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Abstract
Molecular dynamics simulation is a powerful method for investigating the structural stability, dynamics, and function of
biopolymers at the atomic level. In recent years, it has become possible to perform simulations on time scales of the order of
milliseconds using special hardware. However, it is necessary to derive the important factors contributing to structural change
or function from the complicated movements of biopolymers obtained from long simulations. Although some analysis
methods for protein systems have been developed using increasing simulation times, many of these methods are static in
nature (i.e., no information on time). In recent years, dynamic analysis methods have been developed, such as the Markov
state model and relaxation mode analysis (RMA), which was introduced based on spin and homopolymer systems. The RMA
method approximately extracts slow relaxation modes and rates from trajectories and decomposes the structural fluctuations
into slow relaxation modes, which characterize the slow relaxation dynamics of the system. Recently, this method has been
applied to biomolecular systems. In this article, we review RMA and its improved versions for protein systems.
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Introduction

Molecular dynamics simulation is widely used for protein
research. In general, the focus of this research is to
extract information on the physical properties of individual
proteins. The results from such simulations are then
often compared with experimental results. Since these
experiments are generally conducted in solvents, it is
necessary to simulate protein and water molecular systems,
which are complicated systems. These simulations are
conducted for a variety of purposes such as to analyze
the stability and dynamics of the structures around crystal
structures and to determine folding from an extended
structure into a native structure. There are three difficulties
in current approaches for protein simulations (Freddolino
et al. 2010). The first is the potential function of the protein
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systems. In recent years, it has become possible to evaluate
the molecular force field by improving the sampling, and
accuracy has consequently improved. The second problem
is related to the sampling. With respect to the folding
mechanism, simulation at the millisecond scale is necessary.
Recently, it has become possible to perform simulations at
the millisecond scale by using special hardware such as
Anton (Lindorff-Larsen et al. 2011, 2012; Dror et al. 2012,
Lane et al. 2013), but sampling problems still exist for
complex systems such as ligand-binding systems and other
even more complex systems. The third issue is related to the
analysis methods. It is important to extract the characteristic
degrees of freedom (order parameters) from the complex
protein movements obtained from simulations, which are
good indicators for analyzing trajectories.

In normal mode analysis, the normal mode near the
minimum point of the potential energy of the protein
molecule is obtained (Go et al. 1983; Brooks and
Karplus 1983; Levitt et al. 1985). Langevin mode analysis
investigates modes around the native structure, including the
water effect (Lamm and Szabo 1986; Kottalam and Case
1990; Kitao et al. 1991; Hayward et al. 1993). An elastic
network model and Gaussian network model approximately
estimate normal modes with large amplitudes by using
the harmonic potential of coarse-grained models (Tirion
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1996; Baher et al. 1997; Tama and Sanejouand 2001; Cui
and Bahar 2005; Miyashita and Tama 2008). This method
extracts collective modes with large amplitudes in the case
of huge protein systems such as viruses, because huge
proteins have rigid-like motions (Tama and Brooks III
2002).

Principal component analysis (PCA), also called quasi-
harmonic analysis or the essential dynamics method (Levy
et al. 1984; Ichiye and Karplus 1991; Abagyan and Argos
1992; Garcia 1992; Hayward et al. 1993; Amadei et al.
1993; Kitao and Go 1999), is one of the most popular
methods adopted for analyzing the structural fluctuations
around the average structure. The modes with large structure
fluctuations are extracted and are regarded as cooperative
movement, and the relation of these fluctuations with func-
tion has been widely investigated. The obtained modes are
also used as the axis of the free-energy surface. Moreover,
various other analysis methods have been proposed, such as
full correlation analysis (Lange and Grubmüller 2007), sub-
space joint approximate diagonalization of eigenmatrices
(Sakuraba et al. 2010), and wavelet analysis (Kamada et al.
2011), among others (Moritsugu et al. 2015; Matsunaga
et al. 2015).

In recent years, it has become possible to perform an
extensively long simulation; thus, development of dynamic
analysis methods to identify the local minimum-energy
states and analyze the transitions between them is required.
Accordingly, many methods to analyze the dynamics
and kinetics of protein simulations have been developed
(Zuckerman 2010; Komatsuzaki et al. 2011; Bowman et al.
2014). In particular, the Markov state model has been
presented and applied to many protein systems (Schütte
et al. 1999; Swope et al. 2004; Singhal et al. 2004; Chodera
et al. 2006, 2007; Chodera and Noé 2014; Noé et al. 2007;
Noé and Fischer 2008; Noé and Clementi 2017 Buchete
and Hummer 2008; Prinz et al. 2011; Pérez-Hernández
et al. 2013; Schwantes and Pande 2013; Schwantes et al.
2014; Bowman et al. 2014; Wu et al. 2017). The Markov
state model can analyze transitions between local minimum-
energy states, which are identified from clustering analysis
methods. This is a powerful method for analyzing dynamics
in the context of both long and short simulations of proteins.

Relaxation mode analysis (RMA) was developed to
investigate the “dynamic” properties of spin systems
(Takano andMiyashita 1995) and homopolymer systems for
Monte Carlo (Koseki et al. 1997) and molecular dynamics
(Hirao et al. 1997) analyses, and has been applied to
various polymer systems (Hagita and Takano 2002; Saka
and Takano 2008; Iwaoka et al. 2015; Natori and Takano
2017) to investigate their slow relaxation dynamics (de
Gennes 1984; Doi and Edwards 1986). Recently, RMA has
also been applied to biomolecular systems (Mitsutake et al.
2011; Mitsutake et al. 2005; Mitsutake and Takano 2015;

Nagai et al. 2009, 2013). RMA approximately estimates
slow relaxation modes and rates from trajectories obtained
from simulations.

The relaxation modes {Xp} satisfy
〈Xp(t)Xq(0)〉 = δp,qe−λpt . (1)

Here, 〈A(t)B(0)〉 denotes the equilibrium correlation of A

at time t and B at time 0:

〈A(t)B(0)〉 =
∑

Q,Q′
A(Q)Tt (Q|Q′)B(Q′)Peq(Q

′), (2)

where Tt (Q|Q′) is the conditional probability that the
system is in state Q at time t given that it is in state Q′ at
time t = 0. Further, Peq(Q

′) denotes the probability that
the system is in state Q′ at equilibrium. The relaxation rate
of Xp is denoted by λp. The relaxation time is given by
1/λp. Note that the relaxation modes and rates are given
as left eigenfunctions and eigenvalues of the time evolution
operator of the master equation of the system, respectively,
from the viewpoint of the statistical mechanics (Hirao et al.
1997; Koseki et al. 1997; Mitsutake and Takano 2015)
(see the “Relaxation modes {Xp} and rates λp” section).
The point of RMA is that we consider the variational
problem, which is equivalent to the eigenvalue problem
of the time evolution operator, and choose an appropriate
trial function to estimate the slow relaxation modes and
rates in the system (see the “RMA” section). From these
processes, we obtain the generalized eigenvalue problem
of the time correlation matrices for two different times.
From the eigenvectors and eigenvalues, we approximately
estimate slow relaxation modes and rates.

