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Multiple-scale mobility is ubiquitous in nature and has become
instrumental for understanding and modeling animal foraging
behavior. However, the impact of individual movements on the
long-term stability of populations remains largely unexplored.
We analyze deterministic and stochastic Lotka–Volterra systems,
where mobile predators consume scarce resources (prey) con-
fined in patches. In fragile systems (that is, those unfavorable to
species coexistence), the predator species has a maximized abun-
dance and is resilient to degraded prey conditions when indi-
vidual mobility is multiple scaled. Within the Lévy flight model,
highly superdiffusive foragers rarely encounter prey patches and
go extinct, whereas normally diffusing foragers tend to prolifer-
ate within patches, causing extinctions by overexploitation. Lévy
flights of intermediate index allow a sustainable balance between
patch exploitation and regeneration over wide ranges of demo-
graphic rates. Our analytical and simulated results can explain
field observations and suggest that scale-free random movements
are an important mechanism by which entire populations adapt to
scarcity in fragmented ecosystems.
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Species extinction, population loss, and biodiversity decline
represent real dangers for the continuity of life on earth (1).

Current extinction rates are several orders of magnitude above
normal background rates (2–4). Halting and reversing this trend
are formidable challenges that require a better understanding of
how ecosystems operate and where interdisciplinary approaches
can play an essential role. Over the years, physical and mathemat-
ical concepts have provided valuable tools for studying a range of
ecological phenomena, such as nonlinear and chaotic dynamics in
population biology (5), nonequilibrium phase transitions (6), or
the structure and resilience of ecological networks (7).

Fragile ecosystems are often fragmented, namely composed of
populations separated in space, either because of a natural ten-
dency of individuals to aggregate in patches or because of human
perturbations (8–10). Within small areas, populations are more
exposed to local extinctions due to demographic stochasticity or
when the growth of an invasive species leads to the overexploita-
tion of slowly recovering resources (11–13). In systems of frag-
ments (metapopulations), the ability of the organisms to move
from one fragment to another has been identified as a crucial
stabilizing factor that can prevent irreversible decline (8, 14, 15).

Interacting species in uniform (16–20) or fragmented (6, 13,
21) landscapes have been extensively explored with Lotka–
Volterra (LV) models, a paradigmatic framework in population
dynamics (22–25). Individual mobility is a key aspect in this
approach, and it is usually modeled by standard random walks
without long-range displacements (but see ref. 26). In recent
years, thanks to the improvement of tracking devices, data

analyses have yet revealed that single-animal trajectories often
contain multiple characteristic scales, calling for new theories of
mobility beyond simple diffusion (27–31).

A body of observations in a variety of animal taxa has reported
evidence of mobility patterns well-described by Lévy flights or
Lévy walks, two parsimonious multiple-scale diffusion models
involving essentially one parameter (32–42). A widely discussed
interpretation of such movements relies on the efficiency of ran-
dom search strategies in unpredictable environments, when prey
are scarce and distributed in patches (32, 43, 44). For a preda-
tor having no information on prey locations, the rate of prey
capture can be maximized by performing Lévy walks with expo-
nent β≈ 2, a value often observed in the field (33, 34, 37, 39).
From a more general point of view, foraging success under envi-
ronmental uncertainty can be a generative mechanism of mul-
tiscale movement, allowing information gathering and optimal
exploratory behavior (45). Some studies have also examined mul-
tiscale movements as being emergent from interactions between
a forager and heterogeneities in the environment (35, 46).

The consequences of Lévy mobility on collective properties
in systems of interacting individuals remain elusive (47). A dis-
tinction exists a priori between the reproductive interest of an
individual and the survival of entire populations, referred to
as “organic” and “biotic” adaptations, respectively, in ref. 48.
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Following the latter viewpoint, we address here how multiple-
scale foraging allows populations to respond to changes in
resource availability. Notably, Lévy walks were shown to be evo-
lutionary stable in mussels colonies by achieving a compromise
between reducing the risk of predation and minimizing intraspe-
cific competition for food (40). In ants, individual variability in
searching behaviors across scales can provide to the colony a
functional advantage for foraging compared with colonies con-
taining different behavioral stereotypes, like single-scale foragers
(49). In some cases, a seemingly optimal individual foraging
strategy may lead to severe resource depletion due to feedback
effects (50, 51). The movement strategies considered as efficient
for an individual immersed in a sea of static prey (a common the-
oretical setting) need to be reexamined for large populations and
longer timescales.

