesting distinct functional properties of core+1/ARFP
variants in HCV-induced HCC. In addition, recent studies from our laboratory have
shown high prevalence of anti-core+1/ARFP antibodies in patients with HCV-induced
HCC or advanced cirrhosis compared to control groups (20, 64), suggesting an associ-
ation of core+1/ARFP with virus pathogenesis of the late stages of infection. Finally, a
number of previous studies that involved transient expression of the F protein in Huh7
and HepG2 cell lines have suggested an effect of the F protein on the expression of a
number of cancer-related genes as well as proinflammatory cytokines and chemokines
(65-69).

Overall, our data provide, for the first time, strong evidence that core+1/ARFP plays
arole in HCV pathogenesis by inducing liver cell proliferation and enhancing oncogenic
signals that contribute to HCC development. Clearly, however, these data need verifi-
cation in appropriate infectious model systems for HCV pathogenesis when such
experimental models become available.

MATERIALS AND METHODS

Cell culture. Huh-7.5 (kindly provided by C. Rice) (70), Huh-7 (kindly provided by R. Bartenschlager)
(71), and HEK293T (ATCC) cells were cultured in Dulbecco’s modified Eagle’s medium (Thermo Fisher
Scientific) supplemented with nonessential amino acids, 2 mM L-glutamine (Thermo Fisher Scientific), 100
rg/ml penicillin-streptomycin (Thermo Fisher Scientific), and 10% fetal bovine serum (Thermo Fisher
Scientific) at 37°C and 5% CO,.

Plasmid construction. HCV-1a core+1/L and HCV-1a core+1/S sequences were PCR amplified from
pFK_JFH1/H77/C-842_dg plasmid (72) (nucleotides 417 to 828 and 598 to 828, respectively) and were
fused with the myc epitope at the 3’ end by inserting the fragment into the pcDNA3.1(—)/myc-His B
vector (Xbal restriction site). Myc-tagged fragments were amplified by PCR and cloned into lentiviral
vector pWPI-GUN (73), a derivative of the bicistronic lentiviral vector pWPL. In this vector the expression
of the transgene is controlled by an internal human elongation factor 1 alpha (EF1-a) promoter. The
pWPI-GUN vector contains an encephalomyocarditis virus internal ribosome entry site (EMCV IRES)
element that allows internal initiation of translation of green fluorescent protein (GFP)-ubiquitin-
neomycin phosphotransferase fusion protein as selectable markers. Primer sequences used for PCR were
the following: core+1_1a_shortF, 5'-GCGCTCTAGATATCGCCATGGTAATGAGGG-3’; core+1_1a_longF, 5'-
GGATCTAGACCATGGTGGCGGTCAGAT-3’; core+1_1a_R, 5'-CGGGTCTAGAGCCGCCGTCTTCCAGAACCC-
3’; core+TshortmycF, 5'-GCGGGATCCACCATGGCAATGAGGGTTGCGGGTGGGC-3'; core+TlongmycF, 5'-
GCGGGATCCACCATGGTGGCGGTCAGAT-3'; and core+1mycR, 5'-CGGGGATATCACAGATCCTCTTCTGAGA
TG-3'. The generated plasmids pWPI-C+1/L-GUN and pWPI-C+1/S-GUN were sequenced to verify their
integrity.

Production of lentiviral particles. Retroviral particles were produced by Lipofectamine cotransfec-
tion of HEK293T cells with pczVSV-G, pCMVR8.74 (pCMVR8.74 was a gift from Didier Trono, Ecole
Polytechnique Fédérale de Lausanne), and transducing lentivirus vector pWPI-GUN at a ratio of 3:3:1.
Initially, 1.5 X 10° HEK293T cells were seeded in 6-cm plates 24 h prior to transfection with the three
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plasmids. The medium was replaced 6 h after transfection. Supernatants containing the lentiviral
particles were harvested 48 h later.

Generation of stable cell lines. Retroviral particles that encode core+1/L, core+1/S, or empty
vector were used to infect 4 X 104 Huh7.5 and Huh7 cells. Supernatants were replaced with fresh
medium 6 h postinoculation. Transduced cells were selected using 1 mg/ml G418 48 h postinoculation.
Single clones were generated from polyclonal stable cell lines by colony formation and expansion. Of
these subclones, clones 1 and 2 and pooled cells were used throughout this study.

Cell cycle analysis. To synchronize cells at the G,/S transition, growing cells were treated with 2 mM
HU (Sigma-Aldrich) for 24 h. Subsequently cells were washed with phosphate-buffered saline (PBS) and
fresh medium was added. Following the release (0 h), cells were trypsinized, washed with PBS, and
centrifuged (500 X g, 5 min). Cells were fixed overnight (4°C) with 100% ice-cold ethanol. The fixed cells
were washed and then treated with 25 g/ml propidium iodide (PI; Sigma-Aldrich) and 50 g/ml RNase A
(Sigma-Aldrich) for 1 h at 37°C. DNA content was determined by flow cytometry with a FACSCalibur
instrument (BD Biosciences), and data were analyzed with FlowJo software (TreeStar).

MTT assay. Huh7.5c+1/L and Huh7.5c+1/S cells (1. 2 X 10 in a 96-well plate) were seeded the
previous day, and cell proliferation was evaluated by MTT assay (Sigma-Aldrich). Cells were treated with
MTT at 0, 12, 24, 36, and 48 h postseeding, the product was resuspended in dimethyl sulfoxide (DMSO),
and absorbance was determined at 570 nm using a microplate reader. The experiment was performed
in triplicate.