Conventional RMA approximately estimates slow relax-
ation modes by solving the generalized eigenvalue problem
of the time correlation matrices of coordinates for two dif-
ferent times, C(τ + t0) and C(t0), which are calculated
from the trajectory. Recently, dynamical analysis methods
for molecular simulations of biopolymer systems have been
developed to investigate slow dynamics. In these techniques
such as time structure-based independent component anal-
ysis (tICA) (Naritomi and Fuchigami 2011, 2013), time-
lagged independent component analysis (TICA) (Pérez-
Hernández et al. 2013; Schwantes and Pande 2013), and
dynamic component analysis (DCA) (Mori et al. 2015,
2016), time correlation matrices of certain physical quanti-
ties or states are used. (Note that tICA is a special case of
RMA with t0 = 0. See Mitsutake et al. (2011) and Naritomi
and Fuchigami (2011) for more details on the differences
between tICA and RMA.) In tICA, TICA, and DCA, the
time correlation functions C(τ ) and C(0) are used, whereas
C(τ + t0) and C(t0) are used in RMA. The relaxation modes
and rates are given as left eigenfunctions and eigenvalues
of the time evolution operator of the master equation of
the system, respectively. From this point of view, RMA is
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related to Markov state models. (The relationship among the
Markov state model, tICA, and TICA is explained in Pérez-
Hernández et al. (2013), Schwantes and Pande (2013), and
Mitsutake and Takano (2015).) The combination method of
tICA and a Markov state model was also proposed (Pérez-
Hernández et al. 2013; Schwantes and Pande 2013). A
Markov state model was constructed from clustering in the
subspace determined by tICA.

In this review, we first provide a definition of relaxation
modes and rates from the viewpoint of the statistical
mechanics in the “Relaxation modes {Xp} and rates λp”
section. The “RMA” section explains the original RMA
(RMA with a single evolution time) and the process
of RMA using coordinates for the trial function in
detail. The “Improvement of RMA” section explains the
improved versions of RMA, including RMA with multiple
evolution times, principal component RMA (PCRMA), two-
step RMA, and Markov-state RMA (MSRMA). Finally,
in the “Application of RMA to a system with large
conformational changes” section, we present results from
studies in which RMA was applied to a system with
large conformational changes. The “Conclusions” section
provides conclusions and perspectives on the state of the
field.

Relaxationmodes {Xp} and rates λp

In this section, we provide the definition of relaxation
modes and rates from the viewpoint of the statistical
mechanics (Risken 1989; Zwanzig 2001). The relaxation
modes {Xp} satisfy Eq. 1. The relaxation modes and rates
are given as left eigenfunctions and eigenvalues of the time
evolution operator of the master equation of the system,
respectively. We first explain the relation in three types of
simulations satisfying the detailed balance condition.

In a Monte Carlo simulation satisfying the detailed
balance condition, the time evolution of the probability
P(Q; t) that the biomolecule is in a state Q = (

rT1 , rT2 ,

· · · , rTN
)T

at time t is described by a master equation:

∂

∂t
P (Q; t) = −

∑

Q′
�(Q|Q′)P (Q′; t). (3)

Here, �(Q|Q′) denotes the (Q, Q′)-component of the time
evolution matrix �, and

∑
Q′ denotes the summation over

all possible states. �(Q|Q′) is also chosen so that the
detailed balance for the equilibrium distribution function
Peq(Q) is satisfied:

�(Q|Q′)Peq(Q
′) = �(Q′|Q)Peq(Q). (4)

In the Brownian dynamics simulation, the time evolution
of coordinates r i , (i = 1, · · · , N) is given by the Langevin
equation for a biomolecule with N atoms:

dr i

dt
= −1

ζ

[
− ∂

∂r i

U({rj }) + wi

]
. (5)

Here, r i (t) denotes the position of the ith atom at time t , and
ζ is the friction constant. The interaction between atoms is
described by the potential U({r i}) = U(r1, . . . , rN). The
random force wi (t) acting on the ith atom is a Gaussian
white stochastic process and satisfies

〈wi,α(t)wj,β(t)〉 = 2ζkBT δα,βδi,j δ(t − t ′), (6)

where wi,α , kB , and T denote the α-component of wi

(α=x, y, or z), the Boltzmann constant, and the temperature
of the system, respectively. The Smoluchowski equation
equivalent to Eq. 5 can be written as
∂
∂t

P (Q, t) = −�(Q)P (Q, t)

= ∑
i=1

∂

∂r i

· 1
ζ

{
kBT

∂

∂r i

+ ∂U

∂r i

}
P .

(7)

Here, Q = {r1, . . . , rN } denotes a point in the phase space
of the system, and P(Q, t)dQ denotes the probability that
the system is found at time t in an infinitesimal volume dQ

at point Q in the phase space. The time evolution operator
� satisfies the detailed balance condition (Risken 1989):

Peq(Q
′)�(Q)δ(Q − Q′) = Peq(Q)�†(Q)δ(Q − Q′), (8)

where Peq(Q) ∝ exp

[
−U({rj })

kBT

]
. Here, �(Q)δ(Q − Q′)

and the adjoint operator �†(Q)δ(Q − Q′) act only on Q in
δ(Q−Q′). In the matrix representation, so that �(Q)δ(Q−
Q′) = �(Q|Q′) and �†(Q)δ(Q − Q′) = �(Q′|Q), the
detailed balance condition is the same as that in Eq. 4.

In a molecular dynamics simulation with the Langevin
thermostat, the time evolution of coordinates r i , (i =
1, · · · , N) is given by the Langevin equation for a
biomolecule with N atoms:

mi

dvi

dt
= −ζvi − ∂

∂r i

U({rj }) + wi , (9)

with
dr i

dt
= vi . (10)

Here, r i (t) and vi (t) denote the position and the velocity of
the ith atom at time t , respectively. The mass of the ith atom
is denoted by mi and ζ is the friction constant.