Here, we show by means of previously unexplored analytical
arguments and computer simulations that multiscaled random
walks have a significant impact on the stability of metapopu-
lations close to extinction thresholds. We consider both deter-
ministic and stochastic lattice LV models (18–20), where the
resources are fragmented into areas distant from each other and
predators can perform Lévy flights instead of nearest neighbor
(NN) random walks.

Analytical Population Model in Patchy Landscapes
We start with a solvable rate equation model defined on a
2D space, where prey are restricted to occupy patches and
predators diffuse according to a power law mobility kernel.
Space is made of a regular lattice of N square cells, each of
length R0. Some cells can contain prey and thus, represent
“patches” of area R2

0 . These patches form a periodic square
array for simplicity, the separation distance between neighbor-
ing patches being l0R0, where l0> 1 is an integer. No prey can
be present outside of the patches. The predator and prey den-
sities in cell n at time t , where n∈Z2, are denoted as an(t)
and bn(t), respectively. Outside the prey patches, bn(t)= 0, but
an(t) can be 6=0. Assuming that occupied cells contain many
individuals and fluctuations are negligible, we write the LV-
equations (20)

dan

dt
=−λ0an +λ0

∑
`

P(`)an−` +λanbn−µan [1]

dbn

dt
=σbn

(
1− bn + an

K

)
−λ′anbn, [2]

where λ0, λ, µ, and λ′ are the predator movement, reproduc-
tion, mortality, and predation rates, respectively. K is the patch
carrying capacity, and σ is the prey reproduction rate. SI Text
has more details. The cell-to-cell predator jump distribution
P(`)=P(`x , `y) is given for simplicity by the product of two
1D scale-free distributions with integer argument and exponent
β > 1:

P(`)= p(`x )p(`y) with p(`)= p0δ`,0 +(1− p0)f (`), [3]

where f (0)= 0, f (`)= |`|−β/[2ζ(β)] for `=±1,±2, ..., ζ(β)=∑∞
n=1 n

−β is the normalization constant, and δ`,0 =1 or 0 is
the Kronecker symbol. We use the product of two power laws
because of the lattice symmetry, but other choices lead to similar
results (see below). The foragers are normally diffusive (Brown-
ian) for β > 3 and superdiffusive (Lévy) for 1<β < 3. In the case
of β→ 1, extremely long steps are taken, equivalent in practice to
random relocations in space. Large displacements are not penal-
ized by any time cost. SI Text discusses the biological relevance
and limitations of this latter assumption.

The quantity p2
0 represents the probability that a predator

remains in the same cell after a movement step, when the lat-
ter is too small to bring the predator outside its current cell.
Approximate arguments allow us to relate p0 to the patch size:
one assumes that predators actually perform continuous steps,
inside or across patches, of minimal length x0, which is set to
unity in the following. For patches with R0> 1, one obtains
p0 =1− 1/R0 +(1−R2−β

0 )/[(2−β)R0] (SI Text).
In the absence of movement (λ0 =0 or p0 =1), the prey and

predator abundances are zero at large times everywhere except
in prey cells, where Eqs. 1 and 2 reduce to two ordinary dif-
ferential equations for a single patch. They admit two sim-
ple stationary fixed points, (a(o)

0 , b
(o)
0 )= (0, 0) and (a

(u)
0 , b

(u)
0 )=

(0,K ), corresponding to total extinction (by overexploitation)
and predator extinction (by underexploitation), respectively. A
third globally stable coexistence fixed point exists for µ/λ<
K (20):

a
(no move)
0 =(K −µ/λ)/(1+λ′K/σ) [4]

and b
(no move)
0 =µ/λ. If K <Kc =µ/λ, predators go extinct, and

b
(no move)
0 =K . Oscillatory solutions do not exist (20).