Western blotting. Cells were harvested at the indicated times and lysed in radioimmunoprecipita-
tion assay (RIPA) buffer containing phosphatase inhibitors and protease inhibitors. Total protein con-
centration was determined by the bicinchoninic acid (BCA) protocol (as described by the manufacturer
[Thermo Fisher Scientific]), and 50 ug of total protein was separated on SDS-PAGE gels. Each gel was
transferred to nitrocellulose transfer membrane (Protran; Sigma-Aldrich). The membrane was blocked
with 5% nonfat dry milk or 2.5% bovine serum albumin in PBS and 0.1% Tween for 1 h before the
addition of specific antibodies. The following antibodies were used: cyclin D1, cyclin E, p21, CDK4, CDK2,
cyclin D1, pRb, Rb, phospho-B-catenin (S552), phospho-B-catenin (S675), B-catenin, myc tag, and actin
(Cell Signaling Technology). For the detection of core+1a, homemade rabbit polyclonal antibody against
core+1/ARFP protein of genotype 1a was used. Following washing and incubation with secondary
mouse monoclonal or rabbit polyclonal horseradish peroxidase-linked antibodies (Cell Signaling Tech-
nology), proteins were detected using Lumisensor horseradish peroxidase substrate (GenScript) by
following the manufacturer’'s recommendations.

Immunofluorescence analysis. Stably transfected Huh7.5 cells were cultured on 10-mm coverslips.
One day after seeding, the cells were fixed with 3.7% paraformaldehyde for 30 min at room temperature
and neutralized for 10 min with 0.1 M glycine (Sigma-Aldrich) in PBS. Cells were then washed twice with
PBS and permeabilized with 0.1% Triton-X (Sigma) in PBS (permeabilization buffer) in the presence of 2
mg of bovine serum albumin per ml for 30 min at room temperature. Cells next were incubated
overnight at 4°C with the myc tag antibody in the permeabilization buffer. After three washes with the
permeabilization buffer, cells were incubated with anti-rabbit Alexa Fluor 488-conjugated secondary
antibody (Thermo Fisher Scientific), diluted 1:2,000 in the permeabilization buffer for 1 h at room
temperature. After two washes with the permeabilization buffer and one last wash with PBS containing
TO-PRO-3 fluorescent stain, coverslips were mounted with Mowiol (Sigma-Aldrich) and examined by laser
scanning confocal microscopy (Leica TCS-SP microscope equipped with Leica confocal software).

qPCR. For quantitative PCR (qPCR), total RNA was extracted from cells by TRIzol reagent (Thermo
Fischer Scientific) according to the manufacturer’s protocol. Two ug of the RNA extract was used as the
template for reverse transcription by murine leukemia virus reverse transcriptase (MLV RT) (Promega)
with oligo(dT)s at 42°C for 60 min. Real-time PCR was performed in a Corbett Research Rotor-Gene 6000
under the following conditions: 95°C for 3 min to heat activate the polymerase (KAPA SYBR FAST),
followed by 40 cycles of 95°C for 10 s, 60°C for 20 s, and 72°C for 15 s.

Transgenic mice. Transgenic C57BL/6 mice that express liver-specific core+1/S protein were gen-
erated by BSRC Fleming. The core+1/S gene amplified by PCR from pHPI-1495 plasmid (74) of HCV-1a
was placed downstream of a TTR liver-specific promoter. core+1/S was inserted into the Stul site of the
pTTR1-ExV3 plasmid, and the transgene was prepared by purifying the Hindlll fragment containing the
TTR promoter and core+1/S coding sequence (75). Transgenic mice were produced by pronuclear
injection at the Transgenesis Facility of the Biomedical Research Foundation Academy of Athens. TTR
promoter was kindly provided by loannis Talianidis, Institute of Molecular Biology and Biotechnology of
FORTH in Crete, Heraklion, Greece. Mice were maintained under specific-pathogen-free conditions. The
expression of core+1/S protein was confirmed by Western blotting with the homemade rabbit poly-
clonal antibody against core+1/ARFP, and the tissue-specific expression of core+1/S was determined by
real-time PCR analysis of cDNAs from various transgenic mouse tissues.

PH. Partial hepatectomy (PH) was performed on 8-week-old female and male mice according to
previously described methods (76). Forty hours after PH, 100 to 200 ul (1 to 2 mg) of bromodeoxyuridine
(BrdU) solution was administered intraperitoneally in mice. Partial hepatectomy was performed under
ketamine (100 mg/kg of body weight) and xylazine (16 mg/kg) anesthesia.

Histological analysis. Two hours following PH, animals were sacrificed and the liver tissue harvested.
Liver tissues were fixed overnight in 10% neutral buffered formalin (NBF) solution at 4°C, embedded in
paraffin, and cut into 4-mm-thick sections. The sections were deparaffinized and rehydrated before the
immunochemical staining with anti-BrdU antibody (BU1; Millipore). Secondary detection was performed
with the Vectastain-ABC kit (Vector Laboratories). Visualization of slides and images were taken by an
Axiovert 135 (Carl Zeiss Microscopy).
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Murine model of chemically induced carcinogenesis. Male and female C57BL/6 mice were given

a single dose of diethyl nitrosamine (DEN) intraperitoneally (5 ng/g; Sigma-Aldrich) at the age of 3 weeks,
and every 2 weeks an intraperitoneal injection of TCPOBOP (3 ng/g; Sigma-Aldrich) was given. Mice were
then sacrificed at 8 months. Livers were fixed in 10% NBF.

LPS-p-galactosamine as described previously (77).

Murine model of acute liver failure. Eight-week-old male and female mice were administered

Ethics statement. All animal protocols used in this study were reviewed and approved in accordance

with the Regulatory Guide of the Department of Animal Experiments, in line with Directive 2010/63/EU
and National Decree 56/2013 requirements. Animal handling was conducted under the 6619/16-10-2014
license provided by the Prefecture of Attica Ethics Committee.
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