The Kramers equation, equivalent to Eqs. 9 and 10, can
be written as

∂

∂t
P (Q, t) = −�(Q)P (Q, t)

=
N∑

i=1

{
∂

∂r i

· vi − 1

mi

∂

∂vi

· ∂U

∂r i

− ζ

mi

∂

∂vi

·
(

vi + kBT

mi

∂

∂vi

)}
P .

(11)



378 Biophys Rev (2018) 10:375–389

Here, Q = {r1, . . . , rN, v1, . . . , vN } denotes a point in the
phase space of the system. The time evolution operator �

satisfies the detailed balance condition:

Peq(Q
′)�(Q)δ(Q − Q′) = Peq(εQ)�†(εQ)δ(εQ − εQ′),

(12)

where Peq(Q) ∝ exp

(
− 1

kBT

[
1

2

∑

i

miv
2
i + U({rj })

])

and Peq(Q) = Peq(εQ). Here, εQ denotes the time-
reversed state of the state Q, namely,
εQ = {ε1r1, . . . , εNrN, .εN+1v1, . . . , ε2NvN } with

εi =
{

1 for i = 1, . . . , N,

−1 for i = N + 1, . . . , 2N .
(13)

In the matrix representation, the detailed balance condition
is written as follows:

�(Q|Q′)Peq(Q
′) = �(εQ′|εQ)Peq(εQ). (14)

The time evolution equation of P(Q; t) of Eqs. 7 and 11
corresponds to Eq. 3 in the matrix representation. In Monte
Carlo and Brownian dynamics, because only coordinates are
the degrees of freedom in the system, εQ = Q, the detailed
balance condition in all three cases is given by Eq. 14.

We now consider the eigenvalue problem of the time
evolution operator �(Q|Q′) of the master equation:

∑

Q

φn(Q)�(Q|Q′) = λnφn(Q
′). (15)

∑

Q′
�(Q|Q′)ψn(Q

′) = λnψn(Q). (16)

Here, φn(Q) andψn(Q) are the left and right eigenfunctions
of the time evolution operator � with eigenvalue λn,
respectively. When we define a quantity φ̂n(Q) through

ψn(Q) = φ̂n(Q)Peq(Q), (17)

then φ̂n(Q) = φn(εQ). The eigenfunctions are chosen to
satisfy the orthonormal condition:

∑

Q

φm(Q)ψn(Q) =
∑

φm(Q)φ̂nPeq(Q)

= 〈φmφ̂n〉 = δm,n. (18)

The equilibrium time-displaced correlation function of
φn(Q) and φ̂m(Q) is given by the following:

〈φm(t)φ̂n(0)〉 =
∑

Q

∑

Q′
φm(Q)Tt (Q|Q′)φ̂n(Q

′)Peq(Q
′)

=
∑

Q

∑

Q′
φm(Q)e−�t (Q|Q′)φ̂n(Q

′)Peq(Q
′)

=
∑

Q

∑

Q′
φm(Q)e−�t (Q|Q′)ψn(Q

′)

=
∑

Q

φm(Q)e−λntψn(Q)

= δm,ne
−λnt , (19)

where Tt (Q|Q′) = e−�τ (Q|Q′) is the conditional
probability that the system is found at time t at Q given that
the system is at Q′ at time 0.

If two quantities A(Q) and B(Q) are expanded as

A(Q) =
∑

n

anφn(Q) and B(Q) =
∑

n

b̂nφ̂n(Q), (20)

then the time correlation function of A and B in the
equilibrium state is given by

〈A(t)B(0)〉 =
∑

n

anb̂n exp(−λnt). (21)

Thus, in terms of φn(Q) and φ̂n(Q), the correlation function
〈A(t)B(0)〉 is decomposed into a sum of exponentially
relaxing contributions. Therefore, we use two sets of
functions, {φn(Q)} and {φ̂n(Q)}, as relaxation modes, and
refer to {λn} as their relaxation rates. The relaxation modes
and rates are given as left eigenfunctions and eigenvalues
of the time evolution operator of the master equation of the
system, respectively.

RMA

RMAwith a single evolution time, t0

RMA approximately estimates slow relaxation modes and
rates from trajectories obtained from simulations. Herein,
we explain how to obtain the slow relaxation modes and
rates. The point of this method is that we consider the
variational problem, which is equivalent to the eigenvalue
problem of the time evolution operator, and choose an
appropriate trial function in order to estimate the slow
relaxation modes and rates in the system.
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We consider the equations for the conditional probability:
∑

Q

φn(Q)Tτ (Q|Q′) = e−λnτ φn(Q
′), (22)

∑

Q′
Tτ (Q|Q′)ψn(Q

′) = e−λnτψn(Q). (23)

The eigenvalue problem in Eqs. 22 and 23 is equivalent to
the variational problem

δR = 0 (24)

with

R[φn] = 〈φn(τ)φ̂n(0)〉
〈φn(0)φ̂n(0)〉

, (25)

and the stationary value of R gives the eigenvalue
exp(−λnτ). RMA treats the variational problem of Eqs. 24
and 25 using trial functions instead of the eigenvalue
problem of Eqs. 22 and 23. To choose the trial function
given by a linear combination of important relevant
quantities, we can evaluate the relaxation modes and rates
from simulation data.

Herein, we consider a biopolymer composed of N atoms
and only treat the coordinates, because the velocities have
faster relaxations (∼ picosecond order) than coordinates in
protein systems. We assume that R is a 3N -dimensional
column vector that consists of a set of atomic coordinates
relative to their average coordinates

RT = (r ′
1
T
, r ′

2
T
, . . . , r ′

N
T
) = (x′

1, y
′
1, z

′
1, . . . , x

′
N, y′

N, z′
N),

(26)

with

r ′
i = r i − 〈r i〉, (27)

where r i is the coordinate of the ith atom of the biopolymer
in the center-of-mass coordinate system, and 〈r i〉 is its
average. Note that because we consider the coordinates only,
φ̂n(Q) = φn(εQ) = φn(Q) holds.

In RMA, we use the following function as an approxi-
mate relaxation mode:

Xp(Q) =
3N∑

i=1

fp,iRi(t0/2; Q), (28)

with

Ri(t; Q) =
∑

Q′
Ri(Q

′)Tt (Q
′|Q). (29)

Here, Ri(Q) is the ith component of R. The quantity
Ri(t; Q) is the expectation value of Ri after a period t

starting from a state Q and satisfies Ri(t; Q)|t=0 = Ri(Q).
The parameter t0 is introduced in order to reduce the relative
weight of the faster modes contained inR, and it is expected
that Eq. 28 becomes a better approximation as t0 becomes
larger.