With mobile individuals (λ0> 0), the cells are no longer iso-
lated. A quantity of particular interest in this case is the spatially
averaged number of predators per unit area: a∗≡

∑
n an/N . We

look for nonzero stationary solutions of Eqs. 1 and 2. The steady-
state a∗ takes the form (SI Text)

a∗=
λ

µl20
a0[K − a0(1+Kλ′/σ)], [5]

with a0 being the predator density in the prey patches:

a0 =
1

1+ Kλ′
σ

[
K −

(
λ

(2π)2

∑
n

∫
B
dk

cos(l0k · n)
λ0[1− P̂(k)]+µ

)−1]
,

[6]

where P̂(k)≡
∑

` P(`)e−ik·` is the Fourier transform of P and
B is the first Brillouin zone defined by −π< kx , ky <π.

Notably, in Eq. 5, the mean predator density a∗ for the whole
system obeys a logistic relation with respect to a0, the preda-
tor density in one prey patch (Fig. 1). Thus, a∗ is maximal
when a0 = a

(max)
0 ≡K/[2(1+Kλ′/σ)] and vanishes at a0 =0

and a0 =2a
(max)
0 . [At 2a

(max)
0 and above, the only acceptable

stationary solution is a0 = an =0.] In the low-density regime,
0< a0< a

(max)
0 , predators underexploit prey: any increase in

a0 produces an increase of a∗. Whereas at high density,

Fig. 1. When immobile predators (λ0 = 0) overexploit prey patches
[a(no move)

0 > a(max)
0 ], incorporating mobility (λ0 > 0) usually increases the

total predator abundance a∗. The strategy maximizing a∗ (green circle)
can be Lévy, random, or Brownian. The Lévy strategy is an advantageous
response in the most fragile systems, since there, a∗ may otherwise reach
low values from two sides. For β > 3, the foragers practically perform NN
random walks (β=∞ limit), and a∗ varies little.
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a
(max)
0 < a0< 2a

(max)
0 , foragers overexploit the patches: any

increase in a0 decreases the total abundance. The demographic
parameters being fixed, the largest a0 is always obtained in
the absence of movement (λ0 =0). Therefore, some amount of
movement will be beneficial (increase a∗) if a(no move)

0 is located
in the overexploitation regime, a(no move)

0 > a
(max)
0 , implying that

µ< Kλ
2

. We set this condition in the following, as it is relevant to
fragile systems.

We define the optimal movement strategy as the one maximiz-
ing the predator abundance a∗. Keeping all of the parameters
fixed except β, the density a0 given by Eq. 6 can be varied, giv-
ing rise to three possibilities. (i) a0 = a

(max)
0 for an exponent βc ,

such that 1<βc < 3 (Fig. 1, Left) (where λ0 =1 without loss of
generality). The value βc satisfies

1

(2π)2

∑
n

∫
B
dk

cos(l0k · n)
1− P̂(k)+µ∗

=
2

Kλ∗
, [7]

with µ∗= µ
λ0

and λ∗= λ
λ0

. Recall that the dependence in β is

contained in the term P̂(k). (ii) If Eq. 7 does not admit any
solutions in the interval (1, 3), a∗ may still reach a maximum
for the lowest possible value β=1, the movement mode that
less overexploits resources (Fig. 1, Center). (iii) In the third case
(Fig. 1, Right), Brownian movement (β≥ 3) provides the opti-
mal strategy, namely the best way of exploiting in conditions of
underexploitation.

We explore a realistic ecological situation, where predators are
mobile, slowly reproducing, and long lived (i.e., 1�Kλ∗�µ∗;
note that all of the demographic rates may be scaled by the
movement scale λ0). For an environment of low patch den-
sity, Fig. 2 shows that the optimal βc obtained from solving
Eq. 7 can be in the Lévy range 1<βc < 3 and depends lit-
tle on µ∗ and Kλ∗ over wide intervals. For a fixed predator
reproduction rate Kλ∗, the strategy leading to the largest a∗

rapidly switches to Brownian or to random relocations at very
high and low µ∗, respectively: high predator mortality rates
reduce prey overexploitation and promote Brownian strategies
(predators stay close to the prey patch where they were born).
Random relocations, in contrast, allow patch regeneration if
predators are long lived. Similarly, low values of the preda-
tor reproduction rate Kλ∗ reduce the predation pressure and
slowly move βc upward toward Brownian motion. In the fol-
lowing, we drop the superscript ∗ and set the movement rate
to λ0 =1.
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Fig. 2. Lévy exponent maximizing predator abundance as a function of the
reduced mortality rate for various reproduction rates λ as given by Eq. 7.
R0 = 30, and the patch volume fraction is 0.04 (l0 = 5). At very large (low) µ,
the optimal strategy is Brownian (with random relocations or β= 1, respec-
tively). Fast (slow) predator reproduction favors more (less) superdiffusive
strategies.