For the trial function (28), R defined by Eq. 25 is given
by

R[Xp] =

3N∑
i=1

3N∑
j=1

fp,iCi,j (t0 + τ)fp,j

3N∑
i=1

3N∑
j=1

fp,iCi,j (t0)fp,j

, (30)

where Ci,j (t) is a component of a 3N × 3N symmetric
matrix C(t) defined by

Ci,j (t) = 〈Ri(t)Rj (0)〉. (31)

Then, the variational problem of Eq. 25 becomes a
generalized eigenvalue problem

3N∑

j=1

Ci,j (t0 + τ)fp,j = exp(−λpτ)

3N∑

j=1

Ci,j (t0)fp,j . (32)

The orthonormal condition of Eq. 18 for Xp is written as

3N∑

i=1

3N∑

j=1

fp,iCi,j (t0)fp,j = δp,q . (33)

Equations 32 and 33 determine the relaxation rates λp and
the corresponding relaxation modes fp,i . We chose the
indices of λp so that 0 < λ1 ≤ λ2 ≤ · · · holds. Here, the
relation

Tt (Q|Q′)Peq(Q
′) = Tt (Q

′|Q)Peq(Q), (34)

which is equivalent to the detailed balance condition of
Eq. 14 with εQ = Q, and the Markovian property
∑

Q′
Tt1(Q|Q′)Tt2(Q

′|Q′′) = Tt1+t2(Q|Q′′) (35)

are used.
The inverse transformation of Eq. 28 is given by

Ri(t0/2; Q) =
3N∑

p=1

gi,pXp(Q) (36)

with

gi,p =
3N∑

j=1

Ci,j (t0)fp,j . (37)

The time correlation functions of Ri are reproduced by

〈Ri(t)Rj (0)〉 =
∑

p

∑

q

gi,pgj,q

〈
Xp (t − t0)Xq(0)

〉
,

�
∑

p

gi,pgj,p exp
[−λp (t − t0)

]
,

=
∑

p

g̃i,pg̃j,p exp(−λpt), (38)

for t ≥ t0. Here,

g̃i,p = gi,p exp(λpt0/2). (39)
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Because we are considering position coordinates only,
the detailed balance condition yields the following conse-
quences: C(t) is a symmetric matrix, Ci,j (t) = Cj,i(t);
{λp} are real and positive, which corresponds to pure relax-
ation. We refer to this method as the “RMA method with a
single evolution time,” which is t0/2.

In practice, the time correlation matrices for the two
different times are calculated through simulations. Then,
by solving the generalized eigenvalue problem, {λp} and
{Xp} are obtained from the eigenvalues and eigenvectors,
respectively. To examine the validity of the present analysis,
the autocorrelation functions Ci,i(t) are reconstructed
from the estimated eigenvalues and eigenvectors and are
compared with those directly calculated via simulation.

Herein, we comment on the trial function. When RMA
was first introduced to a spin system, states of spins
on a lattice were used as the trial function (Takano and
Miyashita (1995)). When RMA was first introduced to
polymer systems, the coordinates of polymers were used as
the trial function (Koseki et al. (1997); Hirao et al. (1997)).
In polymer systems, the Rouse modes, which were derived
from the theory of polymer physics (Doi and Edwards
1986), correspond to the relaxation modes. Rouse modes
are given as linear combinations of coordinates. Thus,
when RMA was applied to polymer systems, the modes
obtained by RMA were compared with the Rouse modes.
In protein systems, PCA using coordinates has been widely
used. In PCA, the eigenvalue problem of the covariance
matrix of coordinates is solved. Therefore, when we first
applied RMA to a hetero polymer system (protein system),
it seemed to be better to use coordinates as trial functions.
The results of RMA and PCA were directly compared with
each other. Recently, we have proposed to use physical
quantities with slow motions as the trial functions and
PCRMA and two-step RMA have been introduced (see the
“Improvement of RMA” section). However, RMA using
coordinates as the trial functions has an advantage that we
can easily convert the information on the slow relaxation
modes to the information in coordinate space.

RMA for protein systems

In homopolymer systems, relaxation of the positions of a
polymer relative to the center of the mass is investigated.
This means that the translational degrees of freedom are
removed from the coordinates of the polymer. Because the
rotational degrees of freedom remain, the rotational relax-
ation of the polymer is observed as slow relaxations. In
protein systems, it is of interest to evaluate fluctuations
of the conformations of a biomolecule around its aver-
age conformation. Thus, the translational and rotational
degrees of freedom are removed from the sampled con-
formations of a biomolecule. In practice, treatment of the

generalized-eigenvalue problem for removing the transla-
tional degrees of freedom in the homopolymer system was
given by Koseki et al. (1997). Herein, we explain how to
treat the generalized eigenvalue problem for removing the
translational and rotational degrees of freedom when using
the coordinates for the trial function (Mitsutake et al. 2011).
The point of this process is that the generalized eigenvalue
problem for real symmetric matrices can be easily solved
numerically if the matrices are positive definite. Therefore,
we shift the zero eigenvalues to finite positive values with-
out changing the other eigenvalues and the corresponding
eigenvectors.

A schematic illustration of the process for RMA using
coordinates for the trial function is shown in Fig. 1. First, we
remove the translational and rotational degrees of freedom
as well as conduct PCA (Eckart 1935; McLachlan 1979).
After the average structure converges, the origin of the
coordinate system is chosen to be the center of the mass of
the average positions, 〈r i〉 with i = 1, . . . , N , and the axes
of the coordinate system are chosen to be the principal axes
of the moment of the inertia tensor of the average positions.

We calculate Ci,j (t) = Ci,j (t) + Cj,i(t)

2
and C′(t):

C′(t) = C(t) +
∑

α=x,y,z

exp(−λtrα(t − t0))d
tr
αd tr

α
T

+
∑

α=x,y,z

exp(−λrotα (t − t0))d
rot
α drot

α
T
, (40)

where d tr
x , d

tr
y , and d tr

z are unit vectors given by

d tr
x = 1√

N
(1, 0, 0, 1, 0, 0, · · · , 1, 0, 0)T,

d tr
y = 1√

N
(0, 1, 0, 0, 1, 0, · · · , 0, 1, 0)T,

d tr
z = 1√

N
(0, 0, 1, 0, 0, 1, · · · , 0, 0, 1)T, (41)

and drot
x , drot

y , and drot
z are unit vectors given by

drot
x = 1

√∑N
i=1(〈zi〉2 + 〈yi〉2)

×(0, −〈z1〉, 〈y1〉, 0, −〈z2〉, 〈y2〉, · · · , 0, −〈zN 〉, 〈yN 〉)T,

drot
y = 1

√∑N
i=1(〈zi〉2 + 〈xi〉2)

×(〈z1〉, 0, −〈x1〉, 〈z2〉, 0, −〈x2〉, · · · , 〈zN 〉, 0, −〈xN 〉)T, and

drot
z = 1

√∑N
i=1(〈yi〉2 + 〈xi〉2)

×(−〈y1〉, 〈x1〉, 0, −〈y2〉, 〈x2〉, 0, · · · , −〈yN 〉, 〈xN 〉, 0)T. (42)
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Structural fluctuations R(t) 

RMSD fit to the average structure <R>

Calculate the average structure <R>

Repeat the process

until <R> converges

Rotate the average structure <R> so that the principal axes of 

the moment of inertia tensor are set to x,y, and z axes

RMSD fit to average structure <R>

Calculate C(t) and C`(t)

Solve the generalized eigenvalue problem for C`(t) 

Analyze trajectory by using X
p
 and λ

p

Processes of RMA using coordinates for trial function

(The translational and rotational degrees of freedom are removed)

Reconstruct C
i,i
(t) from the obtained eigenvalues and eigenvectors 

and compare them and  C
i,i
(t) directly calculated via simulation

Fig. 1 Schematic illustration of the RMA process using the coordinate
R for the trial function

The values of λtrα and λrotα are usually set to zero. These unit
vectors satisfy the following relations:

da
α · db

β = da
α
T

db
β = δα,βδa,b (43)

and

C(t)da
α = 0, (44)

where α, β = x, y, z and a, b = tr, rot. Then, we
solve the generalized eigenvalue problem for C′(t0 + τ)

and C′(t0), C′(t0 + τ)v′
p = exp(−λ′

pτ)C′(t0)v′
p, with

the orthonormal condition v′
p
T
C′(t0)v′

q = δp,q . The unit
vectors da

α are eigenvectors of this generalized eigenvalue
problem with eigenvalues exp(−λa

ατ). We denote f ′
p as

the eigenvectors other than da
α . Because da

α
T
C′(t)f ′

p =
exp(−λa

α(t − t0))d
a
α
T
f ′

p = 0, C′(t)f ′
p = C(t)f ′

p

holds. Therefore, f ′
p are identical with the eigenvectors

f p = (fp,1, fp,2, . . . , fp,3N)T of the generalized-
eigenvalue problem for C(t0 + τ) and C(t0) with the same
eigenvalues exp(−λpτ). Thus, f p and exp(−λpτ) can be
obtained by solving the generalized eigenvalue problem for
C′(t0 + τ) and C′(t0), which are real symmetric positive
definite matrices.

After obtaining relaxation modes and rates, we confirm
whether or not the slow relaxation modes and rates obtained
using τ and t0 are appropriate. For this purpose, the con-
vergences of slow relaxation times as a function of τ are

examined. The autocorrelation functions Ci,i(t) are recon-
structed from the estimated eigenvalues and eigenvectors
and are compared with those directly calculated via simula-
tion (especially the slow relaxation behavior). After exam-
ining the validity, we use the obtained relaxation modes and
rates for analysis.

Improvement of RMA

Selection of τ and t0 and relevant quantities
for the trial function

The relaxation times {1/λp} and the {Xp} obtained via
RMA depend on the manner in which t0 and τ are selected
in practice. For simplification, we here consider the case of
one physical quantity, R. From the variational problem of
Eqs. 24 and 25, the relaxation time 1/λ is obtained from the
gradient of the straight line connecting two points at t = t0
and t = t0+τ in the semi-log plot of the correlation function
C(t) = 〈R(t)R(0)〉 − 〈R〉2 versus t , as shown in Fig. 2a.
If the time correlation function of the physical quantity
contains several {1/λp}, and if we choose t0 = 0 (tICA
case) or a small t0 and small τ , as shown in Fig. 2a (green
line), the obtained 1/λ does not correspond to the slow
relaxation behavior of logC(t) at long times. To investigate
the slow relaxation, we wish to choose values of t0 and τ

that are as large as possible, as shown in Fig. 2a (blue line).
However, the choice of a longer t0 and τ is also limited,
because of the decreasing accuracy of the time correlation
function over long time periods. Therefore, we must choose
the appropriate t0 and τ .

We can improve the RMA explained above by using
two different approaches: introduction of multiple evolution
times and using the different relevant physical quantities
obtained from coordinates (and velocities) for the trial
function. For the first improvement, we describe two types
of methods with multiple evolution times, as shown in
Fig. 2b, c. (The detailed descriptions are given by Nagai
et al. (2013), Natori and Takano (2017), and Karasawa
et al. (2017).) For the second improvement, we describe the
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Fig. 2 Schematic illustration of RMA with a single evolution time t0
(a), and multiple evolution times (1) using t1 and t2 (b) and (2) using
ti (c)
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PCRMA (Nagai et al. 2013), in which the relevant physical
quantities for the trial function are given by the PC modes
with large structural fluctuations and the two-step RMA
(Natori and Takano 2017; Karasawa et al. 2017), which
are in turn given by the slowest relaxation modes roughly
obtained by RMA. Moreover, the MSRMA (Mitsutake and
Takano 2015) is also proposed. We will describe these two
improved RMAs in detail below.