Stochastic Lattice LV Model
The foregoing analytical results show the importance of Lévy
movements at the population level. What is more, Fig. 1, Left
allows us to clarify the notion of “fragility” from a movement
ecology point of view: a system is most fragile when markedly
different ranging modes (here, β≥ 3 or β→ 1) bring the sys-
tem close to distinct zero-abundance fixed points [a(o)

0 and a
(u)
0

above]. We focus below on this generic situation and proceed
to verify our predictions with simulations in a few representative
numerical examples. We also incorporate the effects of fluctua-
tions in the description by building a stochastic model inspired in
ref. 20.

Rules. Space is a 2D lattice of L×L sites of unit area with
periodic boundary conditions. Each site can be empty (∅), with
a predator (A), with a predator reproducing (AA), or with a
prey (B). Double occupation of a site is forbidden (except for
the AA reproductive state). The prey is confined to limited
areas: n circular patches of radius R are randomly distributed,
inside which the sites are initially set to state B . (We choose
πR2 =R2

0 , so that patches have the same area as in the analytical
model.) Prey cannot occupy sites that are outside the patches.
Monte Carlo simulations are performed over many landscapes
with L2/5 initial predators (other numbers do not affect the
results).

At each elementary step, an occupied site is chosen randomly
and updated as follows:

• Predator death. If a predator is selected, it dies with prob-
ability µ.
• Predator movement and reproduction. A selected surviving

predator randomly chooses a site at a distance `, where `> 1
is drawn from a power law distribution P(`)= c`−β , with β as
an exponent and c as the normalization constant. If another
predator is present at the new position, the selected predator
does not move; otherwise, it occupies the new site (only one
predator moves at a time). If a prey is present there, the preda-
tor eats it and reproduces.
• Prey reproduction. If a prey is selected, one of its NN sites

(within the patch) is chosen randomly. If that site is empty, a
prey offspring is produced there with probability σ. In other
cases, nothing happens.

In these rules, λ′=λ=1, and K =1. In the stochastic lat-
tice Lotka–Volterra model (SLLVM) of ref. 20, all agents were
mobile with NN hopping, and the carrying capacity was uni-
form. Here, prey are static, and K =1 for the sites belonging to
the patches (K =0 elsewhere). The fraction of area covered by
the patches is A'nπR2/L2 (A=1/l20 in the analytic model).
A mean field (MF) solution of our SLLVM can be obtained
when the predators are well-mixed in the system (i.e., in the
random relocations regime or β close to one). Neglecting spa-
tiotemporal fluctuations, we show in SI Text that the preda-
tor abundance a(MF) is given by Eq. 4 but with λ substituted
by Aλ.

We consider two scenarios. In the first one, prey are scarce,
and A� 1, such that predators go extinct in the above MF
approximation (i.e., Aλ<µ). Given a predator mortality rate
µ, we choose A=µ/2, which is achieved by setting the patch
radius to

R=
√
µ/(2πn)L, [8]

where n is fixed. In the second scenario, the predator mortal-
ity rate µ is held fixed, and prey abundance varied through the
parameters n and R.

Results. Highly superdiffusive predators (β∼ 1) randomly sam-
ple space and therefore, poorly exploit the patches. In the first
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scenario, their spatially average density is zero at large time as
expected from the MF analysis, whereas prey reach their max-
imum capacity in the patches (Fig. 3A). This situation corre-
sponds to extinction by underexploitation (Movie S1). With the
same parameter values but Brownian mobility (β > 3), in con-
trast, long-lived quasistationary states of predator–prey coexis-
tence settle (Fig. 3B). Predator populations concentrate in the
patches as shown in a typical configuration (Fig. 4A): due to its
slow diffusion, a Brownian predator located in a patch has a high
probability to stay in its vicinity before dying, like its offspring.