RMAwithmultiple evolution times

RMAwith multiple evolution times t1 and t2(1)

In this method, the following trial functions are used as
approximate relaxation modes:

Xp(Q) =
3N∑

i=1

f 1
p,iRi(t1/2; Q) +

3N∑

i=1

f 2
p,iRi(t2/2; Q). (45)

Note that two evolution times, t1/2 and t2/2, are used
instead of a single evolution time, t0/2. Because the
contributions of faster modes in R time-evolved for t1/2
and those for t2/2 are different, the approximate relaxation
modes can extract the faster modes, which cannot be
extracted by the approximate relaxation modes using a
single evolution time (see Fig. 2b). Using Eq. 45 as a
trial function for the variational problem, the following
generalized eigenvalue problem is obtained:

6N∑

j=1

Ci,j (t0 + τ)fp,j = exp(−λpτ)

6N∑

j=1

Ci,j (t0)fp,j , (46)

with f p = (f 1
p

T
, f 2

p

T
)T. Here, C(t) is a 6N × 6N matrix

defined by

C(t) =
(

C1,1(t) C1,2(t)

C2,1(t) C2,2(t)

)
, (47)

and Cμ1,μ2(t) is an 3N × 3N matrix defined by

C
μ1,μ2
i,j (t) =

〈
Ri

(
tμ1

2
+ tμ2

2
+ t

)
Rj (0)

〉
, (48)

where μ1, μ2 = 1 or 2. The orthonormal condition is written
as
6N∑

i=1

6N∑

j=1

fp,iCi,j (0)fp,j = δp,q . (49)

The inverse transformation of Eq. 45 is given by

Ri(t1/2; Q) =
6N∑

p=1

g1
i,pXp(Q)

Ri(t2/2; Q) =
6N∑

p=1

g2
i,pXp(Q) (50)

with

gi,p =
6N∑

j=1

Ci,j (0)fp,j , (51)

where gp =
(
g1

p

T
, g2

p

T
)T

. The time correlation functions

of Ri are reproduced by

〈Ri(t)Rj (0)〉 �
6N∑

p=1

g̃av
i,pg̃av

j,p exp
(−λpt

)
, (52)

where

g̃av
i,p = (exp(λpt1/2)g

1
i,p + exp(λpt2/2)g

2
i,p)/2. (53)

RMAwith multiple evolution times ti (2)

When the relevant physical quantities R in the trial function
exhibit different relaxations, it is preferable to use different
evolution times for the different physical quantities, as
shown in Fig. 1c. That is, if we know the characteristic
time scales of the relevant physical quantities, we can
choose a specific evolution time ti for each relevant physical
quantityRi based on its characteristic time scale. This RMA
method is referred to as “RMA with multiple evolution
times {ti/2}.” In this method, we use the following trial
function:

Xp(Q) =
3N∑

i=1

fp,iRi(ti/2; Q). (54)

The parameter ti is introduced in order to reduce the relative
weight of the faster modes contained in Ri . Further, it is
expected that Eq. 54 would yield a superior approximation
for larger ti values.

The variational problembecomes a generalized-eigenvalue
problem:

3N∑

j=1

Ci,j

(
ti + tj

2
+ τ

)
fp,j = exp(−λpτ)

3N∑

j=1

Ci,j

(
ti + tj

2

)
fp,j .

(55)

Here, Ci,j (t) = 〈Ri(t)Rj (0)〉 and the orthonormal
condition for Xp is expressed as

3N∑

i=1

3N∑

j=1

fp,iCi,j

(
ti + tj

2

)
fq,j = δp,q . (56)

Equations 54, 55, and 56 determine the relaxation rates
λp and the corresponding relaxation modes. We chose the
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indices of λp such that 0 < λ1 ≤ λ2 ≤ · · · holds. The
inverse transformation of Eq. 54 is given by

Ri(ti/2; Q) =
3N−6∑

p=1

gi,pXp(Q), (57)

with

gi,p =
3N∑

j=1

Ci,j

(
ti + tj

2

)
fp,j . (58)

The time correlation functions of Ri are given by

〈Ri(t)Rj (0)〉=
∑

p

∑

q

gi,pgj,q

〈
Xp

(
t − ti + tj

2

)
Xq(0)

〉
,

�
∑

p

gi,pgj,p exp

[
−λp

(
t − ti + tj

2

)]
,

=
∑

p

g̃i,pg̃j,p exp(−λpt), (59)

for t ≥ (ti + tj )/2. Here,

g̃i,p = gi,p exp(λpti/2). (60)

RMAs to automatically reduce the degrees
of freedom of relevant quantities for the trial
function

RMA requires relatively high statistical precision of the
time correlation matrices because of treatment for the
generalized eigenvalue problem; thus, it is difficult for
RMA to handle a large number of degrees of freedom
directly. We must therefore reduce the number of degrees of
freedom automatically.

In an original RMA, the coordinates (and velocity)
are used for the trial function. The results may change
depending on which relevant quantities are used for the trial
function because their correlation functions are fitted using
t0 and τ . (For the Markov state model, the dependence of
relaxation times on the selection of states is discussed in
Swope et al. (2004) and Pérez-Hernández et al. (2013).)
It is better to use the relevant quantities that include the
slow behavior. For the second improvement, we describe the
PCRMA in which the relevant quantities are given by the
PC modes with large structural fluctuations, and the two-
step RMA in which the quantities are given by the slowest
relaxation modes roughly obtained by the first RMA. A
schematic illustration of PCRMA and two-step RMA is
given in Fig. 3.

PCRMA

To apply RMA to a protein system by reducing its degrees
of freedom, we proposed an improved method, which is
referred to as the PCRMA method (Nagai et al. 2013). In

this method, PCA is carried out first, and then, RMA is
applied to a small number of principal components with
large fluctuations (� =(
1, 
2, · · · , 
Nc)

T ). We use the
following function as an approximate relaxation mode:

Xp(Q) =
Nc∑

i=1

fp,i
i(t0/2; Q). (61)

Because the degrees of freedom is reduced to Nc and the
relevant quantities with large variance tend to have slow
relaxations, the slow relaxation times can be estimated by
setting t0 and τ as large values. Note that because the
selected principal components also contain faster relaxation
modes, as shown in Fig. 4, Nagai et al. (2013) also combined
PCRMA with the RMA using multiple evolution times (1)
explained above. Note that in PCRMA, if the Ncth or more
PC modes (with relatively small fluctuations) have slow
relaxation, the slow behaviors may not be extracted; thus,
there is a possibility that the slow relaxations would not be
estimated with small structural fluctuations.

Two-step RMA

Using a similar process to that of PCRMA, we proposed a
two-step RMA method (Natori and Takano 2017; Karasawa
et al. 2017). Based on our experience, the slow {Xp}
obtained from the conventional RMA with small t0 and
τ contains the true slow {Xp} (Mitsutake et al. 2011),
although the {1/λp} values are underestimated. The slow
relaxation modes obtained by the first RMA may contain
the true slow relaxation modes. Thus, we use the slow
relaxation modes roughly obtained from the first RMA
as the relevant quantities for the trial function. In this
technique, RMA with a single evolution time using small t0
and τ is implemented first, and {Xp} and {λp} are roughly
estimated. We then apply the second RMA to a small
number of the obtained slowest {Xp}. We denote the number
of {Xp} used in the second RMA as Nm. In the second
RMA, we also use the previously presented technique
of RMA with multiple evolution times (2), because the
characteristic time scales of the {Xp} obtained from the first
RMA are roughly given by the relaxation times {1/λp}. In
the second RMA, we use the following trial function:

X′
u(Q) =

Nm∑

p=1

f ′
u,pXp(t ′p/2; Q). (62)

Here, Xp(Q) is the relaxation mode obtained from the
first RMA and t ′p is determined from 1/λp. A detailed
explanation is given by Natori and Takano (2017) and
Karasawa et al. (2017).

In the second RMA, the time interval τ can be
chosen to be large, because the number of degrees of
freedom is reduced and the physical quantities {Xp}
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Fig. 3 Schematic illustration of
PCRMA (a) and two-step RMA
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exhibit slow relaxations. Using the second RMA, the
estimation accuracy of the relaxation modes and times can
be improved.

Markov state RMA

As mentioned above, in RMA, the relaxation modes and
rates are given as left eigenfunctions and eigenvalues of the
time evolution operator of the master equation of the system,
respectively. From this point of view, RMA is related to
Markov state models. Herein, we consider the relation
between RMA and Markov state models and propose the
new method of MSRMA.

In the simplest Markov state model, the phase space
of the system, where only the position coordinates are
considered, is divided into clusters (subsets) Si , i =
1, . . . , n. First, the joint probability P̄i,j (τ ) = P(Q ∈
Si, τ ; Q ∈ Sj , 0) that the state of the system Q is in
the j th cluster at time 0 and is in the ith cluster at time
τ > 0 is calculated in a simulation. Second, the transition

lo
g
<

Φ
1(t

) Φ
1(0

)>

t
Φ1

Fig. 4 Schematic illustration for PCRMA

probability T̄i,j (τ ) that the state of the system is found in
the ith cluster after time τ starting from a state in the j th
cluster is calculated by

T̄i,j (τ ) = P̄i,j (τ )/p̄j , (63)

where p̄j = P(Q ∈ Sj ) is the probability that the state of
the system is found in the j th cluster, which is estimated in
the simulation. Then, by solving the eigenvalue problem

f̄ p
TT̄ (τ ) = f̄ p

T�̄p (64)

for the transition matrix T̄ (τ ) = (T̄i,j (τ )), the pth
eigenvector f̄ p and its eigenvalue �̄p are obtained. The

eigenvector f̄ 1 ∝ (1, 1, . . . , 1)T corresponds to the
equilibrium state and its eigenvalue �̄1 = 1. Other
eigenvectors f̄ p represent structural transitions and the
corresponding eigenvalues �̄p give their relaxation time
scales τ̄p as

τ̄p = − τ

ln �̄p

. (65)

Note that in the Markov description, it is important that the
states are defined in a kinetically meaningful way (Swope
et al. 2004; Pérez-Hernández et al. 2013). We need to
define the states that are classified by order parameters
representing the dynamics and kinetics of the system.
Even with a good choice of states, in order for a Markov
description of the process to be accurate, the time interval
τ should also be chosen carefully. In other words, for
the Markov description to work, the time interval of the
transition matrix τ must be chosen appropriately so that
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it is as large as the slowest relaxation time of the states.
When plotting τ̄p as a function of τ , τ̄p slowly converges to
the appropriate time scale when τ is increased. In addition,
when a much longer τ than the slowest relaxation time of
the states is used, the Markov state model is not expected to
be accurate. Thus, we usually set the time interval τ to the
value when the variation of τp is sufficiently flat (Swope
et al. 2004; Pérez-Hernández et al. 2013).

The abovementioned procedure of the Markov state
model is related to the following procedure of RMA. We
consider an approximate relaxation mode given by

X̄p =
n∑

i=1

fp,iδi(t0/2; Q), (66)

where δi(t; Q) is defined in the same way as Ri(t; Q) in
Eq. 29 from δi(Q) given as a function of the state Q of the
system by

δi(Q) =
{
1 for Q ∈ Si,

0 for Q /∈ Si .
(67)

Then, the generalized eigenvalue problem is given by
∑

j

C̄i,j (t0 + τ)f̄p,j = e−λ̄pτ
∑

j

C̄i,j (t0)f̄p,j , (68)

with
∑

i,j

f̄p,i C̄i,j (t0)f̄q,j = δp,q, (69)

where

C̄i,j (t) = 〈δi(t)δj (0)〉. (70)

According to the definition of δi(Q), it follows that C̄i,j (t)

is the joint probability P̄i,j (t).
If we set t0 = 0, the generalized eigenvalue problem (68)

becomes the eigenvalue problem (64) with �̄p = e−λ̄pτ

or τ̄p = 1/λ̄p, because C̄(0) = diag(p̄1, . . . , p̄n) and
C̄(τ )C̄(0)−1 = T̄ (τ ). Thus, the Markov state model is a
special case of MSRMA with t0 = 0.

Because δi(t0/2; Q) in Eq. 66 reduces the contributions
of faster modes in δi(Q), the solutions of the generalized
eigenvalue problem (68) provides better approximations to
the slow relaxation modes and rates as t0 becomes larger.
Therefore, the relaxation times τ̄p obtained by the Markov
state model are expected to be improved by solving Eq. 68
with t0 > 0 rather than Eq. 64.

Application of RMA to a systemwith large
conformational changes

In this section, we apply RMA to a protein system
simulation to show the effectiveness of RMA. The selection
of order parameters in simulations is important to analyze
the trajectory. PCA, which is a static analysis method,

extracts large structural fluctuations from simulations, and
the obtained PCmode is used to obtain the order parameters.
Moreover, it has now become possible to perform long
simulations such as those of unfolded and folded protein
structures, and when the simulation involves large structural
changes, the difference between local minimum-energy
states is relatively small compared with that between the
folded and unfolded states. In this case, it is difficult for
PCA to extract the effective modes or order parameters
to accurately identify the local minimum-energy states. By
contrast, RMA extracts slow relaxation modes. It is thought
that the local minimum-energy states are usually stable so
that the system remains in this state for a long time during
a simulation. The order parameters with slow relaxation
may correspond to the directions between local minimum-
energy states. Thus, slow relaxation modes may be suitable
order parameters to identify local minimum-energy states
and the transitions between them. To validate this concept,
we applied RMA to the 10-residue peptide, chignolin in
water near its folding transition temperature.