The foregoing results suggest that Brownian motion in scarce
and patchy environments stabilizes coexistence compared with
the MF expectation. However, such systems are not necessarily
resilient in front of less favorable conditions. Fig. 4B illustrates a
configuration where the predator mortality rate µ and the patch
radius R, given by Eq. 8, are lower than in Fig. 4A. Predators
live longer and their number rapidly grows inside the patches,
not letting the time for the prey to regenerate (Movie S2). The
patches are thus overexploited and irreversibly disappear after
some unfavorable fluctuation (the empty patch is an absorbing
state for the prey). Since the predators are left with no sur-
rounding resources, they also go extinct. Fig. 5, Upper shows that
the average large time density a∗ of normally diffusive preda-
tors (regime β≥ 3) declines as µ decreases and even vanishes
when µ becomes too small. This important cause of extinction
is not predicted by the analytic theory, which neglects temporal
fluctuations.

Fig. 5, Upper shows that predators maximize their abundance
when performing Lévy flights with a particular exponent value
given by βc ≈ 2, with all of the other parameters being fixed (first
scenario) (Movie S3). The location of the maximum depends lit-
tle on the mortality rate µ as expected from the “flat” aspect of
the theoretical curves of Fig. 2. In addition, less favorable con-
ditions (lower mortality rate and smaller patches) mildly affect
the average number of predators in the system when β is around
βc or below. In the Brownian case (β≥ 3), however, the same
changes cause dramatic population declines as mentioned above.
The predator population is not only maximal at βc but also per-
sists if conditions are altered, a feature that ref. 52 calls structural
stability (the meaning of “resilience” here). The movement strat-
egy becomes crucial for the most fragile ecosystems (smallest val-
ues of µ in Fig. 5, Upper): predators face extinction due to under-
exploitation or overexploitation depending on β, two situations
that are avoided by adopting intermediate Lévy flight strate-
gies in a relatively narrow range around βc . In such situations,
Lévy flights achieve a sustainable balance between exploita-
tion and exploration and are advantageous for stability and
resilience.

As shown in Fig. 5, abundances a∗ and b∗ given by the
analytic theory (Fig. 5, dashed lines) are in qualitative agree-
ment with simulations. There are no adjustable parameters.
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Fig. 3. Evolution of the spatially averaged densities a(t) and b(t) toward
quasistationary states for a single run in the case of (A) highly superdiffusive
(β' 1) and (B) Brownian predators; the other parameters are µ= 0.22, σ=

0.5, L = 500, and n = 125. A Monte Carlo time step corresponds to selecting
all individuals once on average.

A

B

Fig. 4. Initial (Left) and large (Right) time configurations of a metapopula-
tion of Brownian predators (yellow dots) and randomly placed prey patches
(prey are in red). (A) Same parameters as in Fig. 3B (survival); (B) µ= 0.08
and smaller patch radii (global extinction by overexploitation) (Movie S2).
The patches in the cases in A and B have the same locations for easier com-
parison. L = 200.

Note, however, that theory significantly overestimates a∗ and
b∗, which do not vanish in the Brownian/low-mortality regime.
This is because local extinctions in the SLLVM are driven by
fluctuations in finite size patches (where b=0 is an absorb-
ing state), whereas noise is absent in the deterministic LV
approach. Although less pronounced, the maximum of a∗ pre-
dicted by theory is in good agreement with simulations: from
Eq. 7, we find βc ' 2.16 (µ=0.05), 1.92 (µ=0.11), and 2.06
(µ=0.2).

Fig. 5, Lower displays the corresponding prey densities. Unlike
a∗, b∗ decays monotonically with β and is practically constant for
β≥βc . Fig. 5 illustrates the aforementioned resilience of preda-
tor populations with respect to changes in prey abundance: at
β=2, the prey population decays by a factor of two due to the
change µ=0.2→ 0.11, whereas the predator population varies
by less than 20%, therefore exhibiting a remarkable collective
adaptation to the scarcer environment. Comparatively, for the
same perturbation at β=4, where the number of prey is reduced
by a factor of about three, the predator population is divided
by eight.

Another useful quantity in population dynamics is the joint
survival probability, the probability that at least one individual
of each species is alive at time t , which is denoted as Pβ(t). It is
depicted in Fig. 6A. The parameters in this example are chosen
such that the system is subject to particularly unfavorable condi-
tions for prey survival: small patches, low predator mortality rate,
and a lower prey recovering rate σ than in Fig. 5. At large times,
only a narrow range of value of β around 2 exhibits two-species
coexistence (Pβ(t)∼ 1).