The detailed results are described in Mitsutake et al.
(2011). Chignolin consists of a 10-amino acid sequence,
GYDPETGTWG and adopts a β-hairpin turn structure
(Honda et al. 2004). Several simulations of chignolin have
been reported to date (Satoh et al. 2006; Suenaga et al. 2007;
Harada and Kitao 2011; Kührova et al. 2012; Okumura
2012). Previous research has shown that chignolin has a
stable (native) and a misfolded state, which are both found
as hairpin-like structures (see Fig. 5c). These two states have
a common turn structure from Asp3 to Glu5 but slightly
different hydrogen bond patterns. RMA requires a relatively
high level of statistical precision for the time correlation
matrices and therefore requires a long simulation where
many transitions between local minimum-energy states
occur. In addition, we sought to analyze the system with
large conformational changes. Thus, we performed a 750-
ns molecular dynamics simulation of chignolin in aqueous
solution near the transition temperature from an extended
structure (Case et al. 2014). We observed many transitions
among structures, including the native, misfolded, and
unfolded states, by performing the simulation at 450 K.
We used the coordinates of Cα atoms on the backbone as
coordinates so that the degrees of freedom were 30. After
removing the translational and rotational motions from the
coordinates of Cα atoms, PCA and RMA were carried out
on the coordinates of Cα atoms (see Fig. 1). For RMA, we
set t0 and τ to 10.0 and 20.0 ps, respectively.

Figure 5 shows the free-energy surfaces obtained from
PCA (a) and RMA (b). From the free-energy surface of
PCA, the native and misfolded states were not distinguished
because the conformational difference between them is
much smaller than the conformational fluctuations of the
system (the third PC mode distinguished the native and



386 Biophys Rev (2018) 10:375–389

Native Misfolded Intermediate Unfolded

(a)

(b) (d)

(c)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  1000  2000  3000  4000  5000

R
el

ax
at

io
n 

tim
e 

(p
s)

τ (ps)

t0=0 ps
t0=10 ps
t0=50 ps

t0=100 ps
t0=200 ps
t0=500 ps

(e)

Fig. 5 The free-energy surfaces for a the first PC mode 
1 and the
second PC mode 
2, and for b the first slowest RM and the second
slowest RM in the case of t0 = 10.0 ps and τ = 20.0 ps. c Snapshots
of the native, misfolded, intermediate, and unfolded states classified
by RMA, and d distributions for the native (red), misfolded (green),
and intermediate (blue) states on the free-energy surface of the first
PC mode and the second PC mode. e Relaxation times of the second
relaxation mode obtained byMSRMA as a function of the time interval
τ . In e, the line of t0 ps corresponds to the results of a simple Markov
state model. The figure was reproduced from Mitsutake and Takano
(2015)

misfolded states). By contrast, in RMA, the transition
between the native and misfolded structures is slow, and
the slowest relaxation mode was found to be the axis
distinguishing them. This analysis showed that the slow
relaxation mode is a good order parameter to distinguish
the native and misfolded structure. Interestingly, we could
also identify the intermediate structure. By extracting the

structures in the center part of the free-energy surface
shown in Fig. 5b, the cluster was formed with a turn
structure common to the native and misfolded structures.
Because the structures at both terminals fluctuate, a
cluster of intermediate structures forming a turn is also
obtained, while ignoring the fast relaxing movement of both
terminals. The upper part of the free-energy surface shown
in Fig. 5b corresponded to the extended structure. Figure 5c
shows the characteristic structures for the four states. When
plotting the points for the obtained intermediate structure on
the free-energy surface of PCA in Fig 5d, the points were
distributed widely because both terminals fluctuate. Thus,
RMA can identify the characteristic structure, even when
it is only partially formed. From the free-energy surface
obtained by RMA, it is clarified that chignolin folds to
the native or misfolded structures through the intermediate
(turn) structure from the extended structures.

Because the structures were classified into a smaller
number of states using the free-energy surface obtained
by RMA, we then applied the Markov state model and
MSRMA to analyze these four states: native, misfolded,
intermediate, and unfolded states. Figure 5e shows the
relaxation time τp = 1/λp obtained by MSRMA as a
function of τ when t0 = 0, 10, 50, 100, 200, and 500 ps.
Because the first eigenvector corresponds to the steady state
with infinite relaxation time τ1 = ∞, we show the second
slowest relaxation times. The line of t0 = 0 corresponds
to the results of a simple Markov state model. In the case
of t0 = 0, the τp values slowly approach the appropriate
time scale, i.e., the values for plateau regions or peak values
of the solid lines, when τ is increased. For the lines of
t0 > 0, the values of τp quickly approach the appropriate
time scale, i.e., those corresponding to the values for plateau
regions or peak values. Thus, the slow relaxation times can
be improved when applying MSRMA with t0 > 0, which is
introduced to reduce the relative weight of the faster modes.

Overall, RMA can be used to effectively analyze long
simulations at room temperature and is also useful for
investigating systems with large conformational changes,
such as intrinsically disordered proteins and protein folding.

Conclusions

In this paper, we have reviewed the method and application
of RMA, a dynamic analysis method for protein simula-
tions. We described the definition of relaxation modes and
rates, which correspond to the left eigenfunctions and eigen-
values of the time evolution operator of the master equation
of the system, respectively. After providing the definition,
we explained how to estimate the slow relaxation modes
and rates from simulation data. We also summarized sev-
eral new RMAs proposed, including RMA with multiple
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evolution times, PCRMA, two-step RMA, and MSRMA.
Finally, to demonstrate the effectiveness of RMA, we briefly
presented the analysis results of the unfolding/folding sim-
ulation of the 10-residue peptide chignolin detected near the
transition temperature. The simulation results showed that
the relaxation mode is a good order parameter for not only
extracting the transition between the native state and mis-
folded state but also for identifying the intermediate state,
which is partially folded. This suggests that RMA is suit-
able to investigate a system with large structural changes
and naturally denatured protein systems. Although RMA is
efficient for a longer simulation than the longest relaxation
time of the system, it can also extract rare events in a finite-
time simulation such as that conducted at the microsecond
scale. By examining the extent to which the correlation
function can be reconstructed, we can clarify the informa-
tion that can be obtained on dynamics using the obtained
relaxation modes and rates. Theoretical studies to compare
data of the Markov state model with experimental data from
nuclear magnetic resonance and neutron scattering analyses
have emerged recently (Xia et al. 2013; Lindner et al. 2013;
Zheng et al. 2013; Bowman et al. 2014). In the future, it will
also be important to interpret the theoretical relationships in
light of experimental data.
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N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS,
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Noé F, Fischer S (2008) Transition networks for modeling the kinetics
of conformational change in macromolecules. Curr Opin Struct
Biol 18:154
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