We next vary the resource availability by means of the patch
density or n , keeping µ and R fixed (scenario 2). When the mor-
tality rate is low and prey is abundant (n =200 in Fig. 6B), one
could expect the predator abundance to be high, close to the MF
fixed point (a(MF), b(MF)), and to depend little on the move-
ment strategy. However, Fig. 6B shows an example where no
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Fig. 5. (Upper) Average predator density a∗ after 2,000 Monte Carlo steps
as a function of β and for three values of the mortality rate in the first
scenario (solid lines with symbols). L = 500, and the other parameters are
the same as those in Fig. 3. At low µ (open red circles), a∗ is nonzero only in
a relatively narrow region centered around β≈ 1.8. Dashed lines show the
corresponding analytical calculations (Eqs. 5 and 6). (Lower) Average prey
density b∗ obtained with the same parameters. SI Text has more details.

populations survive in the Brownian regime, while a∗ is nonvan-
ishing in the Lévy range.

The exponent βc that maximizes the predator population
depends on the patch density. At small patch numbers, βc is in
the vicinity of two in this example, and predators do not survive
if they perform other types of movements. As the patch den-
sity increases, the range of values of β allowing predator sur-
vival increases, and the optimal βc moves to the left until reach-
ing unity. Importantly, the analytic expression [7] predicts this
decrease of βc with patch density (see caption of Fig. 6B). These

results indicate that, at low mortality, foraging strategies can be
more flexible when resources are abundant as long as predators
avoid Brownian strategies. This fact could have profound evolu-
tionary consequences.

Discussion
In summary, population models with LV interactions reveal
that the stochastic movement strategies adopted by individuals
searching for scarce resources have important consequences on
the evolution of systems near extinction thresholds. These col-
lective aspects cannot be directly inferred from single-forager
random search models, which have been extensively studied (30,
32, 43, 44, 53). When resources are fragmented and regenerate
slowly, predator metapopulations can avoid extinctions and max-
imize their abundance by means of Lévy flights. For a wide range
of demographic parameters (Fig. 2), the multiple-scale structure
of Lévy mobility allows both local exploitation and long-range
exploratory relocations that reduce the predation pressure on
depleted zones. Lévy populations are also resilient: a reduction
of resources mildly affects their abundances, whereas it can pro-
duces rapid declines or extinctions when monoscaled (standard)
random walk displacements are used. In some cases, the range of
random strategies allowing long-lived coexistence states becomes
very narrow around the Lévy exponent β≈ 2 as the patch density
decreases.

Step length distributions with exponents around two have been
reported in many animal species (33, 34, 37) and also, hunter-
gatherers (38) or fishing boats (54). Our approach is useful for
understanding aspects of human–environment interactions, such
as the multiple-scale displacements of fishing boats on the open
ocean, where fish density is patchy and highly nonuniform (55).
These movements may result in a sustainable exploitation of
fragile resources by giving profitable zones time to regenerate.
Similar considerations apply to the nomadic hunter-gatherers
discussed in ref. 38 who lived in resource-scarce lands. Future
tests of our theory could also be performed in controlled lab-
oratory experiments with microorganisms, like dinoflagellates,
which are predators known to exhibit Lévy patterns with expo-
nent β' 2 at low prey concentrations (33).

More generally, our results establish a connection between
random search problems and the theory of metapopulations (8),
where a set of populations isolated in space becomes stabilized
by fluxes between them. Lévy random motion effectively allows
individuals born in a patch to visit other patches during their
lifespan, as also suggested in ref. 15. In a similar vein, power
law dispersal is known to increase asynchrony in metapopula-
tions with cyclic Rosenzweig–MacArthur or LV dynamics, mak-
ing them less vulnerable (56). Additional developments to many-
species systems with realistic networks of trophic interactions
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Fig. 6. (A) Evolution of the joint survival probability Pβ (t) up to t = 2,000 in unfavorable ecological conditions (σ= 0.2, µ= 0.05, n = 20, L = 200, R given
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(57) and including heterogeneous patch size distributions are
needed to study the effects of scale-free mobility on stability, sus-
tainability, and diversity.

Our scope extends the notion of optimality in foraging by
investigating the movement strategies that bring populations
away from extinction thresholds. This is an essential step for

developing movement-based ecological theories and concepts
that could impact urgent problems in conservation biology.
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